Lecture II: The evolution of dispersal

January 2017

Terminology

Dispersal "Any movement of individuals or propagules with potential consequences for gene flow across space" [Ronce, 2007]

Terminology

Dispersal "Any movement of individuals or propagules with potential consequences for gene flow across space" [Ronce, 2007]

Migration "Mass directional movements of large numbers of a species from one location to another."
[Begon et al., 1996]
But in population genetics, often used as a synonym of dispersal.

Why disperse?

Why disperse?

- Avoid kin competition

Why disperse?

- Avoid kin competition
- Avoid inbreeding

Why disperse?

- Avoid kin competition
- Avoid inbreeding
- Explore new territories

Why disperse?

- Avoid kin competition
- Avoid inbreeding
- Explore new territories
- Find better conditions.

Dispersal stages

Outline

Introduction

Dispersal and kin competition

Hamilton \& May 1977
Island model

In spatially heterogeneous environments

An iconic example: [Hamilton and May, 1977]

Model

An iconic example: [Hamilton and May, 1977]

Model

Offspring production

An iconic example: [Hamilton and May, 1977]

Emigration probabilities: $x=0, y>0$
Cost of emigration $c=1-p$.

An iconic example: [Hamilton and May, 1977]

Model

Emigration probabilities: $x=0, y>0$
Cost of emigration $c=1-p$.

All parents die

An iconic example: [Hamilton and May, 1977]

Model

Emigration probabilities: $x=0, y>0$

Cost of emigration $c=1-p$.

An iconic example: [Hamilton and May, 1977]

Model

Emigration probabilities: $x=0, y>0$
Cost of emigration $c=1-p$.
Invasion fitness

$$
w(y, x)=\frac{1-y}{1-y+(1-c) x}+\frac{(1-c) y}{1-x+(1-c) x}
$$

An iconic example: [Hamilton and May, 1977] (2)

$$
w(y, x)=\frac{1-y}{1-y+(1-c) x}+\frac{(1-c) y}{1-x+(1-c) x}
$$

An iconic example: [Hamilton and May, 1977] (2)

$$
w(y, x)=\frac{1-y}{1-y+(1-c) x}+\frac{(1-c) y}{1-x+(1-c) x}
$$

- Selection gradient

$$
D(x)=\left.\frac{\partial w(y, x)}{\partial y}\right|_{y=x}=\frac{(1-c)(1-x(1+c))}{(1-c x)^{2}}
$$

($c=0.3$)

An iconic example: [Hamilton and May, 1977] (2)

$$
w(y, x)=\frac{1-y}{1-y+(1-c) x}+\frac{(1-c) y}{1-x+(1-c) x}
$$

- Selection gradient

$$
D(x)=\left.\frac{\partial w(y, x)}{\partial y}\right|_{y=x}=\frac{(1-c)(1-x(1+c))}{(1-c x)^{2}}
$$

- Singular strategy

$$
x^{*}=\frac{1}{1+c}
$$

($c=0.3$)

An iconic example: [Hamilton and May, 1977] (2)

$$
w(y, x)=\frac{1-y}{1-y+(1-c) x}+\frac{(1-c) y}{1-x+(1-c) x}
$$

- Selection gradient

$$
D(x)=\left.\frac{\partial w(y, x)}{\partial y}\right|_{y=x}=\frac{(1-c)(1-x(1+c))}{(1-c x)^{2}}
$$

- Singular strategy

$$
x^{*}=\frac{1}{1+c}
$$

- Convergence stability

$$
\frac{d D(x)}{d x}=-\frac{(1-c)(1-c+(c+1) c x)}{(1-c x)^{3}} \leq 0
$$

($c=0.3$)

An iconic example: [Hamilton and May, 1977] (2)

$$
w(y, x)=\frac{1-y}{1-y+(1-c) x}+\frac{(1-c) y}{1-x+(1-c) x}
$$

- Selection gradient

$$
D(x)=\left.\frac{\partial w(y, x)}{\partial y}\right|_{y=x}=\frac{(1-c)(1-x(1+c))}{(1-c x)^{2}}
$$

- Singular strategy

$$
x^{*}=\frac{1}{1+c}
$$

- Convergence stability

$$
\frac{d D(x)}{d x}=-\frac{(1-c)(1-c+(c+1) c x)}{(1-c x)^{3}} \leq 0
$$

- Uninvadability
$\left.\frac{\partial^{2} w(y, x)}{\partial y^{2}}\right|_{y=x=x^{*}}=-2(1-c)(c+1)^{2} \leq 0$

$(c=0.3)$

An iconic example: [Hamilton and May, 1977] (3)

We acknowledge that this simple model probably has few close parallels in the real world. Nevertheless it may usefully force a re-examination of some widely held ideas about migration.
[Hamilton and May, 1977]

An iconic example: [Hamilton and May, 1977] (3)

We acknowledge that this simple model probably has few close parallels in the real world. Nevertheless it may usefully force a re-examination of some widely held ideas about migration.
[Hamilton and May, 1977]
Kin competition Competition between related individuals.

Dispersal evolution in a subdivided population

$z_{r} \quad$ Emigration probability of residents
$z_{m} \quad$ Emigration probability of mutants
c Cost of dispersal
$\mu \quad$ Mutation probability $(\mu \rightarrow 0)$.

