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DELINEAMENTO	 ANÁLISE	COLETA	DE	DADOS	

PREDIÇÕES	

QUANDO	INCORPORA,	PARECE	UM	PROCESSO	SIMPLES	E	LINEAR	

MAS,	DELINEAMENTO	É	UMA	ETAPA	IMPORTANTE	E	COMPLEXA	



Variáveis	Operacionais	
(p.	ex.:	discreta	x	contínuas)	

Tudo	depende	da	pergunta	científica!	

Premissas	

COLETA	 ANÁLISE	DELINEAMENTO	

Tamanho	de	amostra	
Distribuição	espacial	
Esforço	amostral	possível	



POR	QUE	DELINEAMENTO	É	IMPORTANTE?	
"Designing	an	experiment	properly	will	not	only	help	you	in	analyzing	

data	–	it	may	determine	whether	you	can	analyze	data	at	all!"		
Michael	Palmer	

INCERTEZAS	INTRÍNSECAS	DA	
POPULAÇÃO	ESTATÍSTICA	

VARIÁVEIS	ALEATÓRIAS	 AMOSTRA		

INCERTEZAS	

INCERTEZAS	ADICIONAIS	SOBRE	A	
QUALIDADE	DA	ESTIMATIVA	DOS	
PARÂMETROS	POPULACIONAIS	



DIFERENÇA	ENTRE	PARÂMETROS	E	ESTIMADORES	

Definidos	pelos	
elementos	das	

unidades	amostrais	
ou	réplicas	
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Desconhecidos,		
Mas	FIXOS	

Importância	de	
definir	claramente	

a	população	 Estatística	ou	estimativa	pontual	



O	QUE	É,	MATEMATICAMENTE,	UM	BOM	ESTIMADOR?	

SEM	VIÉS	-	Se	forem	tomadas	medidas	de	várias	amostras	com	esse	estimador,	a	
média	dessas	medidas	deve	coincidir	com	o	parâmetro	original	

CONSISTENTE	-	Quanto	mais	aumentar	o	tamanho	da	amostra,	o	valor	
converge	para	o	parâmetro	original	e	a	variância	diminui	

EFICIENTE	-	Dentre	os	diferentes	estimadores,	dado	um	mesmo	tamanho	de	
amostra,	o	mais	eficiente	será	o	que	apresentar	menor	variância	

DEFINIÇÃO	BASEADA	EM	PROCEDIMENTOS	MATEMÁTICOS	E/OU	COMPUTACIONAIS	
	

NÃO	SE	PREOCUPEM	COM	ISSO!!		
	

EXISTE	TODA	UMA	ÁREA	DA	ESTATÍSTICA	VOLTADA	PARA	ENCONTRAR	ESTIMADORES		



Se	uma	variável	é	descrita	por	uma	Distribuição	Normal	

Média	e	Variância	da	AMOSTRA	são	bons	estimadores	da	
	Média	e	Variância	da	POPULAÇÃO		

DIFERENTES	DISTRIBUIÇÕES	DE	PROBABILIDADES	TÊM	DIFERENTES	ESTIMADORES	



ALGUNS	PARÂMETROS	E	SEUS	ESTIMADORES	PONTUAIS	

Diferenças	entre	médias	pode	ser	um	parâmetro	(exemplo	do	Manguezal)	



PARA	UMA	DADA	AMOSTRA,	UM	
ESTIMADOR	VAI	PRODUZIR		
UM	VALOR	(OU	INTERVALO)	

ESTIMATIVA	

NOSSO	OBJETIVO:	Obter	uma	estimativa	confiável	com	o	menor	esforço	amostral		

P.ex.:	pontuação	média	



O	QUE	É	UMA	ESTIMATIVA	CONFIÁVEL?	

SEM	VIÉS	-	O	valor	obtido	com	a	amostra	estatística	deve	ser	igual	ao	parâmetro.	
Não	deve	subestimar	ou	superestimar	o	parâmetro	populacional	

PRECISA	-	A	maior	parte	dos	valores	obtidos	na	amostra,	deve	estar	nas	
proximidades	do	parâmetro	populacional	(ERROS	PEQUENOS)			



	UM	BOM	DELINEAMENTO	

COMO	CONSEGUIR	UMA	ESTIMATIVA	CONFIÁVEL?	

O	QUE	É	UM	BOM	DELINEAMENTO?		

Depende	da	pergunta	científica!!!	

Mas,	podemos	ajudar...	



Trabalhando	um	exemplo	hipotético...	



Objetivo	inicial:	
Estimar	o	número	médio	de	sementes	produzidas	por	essa	espécie	

Estamos	interessados	em	modelar	as	respostas	reprodutivas	de	
uma	espécie	rara	de	planta	visando	assegurar	sua	manutenção	a	

longo	prazo	

Algumas	informações	prévias:	

-	A	espécie	ocorre	nas	partes	mais	altas	de	uma	cadeia	de	montanhas	

-	A	espécie	é	geograficamente	rara,	mas	localmente	abundante	

-	É	uma	espécie	típica	de	sub-bosque	

-	Possui	um	fármaco	de	importância	comercial	

-	Ainda	não	sabemos	quase	nada	dessa	espécie	



Oceano	Atlântico	-	Leste	(E)	

Oeste	(W)	

Sul	(S)	 Norte	(N)	

Você	tem	recursos	para	fazer	10	unidades	amostrais	(parcelas	de	50	x	50	m).		
Considerando	a	paisagem	abaixo	e	as	características	indicadas	anteriormente	
Indique	na	figura,	com	"x",	como	alocaria	as	UAs.		



