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1 Introduction

For this last lecture, we consider the evolution of social behavior in structured pop-
ulations. The individuals that we call “social” interact with others and these interac-
tions directly affect fitness components of actors (i.e., those who engage in the social
interaction) and recipients. We will have in mind the evolution of altruistic behav-
ior, and say that social individuals provide others with benefits that directly increase
their fecundity or survival probability, but that they even pay a fecundity/survival
cost for being social. In a well-mixed population, this kind of behavior is counter-
selected. In spatially structured populations however, the local environment that
an individual experiences may be very different from the global composition of the
population. We will see that spatial structure can, under certain circumstances, fa-
vor the evolution of social behavior.

2 Model

2.1 Types of individuals

There are N individuals in the population, and two types of individuals: individuals
that are “social” (labeled C ), and individuals that are not (labeled D).

We describe the state of the population at time t with a N -long column vector
X(t ), whose i th element is an indicator variable, equal to 1 if the individual at site i
at time t is of type C (social), and equal to 0 otherwise. A vector x corresponds to
a given state of the population. The ensemble of all possible states is Ω = {0,1}N .
We are interested in the long-term behavior of the population, when t → ∞, and
will focus on the proportion of individuals of type C in the population (given by
X =∑N

i=1 Xi /N ).

2.2 Reproduction

Reproduction is clonal; mutations occur with probability µ, and a mutated offspring
is of either type with probability 1/2 (see figure 1). In other words, a parent produces
an offspring with the same type with probability 1−µ/2, and an offspring of the other
type with probability µ/2.

In what follows, we will assume that mutation is rare (µ¿ 1).
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Figure 1: Reproduction and mutation

2.3 Spatial and social structure

To characterize population structure, we will say that there are N sites, i.e., locations
that can host an individuals. Since population size is constant and equal to N , each
site is occupied by exactly one individual. Then we define two graphs, that describe
the connexions between the different sites. These two graphs have N vertices, each
vertex corresponding to a site (so we use the two words interchangeably).

Dispersal

A weighted graph D (with adjacency matrix D = {di j }1≤i , j≤N ) summarizes where in-
dividuals can send their offspring to; D is called dispersal graph. We consider graphs
that are regular, scaled such that

N∑
j=1

di j =
N∑

j=1
d j i = 1, (1a)

but also symmetric, i.e.,

∀i , j ∈ {1, . . . , N }, di j = d j i . (1b)

We further assume that the graph is transitive, i.e., looks the same from every node
(/vertex/site). For simplicity, we also assume here that there are not self-loops on the
graph, i.e., that for all sites i , di i = 0. Examples of graphs satisfying these conditions
are given in figure 2.

Social interactions

A weighted graph E (with adjacency matrix E = {ei j }1≤i , j≤N ) summarizes who in-
teracts with whom in the population. This graph, called the interaction graph, can
be the same as the dispersal graph (which is often the case when considering for
instance a regular grid), but can also be different (for instance in a subdivided pop-
ulation where individuals can disperse to other demes but only interact within their
deme). We consider that interactions are with other individuals exclusively, not with
oneself (i.e., for all sites i , ei i = 0).

Social individuals directly affect the fitness of individuals they interact with. Here,
we assume that fecundity is the trait directly affected by social interactions (but we
could instead consider effects on survival). Social individuals provide other individ-
uals (social or not) with a benefit b, but pay a cost c. The overall effect of these inter-
actions on fitness is modulated by a parameter ω, corresponding to the strength of
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(a) (b)

Figure 2: Examples of graphs that satisfy our assumptions of symmetry
and transitivity. Graph (a) is a regular grid or lattice with n = 6 neighbors,
graph (b) does not have a name as far as I know!

selection. As a result, with a population state x, the fecundity of an individual living
at site i is given by

fi (x) = 1+ω
[(

N∑
l=1

el i bxl

)
−cxi

]
. (2)

In what follows, we will assume that selection is weak, i.e., that ω¿ 1.

2.4 Updating rules

The size of the population being fixed, at each time step the number of individuals
dying is equal to the number of new individuals in the population. We will assume
that one individual is replaced at each time step (“Moran model”), and we will con-
sider two orders of events: Death-Birth (DB) and Birth-Death (BD). We denote by
w j i (x) the probability that at the next time point, site j is occupied by a descendant
of the individual currently living at site i , or is this individual (when j = i ). Note that
since each site is occupied by exactly one individual, we have

N∑
i=1

w j i = 1, (3a)

and so in particular

wi i = 1−
N∑

j=1
j 6=i

wi j , (3b)

which is the probability that the individual at site i survives (since di i = 0, there is
no reproduction to the parental site). (And yes, be careful, in (3b), it is wi j ).

