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Space

Up to this point, all models that we have studied assume implicitly that all individuals are
in certain region of space.

This region has been supposed not to be very important .

We think of homogeneous regions.

Well-mixed populations.

HOWEVER...
Individuals move, generating possibly the spatial redistribution of the population.

And space may be heterogeneous due to several factors :

I climate
I soil
I vegetation
I composition
I salinity....
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Density

Let us consider a population in space.

Let space be homogeneous. How do populations spread over space?.

First point: we will not speak of number of individuals.

Instead we will speak of density of individuals.

The number of individuals per unit space.

The usual notation is ρ(~x , t) for density. It is a function of time and space.
In some contexts, we use the term concentration.
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Diffusion

Our main hypothesis is that individuals move randomly.
In some sense, they behave as molecules in a gas.
If we look at such population from a space scale much larger than the
typical scale of the movement of the individuals we will see the
macroscopic phenomenon called diffusion.
Particles in a gas obey Fick’s law.
We will assume the same for a population.
So, what’s Fick’s law?
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Fick

The Fickian diffusion law states that:
I The flux ~J of "material"( animals, cells,..) is proportional to to the

gradient of the density of the material:

~J = −D ~∇ρ ≡ −D(
∂ρ

∂x
,
∂ρ

∂y
)

I where we took a two-dimensional space.
I But to simplify the calculations let us consider the one-dimensional

case:

J ∼ −
∂ρ

∂x
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Mass/number of individuals conservation

Let us impose a conservation law:
I The rate of change in time of the quantity of individuals in a region of

space is equal to the flux through the borders.

that is, (in one dimension, (x0 − x1) being the size of the region):

∂

∂t

∫ x1

x0

ρ(x, t)dx = J(x0, t)− J(x1, t)
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The diffusion equation

∂
∂t

∫ x1
x0
ρ(x , t)dx = J(x0, t)− J(x1, t)

We can write the previous equation in a differential form:
I Take x1 = x0 + ∆x .
I So that for ∆x → 0:

F
∫ x1
x0
ρ(x, t)dx → ρ(x0, t)∆x

F J(x1, t)→ J(x0, t) + ∆x
(

∂J(x,t)
∂x

)
x=x0

I Which implies::
∂ρ

∂t
∆x = −∆x

(
∂J(x, t)

∂x

)
I and using Fick’s law

∂ρ

∂t
= −∂J(x, t)

∂x
= D

∂2ρ

∂x2
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The diffusion equation

∂ρ
∂t

= D ∂2ρ
∂x2

The above equation is known as the diffusion equation.
In two dimensions we would have:

∂ρ

∂t
= D∇2ρ

where ∇2ρ ≡ ∂2ρ
∂x2 + ∂2ρ

∂y2

It is the same equation that describes heat diffusion if ρ is taken as
temperature.
Let us recall some facts about it.
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Diffusion Equation

The diffusion equation is a partial differential equation, a PDE.
It is linear, and the coefficients are constants.

It can be solved analytically.

Mathematical comment
In order to speak of a solution of a differential equation, we need to specify
supplementary conditions.

In the case of the diffusion equation we should give an initial condition ρ(x , 0) and
the values of either ρ(x , t) or ∂ρ(x,t)

∂x
at the borders or for x → ±∞.

To solve it analytically, means that we can find a formula connecting ρ(x , t) to
ρ(x , 0).
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Gauss

There is a distinctive soolution: a Gaussian function.
In one dimension we have, for t > 0:

ρ(x, t) =
Q

2(πDt)1/2 e
−x2/(4Dt)

where Q os a constant.
It is a Gaussian that "widens"with time.
Corresponds to an initial condition concentrated in x = 0.
Here is a plot.
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Gauss: plots

Solution to the 1D diffusion equation
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Gauss: 2D plot

Solution to the 2D diffusion equation
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Diffusion, biology

Let us put some biology in this lecture!
Let us give a biological sense to all that.
Suppose that at t = 0 a population of N individuals is released at
x = 0.
After a certain amount of time we want to know the the extension
occupied by the population.
Let’s be more specific: we want the extension of the region containing
95% of the population.
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Diffusion, biology

Knowing the density of a population allows us to calculate the total
population in a given area. In the 1D case, we have:

Population between −L and L = NL =

∫ +L

−L
ρ(x , t)dx .