Oceano	Atlântico	-	Leste	(E)	

Oeste	(W)	

Sul	(S)	 Norte	(N)	

Você	tem	recursos	para	fazer	60	unidades	amostrais	(parcelas	de	20	x	20m)	.		
Indique	na	figura	com	"o",	como	alocaria	as	UAs.		

Parabéns!!!	Você	acaba	de	receber	um	financiamento!!	



VIÉS	

IMPRECISÃO	

DEPENDÊNCIA	

ERROS	DE	MEDIÇÃO	

FATORES	DE	CONFUSÃO	

TAMANHO	DA	AMOSTRA	

PSEUDORREPLICAÇÃO	

PRINCIPAIS	PROBLEMAS	PARA	SE	OBTER	UMA	BOA	ESTIMATIVA	

PROBLEMAS	

POTENCIAIS	CAUSAS	



FORÇA	DE	INFERÊNCIA	

A	IMPORTÂNCIA	DESSES	PROBLEMAS	ESTÁ	RELACIONADA	À	
FORÇA	DE	INFERÊNCIA	DESEJADA	

PERGUNTA	CIENTÍFICA		-	HIPÓTESE	-	DELINEAMENTO	-	COLETA	-	ANÁLISE	-	CONCLUSÃO	

NOSSO	OBJETIVO	

Relação	entre	validade	interna/externa	



TIPOS	DE	ESTUDOS	ECOLÓGICOS	

EXPERIMENTAIS	-	Variáveis	preditoras	controladas	(laboratório	ou	campo)	

Adaptado	de	Manly	(1992),		Schwarz	(1998)	e	Eberhardt	&	Thomas	(1991)	

OBSERVACIONAIS	-	Variáveis	preditoras	não	controladas	

DESCRITIVOS	

ANALÍTICOS	

CONTROLE	-	IMPACTO	

SEM	MANIPULAÇÃO	

COM	MANIPULAÇÃO	(	~	Experimentos	de	campo)	

A	nomenclatura	e	a	classificação	dos	diferentes	estudos	variam	muito	entre	autores!	



	Maior	nível	de	controle	das	preditoras	->	maior	FORÇA	DE	INFERÊNCIA	

NÍVEL	DE	CONTROLE	
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Descritivo	

Analítico	SM	

Analítico	CM	

Controle-Impacto	

Experimentos	

Adaptado	de	Schwarz(1998)		



DO	SIMPLES	AO	COMPLEXO	

Descrição		->		Previsões		->		Processos		->		Mecanismos	
Descritivo	 Controle-Impacto	

Analítico	SM	

Analítico	CM	

Experimentos	

Experimentos	Controle-Impacto	

Analítico	SM	

Analítico	CM	

Experimentos	



RETOMANDO	OS	PRINCIPAIS	PROBLEMAS	PARA	OBTER	UMA	BOA	ESTIMATIVA	

VIÉS	

IMPRECISÃO	

DEPENDÊNCIA	

ERROS	DE	MEDIÇÃO	

FATORES	DE	CONFUSÃO	

TAMANHO	DA	AMOSTRA	

PROBLEMAS	 CAUSAS	

PSEUDORREPLICAÇÃO	

Atenção:	AMOSTRA	=	conjunto	de	unidades	amostrais	(ou	réplicas)	



DEPENDÊNCIA	

-	DEPENDÊNCIA	ESPACIAL		
	
-	DEPENDÊNCIA	TEMPORAL		
	
-	DEPENDÊNCIA	DE	ORIGEM	(p.	ex.:	sub-amostras	de	um	mesmo	organismo)	

O	valor	de	uma	dada	unidade	amostral	é	influenciado	por	outra	unidade	amostral	

DEPENDÊNCIA	POSITIVA:	
	Unidades	amostrais	dependentes	

são	mais	similares	entre	si		
Padrão	agregado	

Muito	comum	em	Ecologia	

DEPENDÊNCIA	NEGATIVA:	
Unidades	amostrais	dependentes	

são	mais	diferentes	entre	si	
Ex.	Alelopatia	



Maior	chance	de	ERRO	TIPO	I	->	HIPÓTESE	NULA	REJEITADA	ERRONEAMENTE	

Exemplo	com	DEPENDÊNCIA	ESPACIAL	POSITIVA	

COMPARANDO	MÉDIAS	DE	DUAS	AMOSTRAS	

AMOSTRA	1	
(unidades	amostrais	independentes)	

AMOSTRA	2	
(unidades	amostrais	dependentes)	

ESTIMATIVA	
enviesada	e	com	
menor	variação	

ESTIMATIVA	não	
enviesada	e	com	
maior	variação	

umidade	
do	solo	

umidade	
do	solo	



As	mesmas	ideias	também	se	aplicam	à	DEPENDÊNCIA	TEMPORAL	

Quanto	mais	próximas	as	datas	de	coleta,	mais	similares	serão	os	valores	->	menor	variação	



COMO	EVITAR:	
	
-	Aumentando	a	distância/tempo	entre	as	unidades	amostrais	(UA)	
	
-	Aumentando	a	heterogeneidade	de	distâncias/tempos	entre	as	UAs	
	
-	Conhecimento	prévio	do	sistema/organismo	
	
-	Ver	adiante	exemplos	de	delineamentos	

DEPENDÊNCIA	



DEPENDÊNCIA	

Descrição		->		Previsões		->		Processos		->		Mecanismos	
Descritivo	 Controle-Impacto	

Analítico	SM	

Analítico	CM	

Experimentos	

Experimentos	Controle-Impacto	

Analítico	SM	

Analítico	CM	

Experimentos	



FATORES	DE	CONFUSÃO	

A	relação	entre	duas	variáveis	pode	ser	explicada	por	outro	fator	

Consumo	mensal	de	refrigerantes	por	crianças	
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A	variável	"mês	de	amostragem"	(ou	"estação	do	ano")	não	foi	incluída	na	análise	

