IV Southern-Summer School on Mathematical Biology

Roberto André Kraenkel, IFT

http://www.ift.unesp.br/users/kraenkel

Lecture III

São Paulo, January 2015

Outline

(1) Competition

Outline

(1) Competition
(2) Mathematical Model

Outline

(1) Competition
(2) Mathematical Model
(3) Interpretation!

Outline

(1) Competition
(2) Mathematical Model
(3) Interpretation!

4 Protozoa, ants and plankton!

Outline

(1) Competition
(2) Mathematical Model
(3) Interpretation!

4 Protozoa, ants and plankton!
(5) References

Competition

- Consider competition betwenn two species.
- We say that two species compete if the presence of one of them is detrimental for the other, and vice versa.
- The underlying biological mechanisms can be of two kinds;
exploitative competition: both species compete for a limited resource.
* Its strength depends also on the resource .

Interference competition: one of the species actively interferes in the acess to resources of the sother .
Both types of competition may coexist.

Models for species in competition

- We are speaking of inter-specific competition
- Intra-specific competition gives rise to the models like the logistic that we studied in the first lecture.
- In a broad sense we can distinguish two kinds of models for competition:
- implicit: that do not take into account the dynamics of the resources.
explicit where this dynamics is included.
- Here is a pictorial view of the possible cases:

Competition

Figura: A single species. Only intra-specific competition indicated by the blue arrow

Competition

Figura : Two species. Besides intra-specific competition, both species compete. This is an implicit model as we do not even mention the resources. No distinction is made between exploitative or interference competition

Competition

Figura : Two species (A and B) that feed on C. Intra-specific competition has been omitted, but may exist. Here we have an explicit model for exploitative competition. A interaction of \mathbf{A} and \mathbf{C} and between \mathbf{B} and \mathbf{C} is usually of the antagonistic kind.

Competition

Figura : Two species (A and B) that feed on C but also interfere. Intra-specific competition has again been omitted, but may exist. We have an explicit model with both exploitative and interference competition.

Competition

Figura: A model where two species, A and B, compete for resources, (AND) they have also exclusive resources $(\mathbf{A} \leftrightarrow \mathbf{C})$ e ($\mathbf{B} \leftrightarrow \mathbf{D}$). And interference competition is also indicated.

Mathematical Model

- Let us begin with the simplest case:

Two species, Implicit competition, intra-specific competition taken into account.

- We proceed using the same rationale that was used for the predator-prey system.

Lotka-Volterra model for competition

Let N_{1} and N_{2} be the two species in question.

Lotka-Volterra model for competition

Each of them increases logistically in the absence of the other:

$$
\begin{aligned}
& \frac{d N_{1}}{d t}=r_{1} N_{1}\left[1-\frac{N_{1}}{K_{1}}\right] \\
& \frac{d N_{2}}{d t}=r_{2} N_{2}\left[1-\frac{N_{2}}{K_{2}}\right]
\end{aligned}
$$

where r_{1} and r_{2} are the intrinsic growth rates and K_{1} and K_{2} are the carrying capacities of both species in the absence of the other..

Lotka-Volterra model for competition

We introduce the mutual detrimental influence of one species on the other:

$$
\begin{aligned}
& \frac{d N_{1}}{d t}=r_{1} N_{1}\left[1-\frac{N_{1}}{K_{1}}-a N_{2}\right] \\
& \frac{d N_{2}}{d t}=r_{2} N_{2}\left[1-\frac{N_{2}}{K_{2}}-b N_{1}\right]
\end{aligned}
$$

Lotka-Volterra model for competition

Or, in the more usual way :

$$
\begin{aligned}
& \frac{d N_{1}}{d t}=r_{1} N_{1}\left[1-\frac{N_{1}}{K_{1}}-b_{12} \frac{N_{2}}{K_{1}}\right] \\
& \frac{d N_{2}}{d t}=r_{2} N_{2}\left[1-\frac{N_{2}}{K_{2}}-b_{21} \frac{N_{1}}{K_{2}}\right]
\end{aligned}
$$

Lotka-Volterra model for competition

Or, in the more usual way:

$$
\begin{aligned}
& \frac{d N_{1}}{d t}=r_{1} N_{1}[1-\frac{N_{1}}{K_{1}}-\overbrace{b_{12}}^{\downarrow} \frac{N_{2}}{K_{1}}] \\
& \frac{d N_{2}}{d t}=r_{2} N_{2}[1-\frac{N_{2}}{K_{2}}-\overbrace{b_{21}}^{\downarrow} \frac{N_{1}}{K_{2}}]
\end{aligned}
$$

where b_{12} and b_{21} are the coefficients that measure the strength of the competition between the populations.