Dispersal evolution in a subdivided population

$z_{r} \quad$ Emigration probability of residents
$z_{m} \quad$ Emigration probability of mutants
c Cost of dispersal
$\mu \quad$ Mutation probability $(\mu \rightarrow 0)$.
$q_{0}\left(z_{m}, z_{r}\right)$: Average frequency of mutants in demes that contain mutants.

Dispersal evolution in a subdivided population

$z_{r} \quad$ Emigration probability of residents
$z_{m} \quad$ Emigration probability of mutants
c Cost of dispersal
$\mu \quad$ Mutation probability $(\mu \rightarrow 0)$.
$q_{0}\left(z_{m}, z_{r}\right)$: Average frequency of mutants in demes that contain mutants.
Invasion fitness
$w\left(z_{m}, z_{r}\right)=\frac{1-z_{m}}{1-\left(q_{0} z_{m}+\left(1-q_{0}\right) z_{r}\right)+(1-c) z_{r}}+\frac{(1-c) z_{m}}{1-z_{r}+(1-c) z_{r}}$
[Gandon and Rousset, 1999]

Dispersal evolution in a subdivided population (2)

$$
w\left(z_{m}, z_{r}\right)=\frac{1-z_{m}}{1-\left(q_{0} z_{m}+\left(1-q_{0}\right) z_{r}\right)+(1-c) z_{r}}+\frac{(1-c) z_{m}}{1-z_{r}+(1-c) z_{r}}
$$

Dispersal evolution in a subdivided population (2)

$$
w\left(z_{m}, z_{r}\right)=\frac{1-z_{m}}{1-\left(q_{0} z_{m}+\left(1-q_{0}\right) z_{r}\right)+(1-c) z_{r}}+\frac{(1-c) z_{m}}{1-z_{r}+(1-c) z_{r}}
$$

Selection gradient

$$
D(z)=\left.\frac{\partial w\left(z_{m}, z_{r}\right)}{\partial z_{m}}\right|_{z_{m}=z_{r}=z}=\frac{q-c-z\left(q-c^{2}\right)}{(1-c z)^{2}},
$$

with $q=q_{0}(z, z)$.

Dispersal evolution in a subdivided population (2)

$$
w\left(z_{m}, z_{r}\right)=\frac{1-z_{m}}{1-\left(q_{0} z_{m}+\left(1-q_{0}\right) z_{r}\right)+(1-c) z_{r}}+\frac{(1-c) z_{m}}{1-z_{r}+(1-c) z_{r}}
$$

Selection gradient

$$
D(z)=\left.\frac{\partial w\left(z_{m}, z_{r}\right)}{\partial z_{m}}\right|_{z_{m}=z_{r}=z}=\frac{q-c-z\left(q-c^{2}\right)}{(1-c z)^{2}},
$$

with $q=q_{0}(z, z)$.
Computing q, recursively \curvearrowright More on q

$$
q_{t+1}=\frac{1}{\mathcal{N}}+\frac{\mathcal{N}-1}{\mathcal{N}}\left(1-\frac{(1-c) z}{1-c z}\right)^{2} q_{t}
$$

Dispersal evolution in a subdivided population (2)

$$
w\left(z_{m}, z_{r}\right)=\frac{1-z_{m}}{1-\left(q_{0} z_{m}+\left(1-q_{0}\right) z_{r}\right)+(1-c) z_{r}}+\frac{(1-c) z_{m}}{1-z_{r}+(1-c) z_{r}}
$$

Selection gradient

$$
D(z)=\left.\frac{\partial w\left(z_{m}, z_{r}\right)}{\partial z_{m}}\right|_{z_{m}=z_{r}=z}=\frac{q-c-z\left(q-c^{2}\right)}{(1-c z)^{2}}
$$

with $q=q_{0}(z, z)$.
Computing q, recursively \propto More on q

$$
\begin{aligned}
q_{t+1} & =\frac{1}{\mathcal{N}}+\frac{\mathcal{N}-1}{\mathcal{N}}\left(1-\frac{(1-c) z}{1-c z}\right)^{2} q_{t} \\
q & =\frac{1}{1+\left(\left(2-\frac{(1-c) z}{1-c z}\right) \frac{(1-c) z}{1-c z}(\mathcal{N}-1)\right.}
\end{aligned}
$$

Dispersal evolution in a subdivided population (3)

Singular strategy

$$
z^{*}=\frac{1+2 c \mathcal{N}-\sqrt{1+4 c^{2}(\mathcal{N}-1) \mathcal{N}}}{2 c(1+c) \mathcal{N}}
$$

Dispersal evolution in a subdivided population (3)

Singular strategy

$$
z^{*}=\frac{1+2 c \mathcal{N}-\sqrt{1+4 c^{2}(\mathcal{N}-1) \mathcal{N}}}{2 c(1+c) \mathcal{N}}
$$

Dispersal evolution in a subdivided population (3)

Singular strategy

$$
z^{*}=\frac{1+2 c \mathcal{N}-\sqrt{1+4 c^{2}(\mathcal{N}-1) \mathcal{N}}}{2 c(1+c) \mathcal{N}}
$$