Death-Birth

In a Death-Birth model, first the individual who dies is chosen uniformly at random
(each individual has a probability 1/N of dying), and then one individual is chosen
among all propagules that could reach the just emptied site:

∀ j 6= i , wDB
j i (x) = 1

N

di j fi (x)∑N
k=1 dk j fk (x)

, (4a)
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and an individual survives if it is not the one chosen to die:

wDB
i i = 1− 1

N
. (4b)

Using the formulas for f defined in equation (2), we obtain, at the first order in
ω,

∀ j 6= i , wDB
j i (x) = di j

N

(
1+ω

[
N∑

l=1
el ibxl −cxi −

N∑
k=1

dk j

(
N∑

l=1
elkbxl −cxk

)]
+O

(
ω2)) .

(4c)

Birth-Death

In a Birth-Death model, first the individual who reproduces is chosen according to
fecundities, and then the site where it reproduces – and kills the occupant – is chosen
among the places where the offspring can disperse (the “neighbors”):

∀ j 6= i , wBD
j i (x) = fi∑N

k=1 fk

di j∑N
k=1 di k

. (5a)

The difference between the two orders of events is reflected in the denominators of
wBD

j i and wDB
j i . Given the regularity of the graph (equation (1a)) and the formulas for

the fecundities (equation (2)), at the first order in ω, equation (5a) becomes

∀ j 6= i , wBD
j i (x) = di j

N

(
1+ω

[
N∑

l=1
el ibxl −cxi −

N∑
k=1

1

N

(
N∑

l=1
elkbxl −cxk

)]
+O

(
ω2)) .

(5b)
The term wi i is found using equation (3b):

wi i = 1−
N∑

j=1
j 6=i

wi j

= 1−
N∑

j=1
j 6=i

d j i

N

(
1+ω

[
N∑

l=1
el jbxl −cxi −

N∑
k=1

1

N

(
N∑

l=1
el kbxl −cxk

)]
+O

(
ω2)) ,

and given that di i = 0, this further simplifies in

wi i = 1− 1

N
−ω

N∑
j=1

di j

N

[
N∑

l=1
el jbxl −cx j −

N∑
k=1

1

N

(
N∑

l=1
elkbxl −cxk

)
+O

(
ω2)] ,

= 1− 1

N
− ω

N

N∑
j=1

di j

(
N∑

l=1
el jbxl −cx j

)
+ ω

N

N∑
k=1

1

N

(
N∑

l=1
elkbxl −cxk

)
+O

(
ω2

N

)
.

(6)

Now that we have defined the model, we are going to study how the proportion
of social individuals in the population changes over time.
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3 Change in the proportion of social individuals in the
population

3.1 For any life-cycle

We denote by ∆(x) the expected change in the frequency of social individuals in the
population during one time step, given that the population is currently in state x. We
need to be careful to differentiate reproduction (during which mutation can occur)
and survival. With our assumptions, we have

∆(x) = 1

N

N∑
i=1

 N∑
j=1
j 6=i

w j i (x)
(
xi

(
1− µ

2

)
+ (1−xi )

µ

2

)
+wi i (x)xi

−x,

= 1

N

N∑
i=1

 N∑
j=1
j 6=i

w j i (x)xi (1−µ)+wi i (x)xi + µ

2

N∑
j=1
j 6=i

w j i (x)

−x. (7)

To proceed further, we will specify the order of events (Death-Birth or Birth-Death)
that we have chosen.