O-N	
	
	
	

A-S	
	
	
	

A-M	
	
	
	

J-J	
	
	
	

F-M	
	
	
	

D-J	
	
	
	



FATORES	DE	CONFUSÃO	

A	relação	entre	duas	variáveis	pode	ser	explicada	por	outro	fator	

Consumo	mensal	de	refrigerantes	por	crianças	
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inverno	

verão	

A	variável	"mês	de	amostragem"	(ou	"estação	do	ano")	não	foi	incluída	na	análise	



FATORES	DE	CONFUSÃO	

O	efeito	de	um	tratamento	pode	ser	explicado	por	outro	fator	

that we can only draw conclu-
sions about the population
from which we have taken a
random sample. If our plots on
a mud flat were scattered over
a 20 m!20 m area, then our
conclusions only apply to that
area; if we used a particular
strain of rats, then we have
only a conclusion about that genetic strain, and so
on.

The second aspect of randomization concerns
the allocation of treatments to experimental
units or vice versa. One of the standard recom-
mendations in experimental design is that the
experimental units be randomly allocated to
treatment groups. This means that no pattern of
treatments across experimental units is subjec-
tively included or excluded (Mead 1988) and
should ensure that systematic differences
between experimental units that might confound
our interpretation of treatment effects are mini-
mized (Hurlbert 1984, Underwood 1997). The cray-
fish example described at the beginning of
Section 7.2 is an illustration, if somewhat con-
trived, of the problem.

An artificial example, analogous to one
described by Underwood (1997), involves an
experiment looking at the difference in growth
rates of newly hatched garden snails fed either the
flowers or the leaves of a particular type of plant.
The flowers are only available for a short period of
time, because the plant flowers soon after rain.
When the flowers are available, we feed it to any
snails that hatch over that period. Snails that
hatch after the flowering period are given the
leaves of the plant. The obvious problem here is
that the two groups of snails may be inherently
different because they hatched at different times.
Snails that hatch earlier may be genetically differ-
ent from snails that hatch later, have had differ-
ent levels of yolk in their eggs, etc. Our results may

reflect the effect of diet, or they may reflect differ-
ences in the snails that hatch at different times,
and these two sources of variation are con-
founded. Clearly, we should take all the snails that
hatch over a given period, say the flowering
period, and give some of them flowers and others
leaves to eat.

The allocation of experimental units to treat-
ments raises the difficult issue of randomization
versus interspersion (Hurlbert 1984). Reconsider
the experiment described earlier on the effects of
fish predation on marine benthic communities.
Say we randomly choose ten plots on an intertidal
mudflat and we randomly allocate five of these as
fish exclusion (E) plots and five as cage-control (C)
plots. What do we do if, by chance, all the control
plots end up higher on the shore than all the
exclusion plots (Figure 7.2)? Such an arrangement
would concern us because we really want our
treatment and control plots to be interspersed to
avoid confounding fish effects with spatial differ-
ences such as tidal height. The simplest solution if
we end up with such a clumped pattern after an
initial randomization is to re-randomize – any
other pattern (except the complete reverse with all
control plots lower on the shore) will incorporate
some spatial interspersion of treatments and con-
trols. However, we must decide a priori what
degree of spatial clumping of treatments is unac-
ceptable; re-randomizing until we get a particular
pattern of interspersion is not really randomiza-
tion at all.

Why not guarantee interspersion by arranging
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Figure 7.2. Possible result of
random allocation of ten plots on an
intertidal mudflat to two treatments
– fish exclusion (E) and cage-control
(C).

Nesse	exemplo,	a	"distância	até	a	água"	não	foi	considerada	na	análise		

E	

C	

Tratamento	

Controle	



FATORES	DE	CONFUSÃO	

-	Atuam	principalmente	sobre	a	FORÇA	DE	INFERÊNCIA	dos	seus	resultados	

COMO	EVITAR:	

-	Conhecimento	prévio	e/ou	estudo-piloto	
	
-	Manipulação	ou	controle	de	condições	
	
-	Medição	de	variáveis	adicionais	(Covariáveis)	-	Antes/Durante/Depois		



FATORES	DE	CONFUSÃO	

Descrição		->		Previsões		->		Processos		->		Mecanismos	
Descritivo	 Controle-Impacto	

Analítico	SM	

Analítico	CM	

Experimentos	

Experimentos	Controle-Impacto	

Analítico	SM	

Analítico	CM	

Experimentos	



PSEUDORREPLICAÇÃO	

likely to have males and
females. Unfortunately, pos-
sible confounding is rarely
this obvious and confounding can sneak into an
experimental design in many ways, especially
through inappropriate replication, lack of proper
controls and lack of randomized allocation of
experimental units to treatments. These issues
will be our focus in this chapter.

Sometimes, confounding is a deliberate part of
experimental design. In particular, when we have
too many treatment combinations for the
number of available replicate units, we might con-
found some interactions so we can test main
effects (Chapter 9). Designs with such deliberate
confounding must be used with care, especially in
biology where interactive effects are common and
difficult to ignore.

7.2.1 Replication
Replication means having replicate observations
at a spatial and temporal scale that matches the
application of the experimental treatments.
Replicates are essential because biological
systems are inherently variable and this is partic-
ularly so for ecological systems. Linear model
analyses of designed experiments usually rely on
comparing the variation between treatment
groups to the inherent variability between experi-
mental units within each group. An estimate of
this latter variability requires replicate units.