Dispersal evolution in a subdivided population (4)

Invadability

Dispersal evolution in a subdivided population (4)

Invadability

$$
\begin{aligned}
& \left.\frac{\partial^{2} w\left(z_{m}, z_{r}\right)}{\partial z_{m}^{2}}\right|_{z_{m}=z_{r}=z^{*}}= \\
& \frac{2}{\left(1-c z^{*}\right)^{2}}\left[\left(1-z^{*}\right)\left(\frac{\left(q^{*}\right)^{2}}{1-c z^{*}}+\left.\frac{\partial q_{0}\left(z_{m}, z_{r}\right)}{\partial z_{m}}\right|_{z_{m}=z_{r}=z^{*}}\right)-q^{*}\right]
\end{aligned}
$$

with $q^{*}=q_{0}\left(z^{*}, z^{*}\right)$

Dispersal evolution in a subdivided population (4)

Invadability

$$
\begin{aligned}
& \left.\frac{\partial^{2} w\left(z_{m}, z_{r}\right)}{\partial z_{m}^{2}}\right|_{z_{m}=z_{r}=z^{*}}= \\
& \frac{2}{\left(1-c z^{*}\right)^{2}}\left[\left(1-z^{*}\right)\left(\frac{\left(q^{*}\right)^{2}}{1-c z^{*}}+\left.\frac{\partial q_{0}\left(z_{m}, z_{r}\right)}{\partial z_{m}}\right|_{z_{m}=z_{r}=z^{*}}\right)-q^{*}\right]
\end{aligned}
$$

with $q^{*}=q_{0}\left(z^{*}, z^{*}\right)$
...

Dispersal evolution in a subdivided population (4)

Invadability

$$
\begin{aligned}
& \left.\frac{\partial^{2} w\left(z_{m}, z_{r}\right)}{\partial z_{m}^{2}}\right|_{z_{m}=z_{r}=z^{*}}= \\
& \frac{2}{\left(1-c z^{*}\right)^{2}}\left[\left(1-z^{*}\right)\left(\frac{\left(q^{*}\right)^{2}}{1-c z^{*}}+\left.\frac{\partial q_{0}\left(z_{m}, z_{r}\right)}{\partial z_{m}}\right|_{z_{m}=z_{r}=z^{*}}\right)-q^{*}\right]
\end{aligned}
$$

with $q^{*}=q_{0}\left(z^{*}, z^{*}\right)$

- In this model, always z^{*} is always uninvadable [Ajar, 2003].

Dispersal evolution in a subdivided population (4)

Invadability

$$
\begin{aligned}
& \left.\frac{\partial^{2} w\left(z_{m}, z_{r}\right)}{\partial z_{m}^{2}}\right|_{z_{m}=z_{r}=z^{*}}= \\
& \frac{2}{\left(1-c z^{*}\right)^{2}}\left[\left(1-z^{*}\right)\left(\frac{\left(q^{*}\right)^{2}}{1-c z^{*}}+\left.\frac{\partial q_{0}\left(z_{m}, z_{r}\right)}{\partial z_{m}}\right|_{z_{m}=z_{r}=z^{*}}\right)-q^{*}\right]
\end{aligned}
$$

with $q^{*}=q_{0}\left(z^{*}, z^{*}\right)$

- In this model, always z^{*} is always uninvadable [Ajar, 2003].
- But with heterogeneity in deme sizes, diversification can occur [Massol et al., 2011]

Outline

Introduction

Dispersal and kin competition

In spatially heterogeneous environments

Another classic: [Balkau and Feldman, 1973]

Life-cycle Selection then dispersal.

Another classic: [Balkau and Feldman, 1973]

Life-cycle Selection then dispersal. Genotypes AB, Ab, aB, ab.

Another classic: [Balkau and Feldman, 1973]

- Locus A: local adaptation Fitness:

	in I	in II
A	$1+s$	1
a	1	$1+s$

Life-cycle Selection then dispersal. Genotypes AB, Ab, aB, ab.

Another classic: [Balkau and Feldman, 1973]

Life-cycle Selection then dispersal. Genotypes AB, Ab, aB, ab.

- Locus A: local adaptation Fitness:

	in I	in II
A	$1+s$	1
a	1	$1+s$

- Locus B: emigration

B z
b $\quad z_{m}$.

Another classic: [Balkau and Feldman, 1973]

Life-cycle Selection then dispersal. Genotypes AB, Ab, aB, ab.

- Locus A: local adaptation Fitness:

	in I	in II
A	$1+s$	1
a	1	$1+s$

- Locus B: emigration

B z
b $\quad z_{m}$.

With $A B$ and $a B$
Frequency of $A B$ is x in deme I and y in deme II.

Another classic: [Balkau and Feldman, 1973]

Deme I

∞ individuals $\quad \infty$ individuals

Life-cycle Selection then dispersal. Genotypes AB, Ab, aB, ab.

- Locus A: local adaptation Fitness:

	in I	in II
A	$1+s$	1
a	1	$1+s$

- Locus B: emigration

B z
b $\quad z_{m}$.