3.2 Death-Birth

Replacing w j i and wi i for this updating rule ((4c) et (4b)), from (7) we obtain

∆(x) = 1

N

N∑
i=1

[ N∑
j=1
j 6=i

(
di j

N

(
1+ω

[
N∑

l=1
el ibxl −cxi −

N∑
k=1

dk j

(
N∑

l=1
el kbxl −cxk

)]))
xi (1−µ)

+
(
1− 1

N

)
xi

]
+ µ

2 N
−x +O

(
ω2

N

)
. (8a)

All the sums are getting a bit out of control, so we will simplify notation by omitting
the ranges, keeping in mind that they are from 1 to N ; also, since by assumption
di i = 0, the sum involving j is the same whether we exclude i or not. Finally, we
note that since xi takes value in {0,1}, x2

i = xi . Reorganizing, we have

∆(x) = µ

N

(
1

2
−x

)
+ ω

N 2

[
b

(∑
i

∑
l

el i xl xi −
∑

i

∑
j

∑
k

∑
l

di j dk j elk xl xi

)

+c

(∑
i

xi −
∑

i

∑
j

∑
k

di j dk j xk xi

)]
+O

(
ω2

N

)
. (8b)

We are now going to simplify this formula using matrix notation. To this end, we
will introduce the matrix p = x ·xT , where T denotes transposition. In other words,
pi j = xi x j . The matrix p corresponds to a given population structure, P(t ) is the
corresponding random matrix. We denote by Tr(M) the trace of a matrix M, i.e., the
sum of its diagonal elements. Finally, we need to remember that the dispersal graph
is symmetric (equation (1b)), so that DT = D. We are now equipped to rewrite our
equation in a more compact way:

∆(x) = µ

N

(
1

2
−x

)
+ ω

N 2

[
b Tr

(
E · (p−D ·D ·p

))+c Tr
(
p−D ·D ·p

)]+O

(
ω2

N

)
. (8c)
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The first term in (8c), scaled by µ, corresponds to mutation, that brings the fre-
quency of social individuals closer to 1/2, its value in the absence of selection. The
second term, scaled by ω, corresponds to the effects of selection.

At the moment, to know the change in the frequency of social individuals in the
population (x), we need to know the state of the entire population (x), i.e., not only
how many social individuals there are, but also where they are. Instead of consid-
ering specific states of the population, we are now going to consider long-term ex-
pectations. If we observe our population for a very long time T , these long-term
expectations correspond to the proportion of time spent in a give state. We denote
by ξ(x,ω,µ) the long-term proportion of time that the population spends in state x,
given a strength of selection ω and mutation probability µ; the expected state of the
population is given by

Eω,µ [X] =
∑

x∈Ω
xξ(x,ω,µ). (9)

Now, because we are considering long-term expectations, Eω,µ

[
∆(X)

]
= 0, and so we

have, at the first orders in µ and in ω,

0 = µ

N

(
1

2
−Eω,0

[
X

])
+ ω

N 2

[
b Tr

(
E · (E0,µ [P]−D ·D ·E0,µ [P]

))+c Tr
(
E0,µ [P]−D ·D ·E0,µ [P]

)]
+O

(
ω2

N

)
+O

(
µ2) .

Solving for Eω,0

[
X

]
, we obtain

Eω,0

[
X

]
= 1

2
+ ω

µN

[
b Tr

(
E · (E0,µ [P]−D ·D ·E0,µ [P]

))
+c Tr

(
E0,µ [P]−D ·D ·E0,µ [P]

)]+O

(
ω2

µ

)
+O

(
µN

)
.

(10)

This provides a formula for Eω,0

[
X

]
, the long-term frequency of social individuals

in the population when mutation is vanishingly small, and with weak mutation (at
the first order inω). It involves E0,µ

[
p
]
, the long-term expected state of pairs of sites,

evaluated in the absence of selection. This is the quantity that we are now going to
concentrate on in the next section, after first dealing with the Birth-Death order of
events.

3.3 Birth-Death

In the Birth-Death version of the model, the probability of dying is not constant, but
depends on the composition of the population. Reorganizing (7), we have

∆(x) = 1

N

N∑
i=1

 N∑
j=1
j 6=i

w j i (x)xi +wi i (x)xi +µ
N∑

j=1
j 6=i

w j i (x)

(
1

2
−xi

)−x. (11)
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We note that since exactly one individual reproduces at each time step, and since
di i = 0 (i.e., there is no reproduction from a given site i to the same site i ),

N∑
i=1

N∑
j=1
j 6=i

w j i (x) = 1. (12)

If we now use the formulas for w j i et wi i for the Birth-Death life-cycle (equations (5b)
and (6)), we obtain:

∆(x) = ω

N 2

N∑
i=1

N∑
l=1

(el ibxl xi −cxi )− ω

N 2

N∑
i=1

N∑
k=1

1

N

(
N∑

l=1
elkbxl xi −cxk xi

)

