

# Male-killing bacteria and egg cannibalism in ladybugs

| J. Mariño        | E. Barreto-Ojeda | E. Vargas  |
|------------------|------------------|------------|
| S. Morbiolo      | G. Rodrigues     | A. Copatti |
| January 11, 2015 |                  |            |
| ICTP-SAIFR       |                  |            |



## Overview





### **2** Assumptions



**3** The model General model Differential equations









Introduction

## Introduction

- Some bacteria can be maternally transmitted. (i.e.: *Wolbachia*, *Rickettsia* and *Spiroplasma*).
- The infection is maintained in the population even though it kills male infected individuals in an early life stage, since there is a resource allocation to the females through sibling cannibalism.
- This results in a population with a female-biased sex ratio.

• Ladybugs feed on aphids, however, they also cannibalize on individuals in earlier life stages.







#### Introduction

## Questions and main points

To propose a model of male-killing infection that incorporates sibling cannibalism:

- Under what conditions can sibling cannibalism explain the persistence of male-killing bacteria?
- How does the aphid population dynamic affect the persistence of infection?

The proportion of infected individuals in the total female population relates to the persistence of infection.



## What did we consider?



## What did we consider?

### O Population

• There are no infected adult males.



## What did we consider?

- There are no infected adult males.
- Life stages are simplified to egg and adult.



## What did we consider?

- There are no infected adult males.
- Life stages are simplified to egg and adult.
- Eggs have a fixed probability of hatching.



## What did we consider?

- There are no infected adult males.
- Life stages are simplified to egg and adult.
- Eggs have a fixed probability of hatching.
- Egg natural mortality is a constant.



## What did we consider?

- There are no infected adult males.
- Life stages are simplified to egg and adult.
- Eggs have a fixed probability of hatching.
- Egg natural mortality is a constant.
- Adult mortality is a function of the aphid population and cannibalism.



## What did we consider?

### Population

- There are no infected adult males.
- Life stages are simplified to egg and adult.
- Eggs have a fixed probability of hatching.
- Egg natural mortality is a constant.
- Adult mortality is a function of the aphid population and cannibalism.



## What did we consider?

### Population

- There are no infected adult males.
- Life stages are simplified to egg and adult.
- Eggs have a fixed probability of hatching.
- Egg natural mortality is a constant.
- Adult mortality is a function of the aphid population and cannibalism.

### Interactions

 Mating: Infected females have the same chances of mating than non infected females, but lay less eggs.



## What did we consider?

### Population

- There are no infected adult males.
- Life stages are simplified to egg and adult.
- Eggs have a fixed probability of hatching.
- Egg natural mortality is a constant.
- Adult mortality is a function of the aphid population and cannibalism.

- Mating: Infected females have the same chances of mating than non infected females, but lay less eggs.
- Predation



## What did we consider?

### Population

- There are no infected adult males.
- Life stages are simplified to egg and adult.
- Eggs have a fixed probability of hatching.
- Egg natural mortality is a constant.
- Adult mortality is a function of the aphid population and cannibalism.

- Mating: Infected females have the same chances of mating than non infected females, but lay less eggs.
- Predation
  - Adults predate on an aphid population that oscillates independently of the ladybugs.



## What did we consider?

### Population

- There are no infected adult males.
- Life stages are simplified to egg and adult.
- Eggs have a fixed probability of hatching.
- Egg natural mortality is a constant.
- Adult mortality is a function of the aphid population and cannibalism.

- Mating: Infected females have the same chances of mating than non infected females, but lay less eggs.
- Predation
  - Adults predate on an aphid population that oscillates independently of the ladybugs.
  - Adults exhibit cannibalism towards their eggs.



## What did we consider?

### Population

- There are no infected adult males.
- Life stages are simplified to egg and adult.
- Eggs have a fixed probability of hatching.
- Egg natural mortality is a constant.
- Adult mortality is a function of the aphid population and cannibalism.

- Mating: Infected females have the same chances of mating than non infected females, but lay less eggs.
- Predation
  - Adults predate on an aphid population that oscillates independently of the ladybugs.
  - Adults exhibit cannibalism towards their eggs.
  - Reallocation of resource: Infected females have more chance to predate on their infected male brothers.