With $A B$ and $a B$

Frequency of $A B$ is x in deme I and y in deme II.

$$
\begin{aligned}
x^{\prime} & =(1-z) \frac{(1+s) x}{(1+s) x+1-x}+z \frac{y}{y+(1+s)(1-y)} \\
y^{\prime} & =z \frac{(1+s) x}{(1+s) x+1-x}+(1-z) \frac{y}{y+(1+s)(1-y)} .
\end{aligned}
$$

Another classic: [Balkau and Feldman, 1973]

Deme I

∞ individuals $\quad \infty$ individuals

Life-cycle Selection then dispersal. Genotypes AB, Ab, aB, ab.

- Locus A: local adaptation Fitness:

	in I	in II
A	$1+s$	1
a	1	$1+s$

- Locus B: emigration

B z
b $\quad z_{m}$.

With $A B$ and $a B$

Frequency of $A B$ is x in deme I and y in deme II.

$$
\begin{aligned}
x^{\prime} & =(1-z) \frac{(1+s) x}{(1+s) x+1-x}+z \frac{y}{y+(1+s)(1-y)} \\
y^{\prime} & =z \frac{(1+s) x}{(1+s) x+1-x}+(1-z) \frac{y}{y+(1+s)(1-y)} .
\end{aligned}
$$

\rightarrow Equilibrium $(\hat{x}, \hat{y})=(\hat{x}, 1-\hat{x})$.

Another classic: [Balkau and Feldman, 1973] (2)

Dynamics with the four genotypes

		$A B$	$A b$	$a B$	$a b$
Frequencies:	in deme I	x_{1}	x_{2}	x_{3}	x_{4}
in deme II	y_{1}	y_{2}	y_{3}	y_{4}	

Another classic: [Balkau and Feldman, 1973] (2)

Dynamics with the four genotypes

$$
\begin{aligned}
& \text { Frequencies: } \begin{array}{cccc}
\mathrm{AB} & \mathrm{Ab} & \mathrm{aB} & \mathrm{ab} \\
\text { in deme I } & x_{1} & x_{2} & x_{3}
\end{array} \\
& \mathrm{n}_{4} \\
& \text { in deme II } y_{1} \\
& y_{2} y_{3}
\end{aligned} y_{4} .
$$

Another classic: [Balkau and Feldman, 1973] (2)

Dynamics with the four genotypes

$$
\begin{aligned}
& \text { equencies: } \begin{array}{lllll}
& \mathrm{AB} & \mathrm{Ab} & \mathrm{aB} & \mathrm{ab} \\
\text { in deme I } & x_{1} & x_{2} & x_{3} & x_{4} \\
\text { in deme II } & y_{1} & y_{2} & y_{3} & y_{4}
\end{array} \\
& x_{1}^{\prime}=(1-z) \frac{(1+s) x_{1}}{(1+s)\left(x_{1}+x_{2}\right)+\left(x_{3}+x_{4}\right)}+z \frac{y 1}{\left(y_{1}+y_{2}\right)+(1+s)\left(y_{3}+y_{4}\right)} \\
& x_{2}^{\prime}=\left(1-z_{m}\right) \frac{(1+s) x_{2}}{(1+s)\left(x_{1}+x_{2}\right)+\left(x_{3}+x_{4}\right)}+z_{m} \frac{y 2}{\left(y_{1}+y_{2}\right)+(1+s)\left(y_{3}+y_{4}\right)} \\
& x_{3}^{\prime}=\ldots
\end{aligned}
$$

Invasion analysis

Local stability of the equilibrium without b ,
$(\hat{x}, 0,1-\hat{x}, 0, \hat{y}, 0,1-\hat{y}, 0)$

- More on stability analysis

Another classic: [Balkau and Feldman, 1973] (3)

$$
\begin{aligned}
& \text { ev = Eigenvalues[Jac] // FullSimplify } \\
& 1,\left(4+2 \sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}+s^{2}(-1+z)(-1+z m)+4 z(-1+z m)-s\left(4-4 z+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)(-1+z n)-\right. \\
& 2\left(2+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right) z m-\sqrt{2} \int\left(\left(s^{2}(-1+z)^{2}+2\left(1+2 z^{2}+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}-z\left(2+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)\right)+\right.\right. \\
& \left.\left.\left.s\left(2+4 z^{2}+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}-z\left(4+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)\right)\right)\left(s^{2}-2 s^{2} z m+(2+s)^{2} z m^{2}\right)\right)\right) / \\
& \left(2+s-2 z-s z+\sqrt{4 s z+(s(-1+z)+2 z)^{2}}\right)^{2},\left(4+2 \sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}+s^{2}(-1+z)(-1+z m)+4 z(-1+2 m)-\right. \\
& s\left(4-4 z+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)(-1+z m)-2\left(2+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right) z m+
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left.\left.z\left(4+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)\right)\right)\left(s^{2}-2 s^{2} z m+(2+s)^{2} z m^{2}\right)\right) /\left(2+s-2 z-s z+\sqrt{4 s z+(s(-1+z)+2 z)^{2}}\right)^{2}\right\}
\end{aligned}
$$