Lotka-Volterra model for competition

This is a Lotka-Volterra type model for competing species. Pay attention to the fact that both interaction terms come in with negative signs. All the constants $r_{1}, r_{2}, K_{1}, K_{2}, b_{12}$ and b_{21} are positive.

$$
\begin{aligned}
& \frac{d N_{1}}{d t}=r_{1} N_{1}\left[1-\frac{N_{1}}{K_{1}}-b_{12} \frac{N_{2}}{K_{1}}\right] \\
& \frac{d N_{2}}{d t}=r_{2} N_{2}\left[1-\frac{N_{2}}{K_{2}}-b_{21} \frac{N_{1}}{K_{2}}\right]
\end{aligned}
$$

Let's now try to analyze this system of two differential equations .

Analyzing the model I

We will first make a change of variables, by simple re-scalings.

$$
\frac{d N_{1}}{d t}=r_{1} N_{1}\left[1-\frac{N_{1}}{K_{1}}-b_{12} \frac{N_{2}}{K_{1}}\right] \quad \text { Define: }
$$

$$
u_{1}=\frac{N_{1}}{K_{1}}, \quad u_{2}=\frac{N_{2}}{K_{2}}, \quad \tau=r_{1} t
$$

$\frac{d N_{2}}{d t}=r_{2} N_{2}\left[1-\frac{N_{2}}{K_{2}}-b_{21} \frac{N_{1}}{K_{2}}\right]$
In other words, we are measuring populations in units of their carrying capacities and the time in units of $1 / r_{1}$.

Analyzing the model II

The equations in
the new variables.

$$
\begin{aligned}
& \frac{d u_{1}}{d t}=u_{1}\left[1-u_{1}-b_{12} \frac{K_{2}}{K_{1}} u_{2}\right] \\
& \frac{d u_{2}}{d t}=\frac{r_{2}}{r_{1}} u_{2}\left[1-u_{2}-b_{21} \frac{K_{1}}{K_{2}} u_{1}\right]
\end{aligned}
$$

Analyzing the model III

Defining:

$$
\begin{gathered}
a_{12}=b_{12} \frac{K_{2}}{K_{1}} \\
a_{21}=b_{21} \frac{K_{1}}{K_{2}} \\
\rho=\frac{r_{2}}{r_{1}}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d u_{1}}{d t}=u_{1}\left[1-u_{1}-a_{12} u_{2}\right] \\
& \frac{d u_{2}}{d t}=\rho u_{2}\left[1-u_{2}-a_{21} u_{1}\right]
\end{aligned}
$$

we get these equations.
It's a system of nonlinear ordinary differential equations.
differential equations.

We need to study the behavior of their solutions

Analyzing the model IV

$$
\begin{aligned}
& \frac{d u_{1}}{d t}=u_{1}\left[1-u_{1}-a_{12} u_{2}\right] \\
& \frac{d u_{2}}{d t}=\rho u_{2}\left[1-u_{2}-a_{21} u_{1}\right]
\end{aligned}
$$

No explicit solutions!.

- We will develop a qualitative analysis of these equations.
- Begin by finding the points in the $\left(u_{1} \times u_{2}\right)$ plane such that:

$$
\frac{d u_{1}}{d t}=\frac{d u_{2}}{d t}=\mathbf{0}
$$

the fixed points.