## What did we consider?

### Population

- There are no infected adult males.
- Life stages are simplified to egg and adult.
- Eggs have a fixed probability of hatching.
- Egg natural mortality is a constant.
- Adult mortality is a function of the aphid population and cannibalism.

### 2 Interactions

- Mating: Infected females have the same chances of mating than non infected females, but lay less eggs.
- Predation
  - Adults predate on an aphid population that oscillates independently of the ladybugs.
  - Adults exhibit cannibalism towards their eggs.
  - Reallocation of resource: Infected females have more chance to predate on their infected male brothers.

### Infection



## What did we consider?

### Population

- There are no infected adult males.
- Life stages are simplified to egg and adult.
- Eggs have a fixed probability of hatching.
- Egg natural mortality is a constant.
- Adult mortality is a function of the aphid population and cannibalism.

### 2 Interactions

- Mating: Infected females have the same chances of mating than non infected females, but lay less eggs.
- Predation
  - Adults predate on an aphid population that oscillates independently of the ladybugs.
  - Adults exhibit cannibalism towards their eggs.
  - Reallocation of resource: Infected females have more chance to predate on their infected male brothers.

### Infection

• The transmition of the bacteria from mother to offspring is imperfect.



## What did we consider?

### Population

- There are no infected adult males.
- Life stages are simplified to egg and adult.
- Eggs have a fixed probability of hatching.
- Egg natural mortality is a constant.
- Adult mortality is a function of the aphid population and cannibalism.

### Interactions

- Mating: Infected females have the same chances of mating than non infected females, but lay less eggs.
- Predation
  - Adults predate on an aphid population that oscillates independently of the ladybugs.
  - Adults exhibit cannibalism towards their eggs.
  - Reallocation of resource: Infected females have more chance to predate on their infected male brothers.

### Infection

- The transmition of the bacteria from mother to offspring is imperfect.
- Infected eggs are laid with a fixed probability of infection.



## What did we consider?

### Population

- There are no infected adult males.
- Life stages are simplified to egg and adult.
- Eggs have a fixed probability of hatching.
- Egg natural mortality is a constant.
- Adult mortality is a function of the aphid population and cannibalism.

### 2 Interactions

- Mating: Infected females have the same chances of mating than non infected females, but lay less eggs.
- Predation
  - Adults predate on an aphid population that oscillates independently of the ladybugs.
  - Adults exhibit cannibalism towards their eggs.
  - Reallocation of resource: Infected females have more chance to predate on their infected male brothers.

### Infection

- The transmition of the bacteria from mother to offspring is imperfect.
- Infected eggs are laid with a fixed probability of infection.
- There is no horizontal transmition.



### Interactions to consider

Mating





## Interactions to consider

Hatching





## Interactions to consider

Cannibalism





## Writing the equations

Eggs population (E):

$$\frac{d\mathcal{E}_{xy}}{dt} = \left(\begin{array}{c} \mathsf{eggs} \\ \mathsf{production} \end{array}\right) - \left(\begin{array}{c} \mathsf{cannibalism} \\ \mathsf{rate} \end{array}\right) - \left(\begin{array}{c} \mathsf{hatching} \\ \mathsf{rate} \end{array}\right) - \left(\begin{array}{c} \mathsf{mortality} \\ \mathsf{rate} \end{array}\right)$$

$$\frac{dE_{fi}}{dt} = \underbrace{B^{1/2} \alpha \chi \frac{(A_{fi}A_{mn})}{A_{fi} + A_{mn}}}_{\text{eggs}} - \underbrace{CE_{fi}(\omega_i^n A_{fn} + \omega_i^i A_{fi} + \omega_i^n A_{fn})}_{\text{cannibalism}} - \underbrace{\gamma E_{fi}}_{\text{hatching mortality}} - \underbrace{\mu_E E_{fi}}_{\text{mortality}}$$

B: Aphids ;  $\alpha$ : mating rate;  $\chi$ :infection rate;  $\gamma$ : hatching rate;  $\mu$ : mortality rate;  $\omega$ : cannibalism rate,  $\omega_i^i > \omega_i^n$ 

$$C = \overline{c} - \frac{(\overline{c} - \underline{c})B}{1 + B} \tag{1}$$

Male-killing bacteria and egg cannibalism in ladybugs



### Writing the equations

Adult population (A):

$$\frac{dA_{xy}}{dt} = \begin{pmatrix} \mathsf{hatching} \\ \mathsf{rate} \end{pmatrix} - \mu_A A_{xy} A_T$$

 $\mu_A = f(A, B, C)$ 

 $A_T$ : Total population of adults; B: Aphids population, C: Cannibalism. V. gr:

$$\frac{dA_{fi}}{dt} = \underbrace{\gamma E_{fi}}_{hatching} - \mu_A A_{fi} A \lambda \tag{2}$$

$$\mu_{A} = \varphi + \frac{1 - \varphi}{1 + \underbrace{\frac{B + C(\sum wE)}{A}}_{feeding}}$$
(3)

 $\varphi$ : natural death constant.  $\lambda$ : rescale parameter.