Another classic: [Balkau and Feldman, 1973] (3)

ev = Eigenvalues[Jac] // Fullsimplify

$$
\begin{aligned}
& \left\{\frac{4(1+s)}{\left(2+s-2 z-s z+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)^{2}},-\frac{4(1+s)(-1+2 z)}{\left(2+s-2 z-s z+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)^{2}},-\frac{4(1+s)(-1+2 z)}{\left(2+s-2 z-s z+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)^{2}},\right. \\
& 1,\left(4+2 \sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}+s^{2}(-1+z)(-1+z m)+4 z(-1+z m)-s\left(4-4 z+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)(-1+z n)-\right. \\
& 2\left(2+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right) z m-\sqrt{2} \int\left(\left(s^{2}(-1+z)^{2}+2\left(1+2 z^{2}+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}-z\left(2+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)\right)+\right.\right. \\
& \left.\left.\left.s\left(2+4 z^{2}+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}-z\left(4+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)\right)\right)\left(s^{2}-2 s^{2} z m+(2+s)^{2} z m^{2}\right)\right)\right) / \\
& \left(2+s-2 z-s z+\sqrt{4 s z+(s(-1+z)+2 z)^{2}}\right)^{2},\left(4+2 \sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}+s^{2}(-1+z)(-1+z m)+4 z(-1+z m)-\right. \\
& s\left(4-4 z+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)(-1+z m)-2\left(2+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right) z m+ \\
& \sqrt{2} \sqrt{\left(\left(s^{2}(-1+z)^{2}+2\left(1+2 z^{2}+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}-z\left(2+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)\right)+s\left(2+4 z^{2}+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right) . \quad(2)\right.\right.} \\
& \left.\left.\left.\left.z\left(4+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)\right)\right)\left(s^{2}-2 s^{2} z m+(2+s)^{2} z m^{2}\right)\right) /\left(2+s-2 z-s z+\sqrt{4 s z+(s(-1+z)+2 z)^{2}}\right)^{2}\right\}
\end{aligned}
$$

\rightarrow All eigenvalues ρ_{i} such that $\left|\rho_{i}\right| \leq 1$ when $z_{m}>z$

Another classic: [Balkau and Feldman, 1973] (3)

$e v=$ Eigenvalues[Jac] // FullSimplify

$$
\begin{aligned}
& \left\{\frac{4(1+s)}{\left(2+s-2 z-s z+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)^{2}},-\frac{4(1+s)(-1+2 z)}{\left(2+s-2 z-s z+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)^{2}},-\frac{4(1+s)(-1+2 z)}{\left(2+s-2 z-s z+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)^{2}},\right. \\
& 1,\left(4+2 \sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}+s^{2}(-1+z) \mid-1+z m\right)+4 z(-1+z m)-s\left(4-4 z+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)(-1+z m\rangle- \\
& 2\left(2+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right) z m-\sqrt{2} \int\left(\left(s^{2}(-1+z)^{2}+2\left(1+2 z^{2}+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}-z\left(2+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)\right)+\right.\right. \\
& \left.\left.\left.s\left(2+4 z^{2}+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}-z\left(4+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)\right)\right)\left(s^{2}-2 s^{2} z m+(2+s)^{2} z m^{2}\right)\right)\right) / \\
& \left(2+s-2 z-s z+\sqrt{4 s z+(s(-1+z)+2 z)^{2}}\right)^{2},\left(4+2 \sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}+s^{2}(-1+z)(-1+z m)+4 z(-1+z m)\right. \\
& s\left(4-4 z+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)(-1+z m)-2\left(2+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right) z m+ \\
& \sqrt{2} \sqrt{\left(\left(s^{2}(-1+z)^{2}+2\left(1+2 z^{2}+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}-z\left(2+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)\right)+s\left(2+4 z^{2}+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right) . \quad(2)\right.\right.} \\
& \left.\left.\left.\left.z\left(4+\sqrt{s^{2}-2 s^{2} z+(2+s)^{2} z^{2}}\right)\right)\right)\left(s^{2}-2 s^{2} z m+(2+s)^{2} z m^{2}\right)\right) /\left(2+s-2 z-s z+\sqrt{4 s z+(s(-1+z)+2 z)^{2}}\right)^{2}\right\}
\end{aligned}
$$

\rightarrow All eigenvalues ρ_{i} such that $\left|\rho_{i}\right| \leq 1$ when $z_{m}>z$
Reduced emigration probabilities are favored.

A few take-home messages

- Kin competition favors the evolution of emigration

A few take-home messages

- Kin competition favors the evolution of emigration
- Spatial heterogeneity only does not...

A few take-home messages

- Kin competition favors the evolution of emigration
- Spatial heterogeneity only does not... but dispersal can evolve when local conditions change with time and space.

A few take-home messages

- Kin competition favors the evolution of emigration
- Spatial heterogeneity only does not... but dispersal can evolve when local conditions change with time and space.
- Dispersal is a complicated trait to study, because it affects spatial structure (\rightarrow Lecture 4).

References

Ajar, É. (2003). Analysis of disruptive selection in subdivided populations. BMC Evolutionary Biology, 3(1):1.

Balkau, B. J. and Feldman, M. W. (1973). Selection for migration modification. Genetics, 74(1):171-174.