Analyzing the model V
-

$$
\begin{aligned}
& \frac{d u_{1}}{d t}=0 \Rightarrow u_{1}\left[1-u_{1}-a_{12} u_{2}\right]=0 \\
& \frac{d u_{2}}{d t}=0 \Rightarrow u_{2}\left[1-u_{2}-a_{21} u_{1}\right]=0
\end{aligned}
$$

Analyzing the model V

$$
\begin{aligned}
& u_{1}\left[1-u_{1}-a_{12} u_{2}\right]=0 \\
& u_{2}\left[1-u_{2}-a_{21} u_{1}\right]=0
\end{aligned}
$$

- These are two algebraic equations for ($u_{1} \mathrm{e} u_{2}$).
- We FOUR solutions. Four fixed points.

Fixed points

$u_{1}^{*}=0$
$u_{2}^{*}=0$
$u_{1}^{*}=0$
$u_{2}^{*}=1$

$$
\begin{gathered}
u_{1}^{*}=1 \\
u_{2}^{*}=0 \\
u_{1}^{*}=\frac{1-a_{12}}{1-a_{12} a_{21}} \\
u_{2}^{*}=\frac{1-a_{21}}{1-a_{12} a_{21}}
\end{gathered}
$$

The relevance of those fixed points depends on their stability. Which, in turn, depend on the values of the parameters a_{12} e a_{21}. We have to proceed by a phase-space analysis, calculating community matrixes and finding eigenvalues......take a look at J.D. Murray (Mathematical Biology).

Stability

If $a_{12}<1$ and $a_{21}<1$

$$
u_{1}^{*}=\frac{1-a_{12}}{1-a_{12} a_{21}}
$$

$$
u_{2}^{*}=\frac{1-a_{21}}{1-a_{12} a_{21}}
$$ is stable.

If $a_{12}<1$ and $a_{21}>1$

$$
u_{1}^{*}=1 \text { e } u_{2}^{*}=0
$$

is stable.

If $a_{12}>1$ and $a_{21}>1$

$$
\begin{aligned}
& u_{1}^{*}=1 \text { e } u_{2}^{*}=0 \\
& u_{1}^{*}=0 \text { e } u_{2}^{*}=1 \\
& \text { are both stable. }
\end{aligned}
$$

$$
\text { If } a_{12}>1 \text { and } a_{21}<1
$$

$$
u_{1}^{*}=0 \text { e } u_{2}^{*}=1
$$ is stable.

The stability of the fixed points depends on the values of a_{12} and a_{21}.

Phase space

- To have a more intuitive understanding of the dynamics it is useful to consider the trajectories in the phase space
- For every particular combination of a_{12} and a_{21} - but actually depending if they are smaller or greater than $1-$, we will have a qualitatively different phase portrait.

Phase Space II

Figura : The four cases. The four different possibilities for the phase portraits§AlFR

Coexistence

Figura : $a_{12}<1$ and $a_{21}<1$. The fixed point u_{1}^{*} and u_{2}^{*} is stable and represents the coexistence of both species. It is a global attractor.

Exclusion

Figura : $a_{12}>1$ and $a_{21}>1$. The fixed point u_{1}^{*} and u_{2}^{*} is unstable. The points (1.0) and $(0,1)$ are stable but have finite basins of attraction, separated by a separatrix. The stable fixed points represent exclusionof one of the species.三

Exclusion

Figura: $a_{12}<1$ and $a_{21}>1$. The only stable fixed is $\left(u_{1}=1, u_{2}=0\right)$. A global attractor. Species (2) is excluded.

三

Exclusion

Figura: This case is symmetric to the previous. $a_{12}>1$ and $a_{21}<1$. The only stable fixed point is $\left(u_{1}=1, u_{2}=0\right)$. A global attractor. Species (1) is excluded

Interpretation of the results

- What is the meaning of these results?
- Let us recall the meaning of a_{12} and a_{21} :

$$
\begin{aligned}
\frac{d u_{1}}{d t} & =u_{1}\left[1-u_{1}-a_{12} u_{2}\right] \\
\frac{d u_{2}}{d t} & =\rho u_{2}\left[1-u_{2}-a_{21} u_{1}\right]
\end{aligned}
$$

a_{12} is a measure of the influence of species $\mathbf{2}$ on species $\mathbf{1}$. How detrimental $\mathbf{2}$ is to 1.
a_{21} measures the influence of species $\mathbf{1}$ on species $\mathbf{2}$. How detrimental $\mathbf{1}$ is to $\mathbf{2}$.