− ω

N 2

N∑
i=1

N∑
j=1

di j

(
N∑

l=1
el jbxl xi −cx j xi

)
+ ω

N 2

N∑
i=1

N∑
k=1

1

N

(
N∑

l=1
elkbxl xi −cxk xi

)

+ µ

N

(
1

2
−x

)
− ωµ

N 2

N∑
i=1

[
N∑

l=1
el ibxl xi −cxi −

N∑
k=1

1

N

(
N∑

l=1
elkbxl xi −cxk xi

)]

+O

(
ω2

N

)
,

(13a)

which simplifies into

∆(x) = ω

N 2

N∑
i=1

(
N∑

l=1
el ibxl xi −cxi

)
− ω

N 2

N∑
i=1

N∑
j=1

di j

(
N∑

l=1
el jbxl xi −cx j xi

)

+ µ

N

(
1

2
−x

)
− ωµ

N 2

N∑
i=1

[
N∑

l=1
el ibxl xi −cxi −

N∑
k=1

1

N

(
N∑

l=1
elkbxl xi −cxk xi

)]

+O

(
ω2

N

)
.

(13b)

We can rewrite this expression using matrices like we did previously:

∆(x) = µ

N

(
1

2
−x

)
+ ω

N 2

[
bTr

(
E · (p−D ·p)

)−c(p−D ·p)
]

− ωµ

N 2

N∑
i=1

[
N∑

l=1
el ibxl xi −cxi −

N∑
k=1

1

N

(
N∑

l=1
el kbxl xi −cxk xi

)]

+O

(
ω2

N

)
.

(13c)
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Taking the long-term expectation of this expression, we obtain

0 = µ

N

(
1

2
−Eω,0

[
X

])
+ ω

N 2

[
b Tr

(
E · (E0,µ [P]−D ·E0,µ [P]

))+c Tr
(
E0,µ [P]−D ·E0,µ [P]

)]
− ωµ

N 2

N∑
i=1

[
N∑

l=1
el ibE0,0 [Pl i ]−cE0,0 [Pi i ]−

N∑
k=1

1

N

(
N∑

l=1
el kbE0,0 [Pl i ]−cE0,0 [Pki ]

)]

+O

(
ω2

N

)
+O

(
µ2) .

(14)

In the limit of zero mutation and zero selection, the population is fixed for each type,
and so

∀(i , j ,k, l ), E0,0
[
Pi j

]= E0,0
[
Pk,l

]
.

As a result, the term on the third line of equation (14) is null. Solving for Eω,0

[
X

]
, we

finally obtain

Eω,0

[
X

]
= 1

2
+ ω

µN

[
b Tr

(
E · (E0,µ [P]−D ·E0,µ [P]

))
+c Tr

(
E0,µ [P]−D ·E0,µ [P]

)]+O

(
ω2

µ

)
+O

(
µN

)
.

(15)

Equation (15) (Birth-Death) is almost the same as equation (10) (Death-Birth),
except for the terms that correspond to competition (−D ·E0,µ [P] in the former case,
−D · D · E0,µ [P] in the latter). These terms come from the different denominators
of w j i before linearization (equations (5a) and (4a)). The difference can be further
interpreted as follows.

With the Birth-Death updating, a focal individual competes with its direct neigh-
bors (hence the D factor) for new sites: if a neighbor is chosen to reproduce, a focal
individual is a risk of being killed. An increase (due to social interactions) in the
fecundity of a direct neighbors therefore has indirect detrimental consequences on
the focal individual; similarly, a decrease (the cost of sociality) in the fecundity of a
focal individual has indirect beneficial consequences on its direct neighbors.

With the Death-Birth updating, a focal individual competes for new sites with its
neighbors’ neighbors (hence the D ·D factor): if a direct neighbor is killed, a focal
individual competes with that neighbor’s neighbors to fill the newly emptied site. In
this case, the “competition radius” is wider, two dispersal steps away, instead of one
in the Birth-Death case.

Equations (10) and (15) are still implicit, because we need to evaluate the long-
term expected state of pairs of sites in the absence of selection, i.e., E0,µ [P].