Replication at an appropriate scale also helps
us avoid confounding treatment differences with
other systematic differences between experimen-
tal units. For example, to test if there are effects of
fish predation on the abundance of a species of
bivalve on intertidal mudflats, we might set up a
field experiment using fish exclusion cages and
suitable cage controls (see Section 7.2.2 for discus-
sion of controls) over plots (experimental units)
on the mudflat. If we simply have a single exclu-
sion plot and a single control plot, then the effects
of our treatment (fish exclusion) are confounded

with inherent differences between the two plots
related to their spatial location, such as tidal
height, sediment composition, etc. With two or
more replicate plots for each of the two treat-
ments (exclusion and control), we can be much
more confident in attributing differences
between treatment and control plots to fish exclu-
sion rather than inherent plot differences. Note
that replication does not guarantee protection
from confounding because it is still possible that,
by chance, all our treatment plots are different
from our control plots in some way besides access
to fish. However, the risk of confounding is
reduced by replication, especially when combined
with randomized allocation of treatments to
experimental units (Section 7.2.3).

While most biologists are well aware of the
need for replication, we often mismatch the scale
of those replicates relative to treatments being
applied. Probably no other aspect of experimental
design causes more problems for biologists
(Hurlbert 1984). Imagine a study designed to test
the effects of fire on the species richness of soil
invertebrates. Fire is difficult to manipulate in the
field, so investigators often make use of a natural
wildfire. In our example, one burnt area might be
located and compared to an unburnt area nearby.
Within each area, replicate cores of soil are col-
lected and the species richness of invertebrates
determined for each core (Figure 7.1). The mean
number of species of invertebrates between the
two areas was compared with a t test, after verify-
ing that the assumptions of normality and equal
variances were met.

There is nothing wrong with the statistical test
in this example. If the assumptions are met, a t test
is appropriate for testing the H0 that there is no
difference in the mean number of invertebrate
species between the two areas. The difficulty is
that the soil cores are not the appropriate scale of
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Figure 7.1. Example of an
inappropriately replicated study on
the effects of fire on soil
invertebrates. Each area is sampled
with five replicate soil cores.

Unidades	amostrais	tomadas	em	uma	escala	e	inferência	feita	em	outra	escala	
Não	são	réplicas	verdadeiras	(são	sub-amostras)	e	não	são	independentes		

Quais	são	as	unidades	amostrais	no	exemplo	acima?	

Qual(is)	pergunta(s)	poderia(m)	ser	respondida(s)	com	os	dados	obtidos	nesse	estudo?	

Círculo	cinza	=	ponto	de	amostragem	de	biomassa	de	micro-organismos	de	solo		

SERIA	UMA	PSEUDORREPLICAÇÃO	SE	A	PERGUNTA	FOSSE:		
"Áreas	sujeitas	a	fogo	têm	menor	biomassa	de	micro-organismos	no	solo?"	

As	unidades	amostrais	são	os	quadrados	(n=1	em	cada	condição)	e	os	círculos	são	sub-amostras	



likely to have males and
females. Unfortunately, pos-
sible confounding is rarely
this obvious and confounding can sneak into an
experimental design in many ways, especially
through inappropriate replication, lack of proper
controls and lack of randomized allocation of
experimental units to treatments. These issues
will be our focus in this chapter.

Sometimes, confounding is a deliberate part of
experimental design. In particular, when we have
too many treatment combinations for the
number of available replicate units, we might con-
found some interactions so we can test main
effects (Chapter 9). Designs with such deliberate
confounding must be used with care, especially in
biology where interactive effects are common and
difficult to ignore.

7.2.1 Replication
Replication means having replicate observations
at a spatial and temporal scale that matches the
application of the experimental treatments.
Replicates are essential because biological
systems are inherently variable and this is partic-
ularly so for ecological systems. Linear model
analyses of designed experiments usually rely on
comparing the variation between treatment
groups to the inherent variability between experi-
mental units within each group. An estimate of
this latter variability requires replicate units.

Replication at an appropriate scale also helps
us avoid confounding treatment differences with
other systematic differences between experimen-
tal units. For example, to test if there are effects of
fish predation on the abundance of a species of
bivalve on intertidal mudflats, we might set up a
field experiment using fish exclusion cages and
suitable cage controls (see Section 7.2.2 for discus-
sion of controls) over plots (experimental units)
on the mudflat. If we simply have a single exclu-
sion plot and a single control plot, then the effects
of our treatment (fish exclusion) are confounded

with inherent differences between the two plots
related to their spatial location, such as tidal
height, sediment composition, etc. With two or
more replicate plots for each of the two treat-
ments (exclusion and control), we can be much
more confident in attributing differences
between treatment and control plots to fish exclu-
sion rather than inherent plot differences. Note
that replication does not guarantee protection
from confounding because it is still possible that,
by chance, all our treatment plots are different
from our control plots in some way besides access
to fish. However, the risk of confounding is
reduced by replication, especially when combined
with randomized allocation of treatments to
experimental units (Section 7.2.3).

While most biologists are well aware of the
need for replication, we often mismatch the scale
of those replicates relative to treatments being
applied. Probably no other aspect of experimental
design causes more problems for biologists
(Hurlbert 1984). Imagine a study designed to test
the effects of fire on the species richness of soil
invertebrates. Fire is difficult to manipulate in the
field, so investigators often make use of a natural
wildfire. In our example, one burnt area might be
located and compared to an unburnt area nearby.
Within each area, replicate cores of soil are col-
lected and the species richness of invertebrates
determined for each core (Figure 7.1). The mean
number of species of invertebrates between the
two areas was compared with a t test, after verify-
ing that the assumptions of normality and equal
variances were met.