- So, we may translate the results as:
$a_{12}>1 \Rightarrow 2$ competes strongly with 1 for resources.
$a_{21}>1 \Rightarrow 1$ competes strongly with 2 for resources.
- This leads us to the following rephrasing of the results :

$$
\text { If } a_{12}<1 \text { and } a_{21}<1
$$

The competition is weak and both can coexist.

If $a_{12}>1$ and $a_{21}>1$

The competition is mutually strong. One species always excludes the other. Which one "wins"depends on initial conditions.

$$
\text { If } a_{12}<1 \text { e } a_{21}>1
$$

Species 1 is not strongly affected by species 2 . But species 2 is affected strongly be species 1 . Species 2 is eliminated, and species 1 attains it carrying capacity.

Se $a_{12}>1$ e $a_{21}<1$

This is symmetric to the previous case. Species 1 is eliminated and Species 2 attains its carrying capacity

Competitive exclusion

- In summary: the mathematical model predicts patterns of exclusion. Strong competition always leads to the exclusion of a species
- Coexistence is only possible with weak competition.
- The fact the a stronger competitor eliminates the weaker one is known as the competitive exclusion principle.


```
Georgiy F. Gause (1910-1986), Russian biolo-
gist, was the first to state the principle of com-
petitive exclusion (1932).
```


Paramecium

The experiences of G.F. Gause where performed with a protozoa group called Paramecia.

Paramecium

The experiences of G.F. Gause where performed with a protozoa group called Paramecia .
Gause considered two of them: Paramecium aurelia e Paramecium Caudatum.

Paramecium

The experiences of G.F. Gause where performed with a protozoa group called Paramecia .
Gause considered two of them: Paramecium aurelia e Paramecium caudatum. They where allowed to grow initially separated, with a logistic like growth.

Paramecium

The experiences of G.F. Gause where performed with a protozoa group called Paramecia .
Gause considered two of them: Paramecium aurelia e Paramecium Caudatum. They where allowed to grow initially separated, with a logistic like growth.
When they grow in the same culture, P. aurelia survives and P. caudatum is eliminated.

Paramecium

Paramecium

Paramecium

Ants

Figura : The Argentinean ant (Linepithema humile) and the Californian one(Pogonomyrmex californicus)

- The introduction of the Argentinean ant in California had the effect to exclude Pogonomyrmex californicus.
- Here is a plot with data....

Ants II

Figura : The introduction of the Argentinean ant in California had the effect of excluding Pogonomyrmex californicus

Plankton

In view of the principle of competitive exclusion, consider the situation of phytoplankton.

- Phytoplankton are organisms that live in seas and lakes, in the region where there is light.
- You won't see a phytoplankton with naked eye..
- You can see only the visual effect of a large number of them.
- It needs light + inorganic molecules.

The Plankton Paradox

- The plankton paradox consists of the following:
- There are many species of phytoplankton. It used a very limited number of different resources. Why is there no competitive exclusion?

One paradox, many possible solutions

- Competitive exclusion is a property of the fixed points. But if the environment changes, the equilibria might not be attained. We are always in transient dynamics.
- We have considered no spatial structure. Different regions could be associated with different limiting factors, and thus could promote diversity.
- Effects of trophic webs.

References

- J.D. Murray: Mathematical Biology I (Springer, 2002)
- F. Brauer e C. Castillo-Chavez: Mathematical Models in Population Biology and Epidemiology (Springer, 2001).
- N.F. Britton: Essential Mathematical Biology (Springer, 2003).
- R. May e A. McLean: Theoretical Ecology, (Oxford, 2007).
- N.J. Gotelli: A Primer of Ecology (Sinauer, 2001).
- G.E. Hutchinson: An Introduction to Population Ecology (Yale, 1978).

Online Resources

- http://www.ictp-saifr.org/mathbio4
- http://ecologia.ib.usp.br/ssmb/

Thank you for your attention