Begon, M., Harper, J., and Townsend, C. (1996). Ecology: Individuals, Populations and Communities, 3rd edn. Black-well Science. Oxford.

Cockerham, C. C. and Weir, B. S. (1987). Correlations, descent measures: drift with migration and mutation. Proceedings of the National Academy of Sciences, 84(23):8512-8514.

Gandon, S. and Rousset, F. (1999). Evolution of stepping-stone dispersal rates. Proceedings of the Royal Society of London B: Biological Sciences, 266(1437):2507-2513.

Hamilton, W. D. and May, R. M. (1977). Dispersal in stable habitats. Nature, 269(5629):578-581.

Massol, F., Duputié, A., David, P., and Jarne, P. (2011). Asymmetric patch size distribution leads to disruptive selection on dispersal. Evolution, 65(2):490-500.

Ronce, O. (2007). How does it feel to be like a rolling stone? ten questions about dispersal evolution. Annual Review of Ecology, Evolution, and Systematics, pages 231-253.

Appendix

Outline

More on q

Stability analysis

More on q

New parameters:

$n \quad$ Number of demes
$\mu \quad$ Mutation probability (infinite allele model)

More on q

New parameters:

$n \quad$ Number of demes
$\mu \quad$ Mutation probability (infinite allele model)
$m=\frac{1-z}{1-c z} \quad$ Backward dispersal probability

More on q

New parameters:

$n \quad$ Number of demes
$\mu \quad$ Mutation probability (infinite allele model)
$m=\frac{1-z}{1-c z} \quad$ Backward dispersal probability
Probability that two individuals came from the same deme and
\rightarrow are in the same deme: $a=(1-m)^{2}+\frac{m^{2}}{n-1}$,

More on q

New parameters:

$n \quad$ Number of demes
$\mu \quad$ Mutation probability (infinite allele model)
$m=\frac{1-z}{1-c z} \quad$ Backward dispersal probability

Probability that two individuals came from the same deme and

\rightarrow are in the same deme: $a=(1-m)^{2}+\frac{m^{2}}{n-1}$,
$>$ are in different demes: $b=\frac{1-(1-m)^{2}}{n-1}-\frac{m^{2}}{(n-1)^{2}}$.

More on q

New parameters:

$n \quad$ Number of demes
μ Mutation probability (infinite allele model)
$m=\frac{1-z}{1-c z} \quad$ Backward dispersal probability

Probability that two individuals came from the same deme and

\rightarrow are in the same deme: $a=(1-m)^{2}+\frac{m^{2}}{n-1}$,
$>$ are in different demes: $b=\frac{1-(1-m)^{2}}{n-1}-\frac{m^{2}}{(n-1)^{2}}$.
Probabilities of identity by descent, with replacement:

- In the same deme: $q_{0, t+1}=\frac{1}{\mathcal{N}}+\frac{\mathcal{N}-1}{\mathcal{N}}(1-\mu)^{2}\left(a q_{0, t}+(1-a) q_{1, t}\right)$,

More on q

New parameters:

$n \quad$ Number of demes
μ Mutation probability (infinite allele model)

$$
m=\frac{1-z}{1-c z} \quad \text { Backward dispersal probability }
$$

Probability that two individuals came from the same deme and

- are in the same deme: $a=(1-m)^{2}+\frac{m^{2}}{n-1}$,
$>$ are in different demes: $b=\frac{1-(1-m)^{2}}{n-1}-\frac{m^{2}}{(n-1)^{2}}$.
Probabilities of identity by descent, with replacement:
- In the same deme: $q_{0, t+1}=\frac{1}{\mathcal{N}}+\frac{\mathcal{N}-1}{\mathcal{N}}(1-\mu)^{2}\left(a q_{0, t}+(1-a) q_{1, t}\right)$,
- In different demes: $q_{1, t+1}=(1-\mu)^{2}\left(b q_{0, t}+(1-b) q_{1, t}\right)$,

More on $q(2)$

$$
\begin{aligned}
& q_{0, t+1}=\frac{1}{\mathcal{N}}+\frac{\mathcal{N}-1}{\mathcal{N}}(1-\mu)^{2}\left(a q_{0, t}+(1-a) q_{1, t}\right) \\
& q_{1, t+1}=(1-\mu)^{2}\left(b q_{0, t}+(1-b) q_{1, t}\right)
\end{aligned}
$$

Order of limits

More on q (2)

$$
\begin{aligned}
& q_{0, t+1}=\frac{1}{\mathcal{N}}+\frac{\mathcal{N}-1}{\mathcal{N}}(1-\mu)^{2}\left(a q_{0, t}+(1-a) q_{1, t}\right), \\
& q_{1, t+1}=(1-\mu)^{2}\left(b q_{0, t}+(1-b) q_{1, t}\right),
\end{aligned}
$$

Order of limits

- When $\mu=0$,

$$
q_{0, \infty}=q_{1, \infty}=1
$$

[Cockerham and Weir, 1987]

More on $q(2)$

$$
\begin{aligned}
& q_{0, t+1}=\frac{1}{\mathcal{N}}+\frac{\mathcal{N}-1}{\mathcal{N}}(1-\mu)^{2}\left(a q_{0, t}+(1-a) q_{1, t}\right), \\
& q_{1, t+1}=(1-\mu)^{2}\left(b q_{0, t}+(1-b) q_{1, t}\right),
\end{aligned}
$$

Order of limits

- When $\mu=0$,

$$
q_{0, \infty}=q_{1, \infty}=1 .
$$

- When $n \rightarrow \infty, q_{1, \infty}=0$ and $q_{0, \infty}=$ $\frac{1}{\mathcal{N}}+\frac{\mathcal{N}-1}{\mathcal{N}}(1-\mu)^{2}\left(a q_{0, \infty}\right)$.