There is nothing wrong with the statistical test
in this example. If the assumptions are met, a t test
is appropriate for testing the H0 that there is no
difference in the mean number of invertebrate
species between the two areas. The difficulty is
that the soil cores are not the appropriate scale of
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Figure 7.1. Example of an
inappropriately replicated study on
the effects of fire on soil
invertebrates. Each area is sampled
with five replicate soil cores.

Círculo	cinza	=	ponto	de	amostragem	de	biomassa	de	micro-organismos	de	solo		

NÃO	SERIA	UMA	PSEUDORREPLICAÇÃO	SE	A	PERGUNTA	FOSSE:		
	

"Essa	área	sujeita	a	fogo	tem	menor	biomassa	de	micro-organismos	no	solo	do	
que	essa	outra	área	não	sujeita	a	fogo?"	

Nesse	caso:	as	unidades	amostrais	seriam	os	círculos	(n=5	em	cada	área)	

PORÉM,	INFERÊNCIA	RESTRITA	-	VALE	A	PENA?	
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A SIMPLE PSEUDOREPLICATION

B. SACRIFICIAL PSEUDOREPLICATION

Xl  x2 91 Y2 x3 kl $3 94

C. TEMPORAL PSEUDOREPLICATION
?l 72 &3 Kl

time

FI G. 5. Schematic representation of the three most com-
mon types of pseudoreplication. Shaded and unshaded boxes
represent experimental units receiving different treatments.
Each dot represents a sample or measurement. Pseudorepli-
cation is a consequence, in each example, of statistically test-
ing for a treatment effect by means of procedures (e.g.,-l test,
U test) which assume, implicitly, that the four data for each
treatment have come from four independent experimental
units (=treatment replicates).

where only a single control area and single impact area
are available.

One example Green uses is that of wastes being dis-
charged into a river. If it is possible to take replicate
samples both upstream (control area) and downstream
from the discharge point and to do this both before
and after the discharging of wastes begins, Green sug-
gests carrying out what he terms an “optimal impact
study.” Once the data are gathered, he recommends
that some procedure such as analysis of variance be
applied and that “the evidence for impact effects is a
significant areas-by-times interaction” (p. 70). I would
argue that this is improper, and that the best one can
do in such a situation is to develop graphs and tables
that clearly show both the approximate mean values
and the variability of the data on which they are based.

Though the statistical procedure (ANOVA) recom-
mended by Green is more sophisticated than the I tests,
U tests, and x2 tests used in most of the earlier studies
cited for pseudoreplication (Table 3), pseudoreplica-
tion is no less the result. The ANOVA can only dem-
onstrate significant differences between locations, not
significant effects of the discharge. Since the treatments
cannot be interspersed or assigned randomly to exper-
imental plots (the several sampling sites, both up-
stream and downstream), the experiment is not con-
trolled except in a subjective and approximate way.

More specifically, the “areas-by-times interaction”
can be interpreted as an impact effect onZy if we assume
that the differences between upstream and downstream
locations will remain constant over time if no wastes

are discharged or if they are without effect. This is
unreasonable. The magnitude of the true differences
(Ap) between two “similar” segments of a river, or two
“similar” ponds, or two “similar” field plots changes
constantly over time.

If ANOVA were appropriate, we would have to make
arbitrary decisions about how to measure difference.
For example, upstream mayfly density is Xu and down-
stream mayfly density is &. Should our null hypothesis
by that (XJ&) will not change with time, or should it
be that (Xu - &) will not change? (Eberhardt [ 1976:
331 suggests the former.) Or is some other measure of
difference more appropriate? Different procedures
probably would be appropriate for different kinds of
variables.

Eberhardt (1976, 1978) addresses this same problem
of how to assess impact when there is a single site
exposed. His conclusions are similar to those of Green
(1979), in that he acknowledges the before-after, up-
stream+lownstream sampling study to be the best
available option. However, Eberhardt offers many ca-
veats, clearly states the statistical difficulty, and invents
the properly pejorative terms “pseudoexperiment” and
“pseudodesign” for the procedure. In his own words:

What cannot presentZy be done is to insure that
classical inferential methods can actually be applied
to pre- and post-operational data on one impacted
site [1976:321] . . . . The whole formal technology of
experimental design is not properly admissible [ I 978:
2101. . . . [Such work] is really more in the area of
sample survey design than a part of the design of
experiments [I9761321 . . . . We have as yet not pro-
gressed very far in trying to carry the pseudodesign
idea to an operationally eflective stage. I am not even
sure that goal is either feasible or desirable [1976:
351.

As examples of first-rate “optimal impact studies”
may be cited the Hubbard Brook deforestation exper-
iment (e.g., Likens et al. 1970, 1977) and the Canadian
whole-lake fertilization experiments (e.g., Schindler et
al. 197 1, Schindler 1974). Replicate experimental units
were not used in these investigations, yet the effects of
the experimental variables were convincingly dem-
onstrated. Inferential statistics were not used (with mi-
nor exceptions). They were not applicable, and they
would not have made the results any clearer or the
conclusions any firmer. All experimenters who do not
or cannot employ true replication would do well to
emulate the straightforwardness of these two outstand-
ing research groups.