4 Long-term expected state of pairs of sites

4.1 Conditional expected change of a pair of sites

We denote by ∆̃0
i j (x) the expected change in the state of the (i , j ) pair of sites over

one time step, given that the population is in state x, in the absence of selection
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(hence the “0”). In this case, each individual of the pair is replaced with probability
1/N ; we have

∀ j 6= i ,∆̃0
i j (x) = xi

N

∑
k

dk j

(
xk

(
1− µ

2

)
+ (1−xk )

µ

2

)
+ x j

N

∑
k

dki

(
xk

(
1− µ

2

)
+ (1−xk )

µ

2

)
+

(
1− 2

N

)
xi x j −xi x j .

= (1−µ)
∑
k

dk j xi xk +dki x j xk

N
+ µ

2 N
(xi +x j )− 2

N
xi x j . (16)

When i = j , we have

∆̃0
i i (x) =

(
1− 1

N

)
xi + 1

N

∑
k

dki

(
xk

(
1− µ

2

)
+ (1−xk )

µ

2

)
−xi

= µ

2 N
− xi

N
+ 1

N

∑
k

dki xk (1−µ). (17)

4.2 Expectation of the state of a pair of sites at time t

In the previous section, we have been considering long-term expectations, i.e., the
fraction of the time spent in a given state over a long time scale. Here, we are going
to consider the sequence of population states as a function of time. This sequence
depends on the initial state of the population. Mutation being rare, we consider that
the population is initially fixed for one type (it is the social type with probability 1/2).
We denote by E0,µ,t [X] the expectation of the state of the population in the absence
of selection, with mutation parameter µ, and at time t , given the scenario that we
just described.

Since, in expectation, the population looks the same from every site, it does not
matter which label we gave to a specific site. As a result, all sites have the same
expected state, which we denote by f (t ). For the same reason,

∑N
k=1 di k E0,µ,t [Pki ]

is the same for all sites i (recall that the random matrix P refers to pairs of sites;
P = X ·XT ).

To proceed further, we rewrite (16) in matrix form, and take its expectation:

E0,µ,t

[
∆̃

0
(X)

]
= 1−µ

N

(
E0,µ,t [P] ·D+D ·E0,µ,t [P]

)+ µ

N
f (t )1N×N − 2

N
E0,µ,t [P]+L(t ),

(18)
where L is a diagonal matrix that ensures that the diagonal elements of E0,µ,t [P],
corresponding to the expected states of single sites, are all equal to f (t ). In other
words, we can write L(t ) = g (t ,µ)IN .

We are now going to show recursively that at all times, E0,µ,t [P] ·D = D ·E0,µ,t [P],
that is, that the matrix of expected states of pairs of sites commutes with the adja-
cency matrix of the dispersal graph.

At time t = 0, if the population is fixed for the social type, which occurs with prob-
ability 1/2, the matrix of pairs is a N -by-N matrix of ones (p = 1N×N ); otherwise,
the population is fixed for the non social type, and the matrix of pairs contains
only zeros. Overall, E0,µ,t=0 [P] = 1

2 1N×N . Since the graph is regular (equation (1a)),
E0,µ,t=0 [P] commutes with D (1N×N ·D = D · 1N×N = 1N×N ).
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Now assuming that E0,µ,t [P] ·D = D ·E0,µ,t [P] holds, we have

E0,µ,t+1 [P] ·D = E0,µ,t [P] ·D+E0,µ,t

[
∆̃

0
(X)

]
·D

= D ·E0,µ,t [P]+ 1−µ
N

2E0,µ,t [P] ·D ·D+ µ

N
f (t )1N×N − 2

N
E0,µ,t [P] ·D+ g (t ,µ)D

= D ·E0,µ,t+1 [P] .

4.3 Long-term expectation

At last, we can consider the long-term expectations i.e., the fraction of time spent in
a given state:

E0,µ

[
∆̃

0
(X)

]
= lim

T→∞
1

T

∫ T

0
E0,µ,t

[
∆̃

0
(X)

]
d t .