## Eggs equations

$$\frac{dE_{fi}}{dt} = B^{1/2} \alpha \chi 0, 9 \frac{(A_{fi}A_{mn})}{A_{fi} + A_{mn}} - CE_{fi}(\omega_i^n A_{fn} + \omega_i^i A_{fi} + \omega_i^n A_{fn}) - \gamma E_{fi} - \mu_E E_{fi}$$
(4)

$$\frac{dE_{mi}}{dt} = B^{1/2} \alpha \chi 0,9 \frac{(A_{fi}A_{mn})}{A_{fi} + A_{mn}} - CE_{mi} (\omega_i^n A_{fn} + \omega_i^i A_{fi} + \omega_i^n A_{fn}) - \mu_E E_{mi}$$
(5)

$$\frac{dE_{fn}}{dt} = B^{1/2} \alpha \chi \frac{(A_{fn}A_{mn})}{A_{fn} + A_{mn}} + B^{1/2} \alpha (1-\chi) \frac{(A_{fn}A_{mn})}{A_{fn} + A_{mn}}$$

$$-CE_{fn} (\omega_n^n A_{fn} + \omega_n^i A_{fi} + \omega_n^n A_{fn}) - \gamma E_{fn} - \mu_E E_{fn}$$
(6)

$$\frac{dE_{fn}}{dt} = B^{1/2} \alpha \chi \frac{(A_{fn}A_{mn})}{A_{fn} + A_{mn}} + B^{1/2} \alpha (1-\chi) \frac{(A_{fn}A_{mn})}{A_{fn} + A_{mn}}$$
(7)  
$$-CE_{fn}(\omega_n^n A_{fn} + \omega_n^i A_{fi} + \omega_n^n A_{fn}) - \gamma$$

Male-killing bacteria and egg cannibalism in ladybugs



## Adults equations

$$\frac{dA_{fi}}{dt} = \gamma E_{fi} - \lambda \mu_A A_{fi} A \tag{8}$$

$$\frac{dA_{fn}}{dt} = \gamma E_{fi} - \lambda \mu_A A_{fn} A \tag{9}$$

$$\frac{dA_{mn}}{dt} = \gamma E_{fi} - \lambda \mu_A A_{mn} A \tag{10}$$

$$\mu_{A} = \varphi + \frac{1 - \varphi}{1 + \underbrace{\frac{B + C(\sum wE)}{A}}_{factling}}$$
(11)

 $\varphi$ : natural death constant.



## **Population Dynamics**



Male-killing bacteria and egg cannibalism in ladybugs



### Effect of preferential cannibalism



Male-killing bacteria and egg cannibalism in ladybugs



## Effect of voracity in cannibalism



Male-killing bacteria and egg cannibalism in ladybugs



## Aphid's impact (Momentaneous)





## Aphid's impact (Long-term)





Conclusions

## Conclusions

- If infected females were lower in fitness than non-infected they would go extinct. However, they do not.
- Cannibalism can explain the maintenance of infection, even without horizontal transmition...provided there is preferential access to the "dead" eggs.
- A higher amount of aphids means a lower prevalence of infection.



References

### References

- Agarwala, B.K., & Dixon, A.F.G. (1992). Laboratory study of cannibalism and interspecific predation in ladybirds. Ecological Entomology 17, 303–309.
- Elnagdy, S., Majerus, M., & Lawson Handley, L.-J. (2011). The value of an egg: resource reallocation in ladybirds (Coleoptera: Coccinellidae) infected with male-killing bacteria. Journal of Evolutionary Biology 24, 2164–2172.
- Hurst et al. (1999). Male-killing Wolbachia in two species of insect. The Royal Society of London, 266, 735-740.