Temporal pseudoreplication
This differs from simple pseudoreplication only in

that the multiple samples from each experimental unit
are not taken simultaneously but rather sequentially
over each of several dates (Fig. 5C). Dates are then
taken to represent replicated treatments and signifi-

MAS	não	podem	ser	tratadas	como	réplicas	independentes!	->	Correção	analítica	

EM	GERAL,	É	MELHOR	INVESTIR	EM	MAIS	UNIDADES	
AMOSTRAIS	(RÉPLICAS)	DO	QUE	EM	SUB-AMOSTRAS	

PSEUDORREPLICAÇÃO	

Sub-amostras	aumentam	a	precisão	de	uma	estimativa	
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PSEUDOREPLICATION AND THE DESIGN OF ECOLOGICAL
FIELD EXPERIMENTS

S T U A R T  H. HURLBERT
Department of Biology, San Diego State University,

San Diego, California 92182 USA

Abstract. Pseudoreplication is defined. as the use of inferential statistics to test for treatment effects
with data from experiments where either treatments are not replicated (though samples may be) or
replicates are not statistically independent. In ANOVA terminology, it is the testing for treatment
effects with an error term inappropriate to the hypothesis being considered. Scrutiny of 176 experi-
mental studies published between 1960 and the present revealed that pseudoreplication occurred in
27% of them, or 48% of all such studies that applied inferential statistics. The incidence of pseudo-
replication is especially high in studies of marine benthos and small  mammals. The critical features
of controlled experimentation are reviewed. Nondemonic intrusion is defined as the impingement of
chance events on an experiment in progress. As a safeguard against both it and preexisting gradients,
interspersion of treatments is argued to be an obligatory feature of good design. Especially in small
experiments, adequate interspersion can sometimes be assured only by dispensing with strict random-
ization procedures. Comprehension of this conflict between interspersion and randomization is aided
by distinguishing pre-layout (or conventional) and layout-specifit alpha (probability of type I error).
Suggestions are offered to statisticians and editors of ecological j oumals as to how ecologists’ under-
standing of experimental design and statistics might be improved.

Key words: experimental design; chi-square; R. A. Fisher; W. S. Gossett; interspersion of treat-
ments; nondemonic intrusion; randomization; replicability; type I error.

No one would now dream of testing the response to a treat-
ment by comparing two plots, one treated and the other un-
treated.

-R. A. Fisher and J. Wishart (1930)

. . . field experiments in ecology [usually] either have no
replication, or have so few replicates as to have very little sen-
sitivity  . . .

-L. L. Eberhardt (1978)

I don’t know how anyone can advocate an unpopular cause
unless one is either irritating or ineffective.

-Bertrand Russell (in Clark 1976:290)

INTRODUCTION

The following review is a critique of how ecologists
are designing and analyzing their field experiments. It
is also intended as an exploration of the fundamentals
of experimental design. My approach will be: (1) to
discuss some common ways in which experiments are
misdesigned and statistics misapplied, (2) to cite a large
number of studies exemplifying these problems, (3) to
propose a few new terms for concepts now lacking
convenient, specific labels, (4) to advocate treatment
interspersion as an obligatory feature of good design,
and (5) to suggest ways in which editors quickly can
improve matters.

 Manuscript received 25 February 1983; revised 2 1 June
1983; accepted 25 June 1983.

Most books on experimental design or statistics cov-
er the fundamentals I am concerned with either not at
all or only briefly, with few examples of misdesigned
experiments, and few examples representing experi-
mentation at the population, community or ecosystem
levels of organization. The technical mathematical and
mechanical aspects of the subject occupy the bulk of
these books, which is proper, but which is also dis-
tracting to those seeking only the basic principles. I
omit all mathematical discussions here.

The citing of particular studies is critical to the hoped-
for effectiveness of this essay. To forego mention of
specific negative examples would be to forego a pow-
erful pedagogic technique. Past reviews have been too
polite and even apologetic, as the following quotations
illustrate:

There is much room for improvement in field ex-
perimentation. Rather than criticize particular in-
stances, I will outline my views on the proper meth-
ods . . . . (Connell 1974)

In this review, the writer has generally  refrained
from criticizing the designs, or lack thereof, of the
studies cited and the consequent statistical weakness
of their conclusions; it is enough to say that the ma-
jority of the studies are defective in these respects.
(Hurlbert 1975)

. . . as I write my comments, I seem to produce
onZy a carping at details that is bound to have the
totaZ effect of an ill-tempered scolding . . . . I hope
those whose work I have referenced as  examples w i l l

On misinterpretations of pseudoreplication and related matters: a
reply to Oksanen

Stuart H. Hurlbert, Stuart H. Hurlbert, Dept of Biology and Center for Inland Waters, San Diego State Univ., San
Diego, California 92182, USA. (shurlbert@sunstroke.sdsu.edu)

Pseudoreplication has become a widely accepted label for a
certain class of statistical error common in the literature of
ecology as well as of other fields. A wide-ranging critique by L.
Oksanen recently published in this journal criticizes the term and
concept and concludes it to be a ‘‘pseudoissue,’’ one reflecting an
intellectual disease, ‘‘a totally outdated epistemology’’ known as
‘‘inductionism.’’ The present article addresses some of Oksanen’s
complaints. His critique is based on a misconception of
pseudoreplication, reflects unawareness of most of the literature
on the topic, and mistakenly argues that the seriousness of the
error is a function of whether an experiment is conducted in an
inductive or deductive spirit. Oksanen’s advocacy of using
resources available for large scale ecology more for large
numbers of experiments with unreplicated treatments than for
fewer experiments with modest replication of treatments is
unrealistic. It is based on an overly optimistic view of the ability
of a meta-analysis to compensate for deficiencies, such as very
noisy estimates of treatment effects, of the individual studies that
are fed into it. A definition is offered of the term manipulative
experiment, since adequate ones are lacking in the literature.
Attention is called to the fact that for certain types of
manipulative experiments lacking treatment replication, there
are valid ways to test for treatment effects.

Authors who cite Hurlbert would do better if they had read
his paper!