If we use the Gaussian for ρ(x , t),perform the integral, we obtain that
95% of the population is a region of size 2

√
2Dt.

Which grows in time proportional to t1/2.
Or, at a speed which goes like t−1/2. Decreasing.
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Diffusion + Growth

The previous case corresponds to a non-growing population.

Let us incorporate growth:

∂ρ

∂t
= D

∂2ρ

∂x2 + aρ(x, t)

Still linear.

But, as we already learning, some saturation mechanism should become relevant
for large enough populations Say:

∂ρ

∂t
= D

∂2ρ

∂x2 + aρ(x, t)− bρ2(x, t)
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Fisher-Kolmogorov

∂ρ
∂t

= D ∂2ρ
∂x2 + aρ(x, t)− bρ2(x, t)

Figura : Robert. A. Fisher

Figura : Andrei N. Kolmogorov

The above equation is called
Fisher-Kolmogorov equation.

It is the simplest equation with diffusion,
growth and self-regulation of a species.

It is nonlinear.

It is a representative of the class of
“reaction-diffusion” equations.

I This name comes from chemistry.

The 2D version is obvious:

∂ρ

∂t
= D∇2ρ + aρ− bρ2

Roberto A. Kraenkel (IFT-UNESP) IV SSSMB São Paulo, Jan 2015 17 / 29



Fisher-Kolmogorov

∂ρ
∂t

= D ∂2ρ
∂x2 + aρ(x, t)− bρ2(x, t)

Let us again look at the problem of a population released at a point (x = 0).
Suppose it obeys the Fisher-Kolmogorov equation (and not anymore the simple
diffusion equation).

No explicit formula.

But look at the plot::

Roberto A. Kraenkel (IFT-UNESP) IV SSSMB São Paulo, Jan 2015 18 / 29



Fisher-Kolmogorov

∂ρ
∂t

= D ∂2ρ
∂x2 + aρ(x, t)− bρ2(x, t)

We can see that there is a wave-front. And it moves with speed v = 2
√
aD.

Constant.
In the case of simple diffusion the speed decreased with time.

This pattern can be made the basis of experimental verification.

Our observations should concentrate on the front’s speed. .
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Skellam

The speed does not depend on b.
Therefore, the constant wavefront speed is not related to density
dependence. The nonlinear term is there to avoid infinities.
A equation

∂ρ

∂t
= D

∂2ρ

∂x2
+ aρ(x, t)

is called the Skellam equation.
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The classic example

Muskrat
The muskrat, an species native of North-america, was introduced in
Europe.
In 1905, five individuals were introduced in Prague.
Today, there are millions in Europe
In what follow, we see the expansion of the muskrat’s range around
Prague over 17 years..
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Muskrat

1905
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Muskrat

1909
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Muskrat

1913
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Muskrat

1917
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Muskrat

1921
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Skellam !

From these observations we can estimate the speed of invasion as a
function of time.
Here it is:

A straight line. Constant speed. Skellam dixit! REJOICE!.
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Micro X macro

From the theory of the Brownian motion we can see D as the mean
square displacement per unit of time.
We could try to track individuals and calculate it .
Beware!, it is likely that you get a wrong value for D. Too large.
Why?
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Home range effects

Many species have home ranges.
This comes from several factors: the need to find food, the need to
find shelter .
This slows down the diffusion process.
In general, a mechanistic study of D is difficult. In most studies it is
taken as a phenomenological constant.
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Example: Hantavirus

In 2000, a new species of Hantavirus was discovered, being the
etiological agent of f a respiratory syndrome. It is fatal in up to 60%
of cases
The host is Oligoryzomys fulvescens. Take a look at him:

Where you find the rat, you find the Hantavirus
The disease "follows"the spread of the rat.
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Hantavirus II

The diffusion of the hosts is well modeled by the usual models,.
But D is small.
Oligoryzomys fulvescens has a limited home-range.
The population spreads through juvenile migrants.
A statistically rare event.
But determinant for the spatial redistribution of the population.
The diffusion coefficient appearing in the equations is a proxy of all
these processes.
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Online Resources

http://www.ictp-saifr.org/mathbio4
http://ecologia.ib.usp.br/ssmb/

Thank you for your attention
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