Again we have E0,µ

[
∆̃

0
(X)

]
= 0; solving for E0,µ,t [P], from equation (18) we obtain

E0,µ [P] = (1−µ)E0,µ,t [P] ·D+ µ

2
f ∗ 1N×N + N

2
g∗(µ)IN . (19)

where f ∗ (resp. g∗) is the long-term average of f (resp. g ). Given that f (t ) is the
expected state of a single site at time t , in the absence of selection the two types are
equiprobable and we have f ∗ = 1

2 . The other function was introduced to ensure that
for all i and t , E0,µ,t [P] = f (t ). We note that when µ→ 0, E0,µ [P] → f ∗1N×N , which
implies that g∗(0) = 0; at the first order in µ, (19) becomes

E0,µ [P] = E0,µ,t [P] ·D+µ
(
−1

4
1N×N + N

2
h∗IN

)
+O

(
µ2) , (20a)

and

h∗ = d g

dµ

∣∣∣∣
µ=0

. (20b)

In particular, (20a) implies that for all sites i ,

N∑
j=1

E0,µ
[
Pi j

]= N∑
j=1

N∑
k=1

E0,µ [Pi k ]dk j −N
µ

4
+N

µ

2
h∗+O

(
µ2)

=
N∑

k=1
E0,µ [Pi k ]−N

µ

4
+N

µ

2
h∗+O

(
µ2)

so that

h∗ = 1

2
. (21)

We end up with

E0,µ [P] = E0,µ,t [P] ·D+µ
(
−1

4
1N×N + N

4
IN

)
+O

(
µ2) . (22)

Multiplying both sides by D, we obtain

E0,µ,t [P] ·D = E0,µ,t [P] ·D ·D+µ
(
−1

4
1N×N + N

4
D

)
+O

(
µ2) ,

and so

E0,µ [P] = E0,µ,t [P] ·D ·D+µ
(
−1

2
1N×N + N

4
D+ N

4
IN

)
+O

(
µ2) . (23)
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Lecture IV

5 Long-term expectation of the proportion of social in-
dividuals in the population

5.1 Death-Birth

We have a few calculations left before being able to evaluate equation (10), using the
relationship given in equation (23). We recall that since there are no self-loops on
the dispersal graph, Tr(D) = 0. For the factor of the cost parameter c, we evaluate

Tr
(
E0,µ [P]−E0,µ,t [P] ·D ·D

)= µ

4
N (N −2)+O (()µ2), (24)

and for the factor of the benefit parameter b, we evaluate

Tr
(
E · (E0,µ [P]−E0,µ,t [P] ·D ·D

))= µ

4

(
−2

N∑
i=1

N∑
k=1

ei k +N
N∑

i=1

N∑
k=1

di k eki +0

)
+O

(
µ2)

(25)

If we further assume that all individuals are involved in the same number of social
interactions (giving and receiving), after scaling of the interaction graph we have

∀i ,
N∑

k=1
eki =

N∑
k=1

ei k = 1; (26)

then (25) becomes

Tr
(
E · (E0,µ [P]−E0,µ,t [P] ·D ·D

))= µ

4
N

(
N∑

i=1

N∑
k=1

di k eki −2

)
+O

(
µ2) . (27)

We can now go back to (10). In the limit of weak selection and rare mutation,

the expected proportion of social individuals in the population (Eω,0

[
X

]
) is greater

than what it would be in the absence of selection ( 1
2 ), i.e., the social type is favored

by selection, whenever

b

(
N∑

i=1

N∑
k=1

di k eki −2

)
> c(N −2). (28)

For instance, on a regular grid with n neighbors, social interactions occurring
among the neighbors, this condition reduces to

b
N

n
> c(N −2),

which can be approximated as b/c > n when the size N of the population is very
large.

5.2 Birth-Death

To evaluate equation (15), we use equation (22). Starting with the factor for the cost
c, we find

Tr
(
E0,µ,t [P]−E0,µ,t [P] ·D

)= µ

4
N (N −1). (29)
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For the benefits, we evaluate

Tr
(
E · (E0,µ,t [P]−E0,µ,t [P] ·D)

)=µ(
−1

4

N∑
i=1

N∑
k=1

eki +0

)
+O

(
µ2) (30)

If we again assume that all individuals give or receive the same total amount of in-
teractions (i.e., that equation (26) holds), this simplifies into

Tr
(
E · (E0,µ,t [P]−E0,µ,t [P] ·D)

)=−µN

4
. (31)

Either way, this factor is negative: the benefits of being close to related individuals is
more than compensated by the detriments of competing against relatives.

Going back to equation (15) – In the limit of weak selection and rare mutation,

the expected proportion of social individuals in the population (Eω,0

[
X

]
) would be

greater than what it is be in the absence of selection ( 1
2 ), i.e., the social type is favored

by selection, whenever
−b−c(N −1) > 0, (32)

which is not possible when b> 0 (actual benefits) and c> 0 (actual cost paid).
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