!/ A.J. Underwood (1998:344)

Twenty years ago I wrote a review of a particular
category of statistical error that I termed pseudoreplica-
tion, assessed the frequency with which it occurred in
articles reporting ecological field experiments, and
commented on related issues of experimental design
and statistical analysis (Hurlbert 1984). Since that time
the term pseudoreplication has become widely used, and
many ecologists have become more aware of the need for
close concordance of design, analysis, and interpretation
of experiments. A wide-ranging recent paper titled
‘‘Logic of experiments in ecology: is pseudoreplication
a pseudoissue?’’ (Oksanen 2001) finds many faults of

logic and epistemology in my 1984 paper, and answers
the question in its title in the affirmative.
If indeed pseudoreplication is a ‘‘pseudoissue’’, that

will be a shock to the American Statistical Association,
which awarded the original pseudoreplication paper the

G.W. Snedecor Award for the best paper in biometry in
1984.
The present report responds to key points in Oksa-

nen’s (2001) critique but does not attempt to cover many
collateral issues he discusses. I focus in particular on his
misunderstanding of the nature of pseudoreplication
and experiments, his crediting of me with the revival of
‘‘long dead’’ epistemologies, and his over-valuation of

the statistical treatment of experiments lacking treatment
replication.
While the present report was under review, Cottenie

and De Meester (2003) also published a critique of
Oksanen’s (2001) key claims, reinforcing many points
that will be made here.
There has been much published on pseudoreplication

since 1984 (Machlis et al. 1985, Hairston 1989, Krebs
1989, Kroodsma 1989a, b, 1990, Hurlbert and White
1993, Heffner et al. 1996, Lombardi and Hurlbert 1996,
Garcı́a-Berthou and Hurlbert 1999, Jenkins 2002, Hurl-
bert and Meikle 2003). One of the best recent texts on
experimental design devotes several pages to discussing
various types of pseudoreplication, though without us-
ing the label (Mead 1988:107-122; reviewed in Hurlbert

1990). In its 1995 edition, one of the most widely used
statistics texts quietly removed an example where
pseudoreplication had long been advocated in earlier
editions as the correct way of doing things (Sokal and
Rohlf 1969:438, 1981:488, 1995). The problematic as-
pects of Oksanen (2001) derive in part from its attempt
to critique the concept of pseudoreplication while
ignoring most of the literature on it.
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Opinion is intended to facilitate communication between reader and author and reader and
reader. Comments, viewpoints or suggestions arising from published papers are welcome.
Discussion and debate about important issues in ecology, e.g. theory or terminology, may
also be included. Contributions should be as precise as possible and references should be
kept to a minimum. A summary is not required.
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2004,	a	luta	continua...	



PSEUDORREPLICAÇÃO	

Descrição		->		Previsões		->		Processos		->		Mecanismos	
Descritivo	 Controle-Impacto	

Analítico	SM	

Analítico	CM	

Experimentos	

Experimentos	Controle-Impacto	

Analítico	SM	

Analítico	CM	

Experimentos	



Oceano	Atlântico	-	Leste	(E)	

Oeste	(W)	

Sul	(S)	 Norte	(N)	

Você	identifica	potenciais	problemas	na	amostragem	anterior	que	realizou?	

Gostaria	de	realocar	suas	unidades	amostrais?		



DELINEAMENTOS	PARA	ESTUDOS	OBSERVACIONAIS	
(não	exclusivamente)	



AMOSTRAGEM	ALEATÓRIA	SIMPLES	

PRINCÍPIO	BÁSICO:		
Qualquer	unidade	amostral	deve	ter	a	mesma	probabilidade	de	ser	amostrada	

DEFINIR	CLARAMENTE	A	POPULAÇÃO	(*)	
(limites	espaciais	e	temporais		)	

DEFINIR	A	FORMA	DE	ALEATORIZAÇÃO	(*)	

DEFINIR	UNIDADES	AMOSTRAIS(*)	

(*)	importante	para	todos	os	próximos	delineamentos	

PROCEDIMENTOS:	



"Some	investigators	locate	plots	by	throwing	a	rock	over	your	shoulder,	or	walking	a	certain	
number	of	steps	with	their	eyes	closed.		Not	only	are	such	techniques	dangerous,	they	also	
do	not	represent	random	sampling.		We	call	such	techniques	‘haphazard’."			Michael	Palmer	

ALEATORIZAÇÃO	

Muitos	métodos	inadequados	(não	atendem	as	premissas	da	aleatoriedade):	
-	Atirar	pedras	ou	outros	objetos	para	trás	
-	Ir	contando	e	pedir	para	alguém	dizer	para	parar	
-	Sortear	um	ponto	x;y	e	amostrar	indivíduo	mais	próximo		



ALEATORIZAÇÃO	

Alguns	métodos	adequados:	
	
-	Tabela	de	números	aleatórios	
-	Números	aleatórios	gerados	por	programas	de	computador	(ressalvas)	
-	Últimos	dígitos	de	cronômetro			



SE	FOI	POSSÍVEL	SEGUIR	TODOS	OS	PROCEDIMENTOS	INDICADOS	:	

MÉDIA	AMOSTRAL																												=				MÉDIA	POPULACIONAL	

VANTAGENS:		

(n-1)	é	usado	
ao	invés	de	n	
para	corrigir	o	
estimador	

gradually from the middle of the sample and
incorporate a measure of variability in the estima-
tion procedure. They include the Huber M-
estimator and the Hampel M-estimator, which use
different functions to weight the observations.
They are tedious to calculate, requiring iterative
procedures, but maybe useful when outliers are
present because they downweight extreme values.
They are not commonly used but do have a role in
robust regression and ANOVA techniques for ana-
lyzing linear models (regression in Chapter 5 and
ANOVA in Chapter 8).

Finally, R-estimators are based on the ranks of
the observations rather than the observations
themselves and form the basis for many rank-
based “non-parametric” tests (Chapter 3). The only
common R-estimator is the Hodges–Lehmann esti-
mator, which is the median of the averages of all
possible pairs of observations.