[Cockerham and Weir, 1987]

Outline

More on q

Stability analysis

Stability analysis for discrete-time models

Model

$$
\begin{aligned}
N_{1}(t+1) & =G_{1}\left(N_{1}(t), N_{2}(t), \ldots, N_{k}(t)\right) \\
N_{2}(t+1) & =G_{2}\left(N_{1}(t), N_{2}(t), \ldots, N_{k}(t)\right) \\
\vdots & \\
N_{k}(t+1) & =G_{k}\left(N_{1}(t), N_{2}(t), \ldots, N_{k}(t)\right)
\end{aligned}
$$

Stability analysis for discrete-time models

Model

$$
\begin{aligned}
N_{1}(t+1) & =G_{1}\left(N_{1}(t), N_{2}(t), \ldots, N_{k}(t)\right) \\
N_{2}(t+1) & =G_{2}\left(N_{1}(t), N_{2}(t), \ldots, N_{k}(t)\right) \\
\vdots & \\
N_{k}(t+1) & =G_{k}\left(N_{1}(t), N_{2}(t), \ldots, N_{k}(t)\right)
\end{aligned}
$$

Equilibrium

$\tilde{\mathbf{N}}=\left(\tilde{N}_{1}, \ldots, \tilde{N}_{k}\right)$, such that

$$
\begin{aligned}
& G_{1}\left(\tilde{N}_{1}, \ldots, \tilde{N}_{k}\right)=\tilde{N}_{1} \\
& \vdots \\
& G_{k}\left(\tilde{N}_{1}, \ldots, \tilde{N}_{k}\right)=\tilde{N}_{k}
\end{aligned}
$$

Stability analysis for discrete-time models

(2) Write system of equations for the change over time of a small derivation from the equilibrium

Deviations from equilibrium
Define $n_{i}(t)=N_{i}(t)-\tilde{N}_{i}$.

Stability analysis for discrete-time models

(2) Write system of equations for the change over time of a small derivation from the equilibrium

Deviations from equilibrium
Define $n_{i}(t)=N_{i}(t)-\tilde{N}_{i}$.
$n_{i}(t+1)=G_{i}\left(N_{1}(t), \ldots, N_{k}(t)\right)-\tilde{N}_{i}$

Stability analysis for discrete-time models

(2) Write system of equations for the change over time of a small derivation from the equilibrium, and get a linear approximation of this system (Taylor series)

Deviations from equilibrium
Define $n_{i}(t)=N_{i}(t)-\tilde{N}_{i}$.

$$
\begin{aligned}
n_{i}(t+1) & =G_{i}\left(N_{1}(t), \ldots, N_{k}(t)\right)-\tilde{N}_{i} \\
& \approx 0+\left.\frac{\partial G_{i}}{\partial N_{1}}\right|_{\mathbf{N}(t)=\tilde{\mathbf{N}}}\left(N_{1}(t)-\tilde{N}_{1}\right)+\cdots+\left.\frac{\partial G_{i}}{\partial N_{k}}\right|_{\mathbf{N}(t)=\tilde{\mathbf{N}}}\left(N_{k}(t)-\tilde{N}_{k}\right) .
\end{aligned}
$$

Stability analysis for discrete-time models

(2) Write system of equations for the change over time of a small derivation from the equilibrium, and get a linear approximation of this system (Taylor series)

Deviations from equilibrium

Define $n_{i}(t)=N_{i}(t)-\tilde{N}_{i}$.

$$
\begin{aligned}
n_{i}(t+1) & =G_{i}\left(N_{1}(t), \ldots, N_{k}(t)\right)-\tilde{N}_{i} \\
& \approx 0+\left.\frac{\partial G_{i}}{\partial N_{1}}\right|_{\boldsymbol{N}(t)=\tilde{\mathbf{N}}} \underbrace{\left(N_{1}(t)-\tilde{N}_{1}\right)}_{n_{1}(t)}+\cdots+\left.\frac{\partial G_{i}}{\partial N_{k}}\right|_{\tilde{N}(t)=\tilde{\mathbf{N}}} \underbrace{\left(N_{k}(t)-\tilde{N}_{k}\right)}_{n_{k}(t)} .
\end{aligned}
$$

In matrix form:

$$
\left(\begin{array}{c}
n_{1} \\
\vdots \\
n_{k}
\end{array}\right)(t+1)=\left.\left(\begin{array}{ccc}
\frac{\partial G_{1}}{\partial N_{1}} & \cdots & \frac{\partial G_{1}}{\partial N_{k}} \\
\vdots & \cdots & \vdots \\
\frac{\partial G_{k}}{\partial N_{1}} & \cdots & \frac{\partial G_{k}}{\partial N_{k}}
\end{array}\right)\right|_{\boldsymbol{N}=\tilde{\mathbf{N}}} \cdot\left(\begin{array}{c}
n_{1} \\
\vdots \\
n_{k}
\end{array}\right)(t)
$$

Stability analysis for discrete-time models

(2) Write system of equations for the change over time of a small derivation from the equilibrium, and get a linear approximation of this system (Taylor series)

Deviations from equilibrium

Define $n_{i}(t)=N_{i}(t)-\tilde{N}_{i}$.

$$
\begin{aligned}
n_{i}(t+1) & =G_{i}\left(N_{1}(t), \ldots, N_{k}(t)\right)-\tilde{N}_{i} \\
& \approx 0+\left.\frac{\partial G_{i}}{\partial N_{1}}\right|_{\mathbf{N}(t)=\tilde{\mathbf{N}}} \underbrace{\left(N_{1}(t)-\tilde{N}_{1}\right)}_{n_{1}(t)}+\cdots+\left.\frac{\partial G_{i}}{\partial N_{k}}\right|_{\tilde{N}(t)=\tilde{\mathbf{N}}} \underbrace{\left(N_{k}(t)-\tilde{N}_{k}\right)}_{n_{k}(t)} .
\end{aligned}
$$

In matrix form:

$$
\underbrace{\left(\begin{array}{c}
n_{1} \\
\vdots \\
n_{k}
\end{array}\right)(t+1)}_{\mathbf{n}(t+1)}=\underbrace{\left.\left(\begin{array}{ccc}
\frac{\partial G_{1}}{\partial N_{1}} & \cdots & \frac{\partial G_{1}}{\partial N_{k}} \\
\vdots & \cdots & \vdots \\
\frac{\partial G_{k}}{\partial N_{1}} & \cdots & \frac{\partial G_{k}}{\partial N_{k}}
\end{array}\right)\right|_{\mathbf{N}=\tilde{\mathbf{N}}}}_{\mathbf{J}} \cdot \underbrace{\left(\begin{array}{c}
n_{1} \\
\vdots \\
n_{k}
\end{array}\right)(t)}_{\mathbf{n}(t)}
$$

Stability analysis for discrete-time models (3)

(3) Identify solutions of $\mathbf{n}(t+1)=\mathbf{J} \cdot \mathbf{n}(t)$

Stability analysis for discrete-time models (3)

(3) Identify solutions of $\mathbf{n}(t+1)=\mathbf{J} \cdot \mathbf{n}(t)$

Solution:

$$
\mathbf{n}(t)=c_{1} \boldsymbol{\nu}_{1} \lambda_{1}^{t}+c_{2} \boldsymbol{\nu}_{2} \lambda_{2}^{t}+\cdots+c_{k} \boldsymbol{\nu}_{k} \lambda_{k}^{t},
$$

with the c_{i} constants determined by the initial conditions, and $\nu_{(i)}$ an eigenvector associated to the eigenvalue λ_{i}, i.e., $\mathbf{J} \cdot \boldsymbol{\nu}_{(i)}=\lambda_{i} \boldsymbol{\nu}_{(i)}$.

Stability analysis for discrete-time models (3)

(3) Identify solutions of $\mathbf{n}(t+1)=\mathbf{J} \cdot \mathbf{n}(t)$

Solution:

$$
\mathbf{n}(t)=c_{1} \boldsymbol{\nu}_{1} \lambda_{1}^{t}+c_{2} \boldsymbol{\nu}_{2} \lambda_{2}^{t}+\cdots+c_{k} \boldsymbol{\nu}_{k} \lambda_{k}^{t},
$$

with the c_{i} constants determined by the initial conditions, and $\nu_{(i)}$ an eigenvector associated to the eigenvalue λ_{i}, i.e., $\mathbf{J} \cdot \boldsymbol{\nu}_{(i)}=\lambda_{i} \boldsymbol{\nu}_{(i)}$.
Leading eigenvalue: eigenvalue with the largest modulus

Stability analysis for discrete-time models (3)

(3) Identify solutions of $\mathbf{n}(t+1)=\mathbf{J} \cdot \mathbf{n}(t)$

Solution:

$$
\mathbf{n}(t)=c_{1} \boldsymbol{\nu}_{1} \lambda_{1}^{t}+c_{2} \boldsymbol{\nu}_{2} \lambda_{2}^{t}+\cdots+c_{k} \boldsymbol{\nu}_{k} \lambda_{k}^{t},
$$

with the c_{i} constants determined by the initial conditions, and $\nu_{(i)}$ an eigenvector associated to the eigenvalue λ_{i}, i.e., $\mathbf{J} \cdot \boldsymbol{\nu}_{(i)}=\lambda_{i} \boldsymbol{\nu}_{(i)}$.
Leading eigenvalue: eigenvalue with the largest modulus Modulus: for a complex number $\lambda=A+\imath B$,

$$
|\lambda|=\sqrt{A^{2}+B^{2}}
$$

Stability analysis for discrete-time models (4)

4) Inspect the eigenvalues of J