For data with outliers, the median and
trimmed or Winsorized means are the simplest to
calculate although these and M- and R-estimators
are now commonly available in statistical software.

2.2.2 Spread or variability
Various measures of the spread in a sample are
provided in Table 2.1. The range, which is the dif-
ference between the largest and smallest observa-
tion, is the simplest measure of spread, but there
is no clear link between the sample range and
the population range and, in general, the range
will rise as sample size increases. The sample var-
iance, which estimates the population variance,
is an important measure of variability in many
statistical analyses. The numerator of the
formula is called the sum of squares (SS, the sum
of squared deviations of each observation from
the sample mean) and the variance is the average
of these squared deviations. Note that we might
expect to divide by n to calculate an average, but
then s2 consistently underestimates !2 (i.e. it is
biased), so we divide by n" 1 to make s2 an unbi-
ased estimator of !2. The one difficulty with s2 is
that its units are the square of the original obser-
vations, e.g. if the observations are lengths in
mm, then the variance is in mm2, an area not a
length.

16 ESTIMATION

Table 2.1 Common population parameters and sample statistics

Parameter Statistic Formula

Mean (l) ȳ

Median Sample median y(n # 1)/2 if n odd
(yn/2# y(n/2)# 1)/2 if n even

Variance (r 2) s2

Standard deviation (r) s

Median absolute deviation (MAD) Sample MAD median[ |yi" median| ]

Coefficient of variation (CV) Sample CV $ 100

Standard error of ȳ (r ȳ) s ȳ

95% confidence interval for l ȳ" t0.05(n" 1) % l% ȳ# t0.05(n" 1)

s
!n

s
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s
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n
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n
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different functions to weight the observations.
They are tedious to calculate, requiring iterative
procedures, but maybe useful when outliers are
present because they downweight extreme values.
They are not commonly used but do have a role in
robust regression and ANOVA techniques for ana-
lyzing linear models (regression in Chapter 5 and
ANOVA in Chapter 8).

Finally, R-estimators are based on the ranks of
the observations rather than the observations
themselves and form the basis for many rank-
based “non-parametric” tests (Chapter 3). The only
common R-estimator is the Hodges–Lehmann esti-
mator, which is the median of the averages of all
possible pairs of observations.

For data with outliers, the median and
trimmed or Winsorized means are the simplest to
calculate although these and M- and R-estimators
are now commonly available in statistical software.

2.2.2 Spread or variability
Various measures of the spread in a sample are
provided in Table 2.1. The range, which is the dif-
ference between the largest and smallest observa-
tion, is the simplest measure of spread, but there
is no clear link between the sample range and
the population range and, in general, the range
will rise as sample size increases. The sample var-
iance, which estimates the population variance,
is an important measure of variability in many
statistical analyses. The numerator of the
formula is called the sum of squares (SS, the sum
of squared deviations of each observation from
the sample mean) and the variance is the average
of these squared deviations. Note that we might
expect to divide by n to calculate an average, but
then s2 consistently underestimates !2 (i.e. it is
biased), so we divide by n" 1 to make s2 an unbi-
ased estimator of !2. The one difficulty with s2 is
that its units are the square of the original obser-
vations, e.g. if the observations are lengths in
mm, then the variance is in mm2, an area not a
length.
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AMOSTRAGEM	ALEATÓRIA	SIMPLES	

VARIÂNCIA	AMOSTRAL																																			=			VARIÂNCIA	POPULACIONAL	

TESTES	DE	HIPÓTESES	PODEM	SER	REALIZADOS	COM	SEGURANÇA	



DESVANTAGENS	E	PROBLEMAS:	

-	REQUER	UM	TAMANHO	GRANDE	DE	AMOSTRA	

-	ACESSO	AOS	PONTOS	DEFINIDOS	

AMOSTRAGEM	ALEATÓRIA	SIMPLES	

-	SE	HOUVER	HETEROGENEIDADE,	AMBIENTES	RAROS	PODEM	NÃO	SER	AMOSTRADOS	

-	MUITO	ESFORÇO	QUANDO	OBJETOS	ESTÃO	AGREGADOS	OU	SÃO	RAROS	(localmente)	



SOLUÇÕES:	

-	ESTUDO	PILOTO	E	BUSCA	POR	CONHECIMENTOS	PRÉVIOS	
	
-	ANALÍTICAS	(Procedimentos	de	Monte	Carlo)	
	
-	MEDIÇÕES	ADICIONAIS	(PARA	EVITAR	FATORES	DE	CONFUSÃO;	PÓS-ESTRATIFICAÇÃO)	
	
-	OPÇÃO	POR	OUTROS	ESQUEMAS	DE	AMOSTRAGEM	(ver	a	seguir)	
	

AMOSTRAGEM	ALEATÓRIA	SIMPLES	



PRINCÍPIO	BÁSICO:		
Divide	a	população	em	"estratos"	e	aloca	unidades	amostrais	dentro	de	cada	estrato	

DEFINIR		ESTRATOS		
Internamente	mais	homogêneos	que	entre	

AMOSTRAGEM	ALEATÓRIA	ESTRATIFICADA	

QUANTIFICAR	OS	ESTRATOS			
PRÉ:	Se	os	fatores	da	estratificação	já	forem	conhecidos	
PÓS:	Se	os	fatores	não	forem	conhecidos	a	priori	

PROCEDIMENTOS:	

AMOSTRAR	OS	ESTRATOS			
Dentro	de	cada	estrato,	a	amostragem	deve	ser	aleatória	

Mas,	precisa	manter	um	número	mínimo	de	réplicas	em	cada	estrato		(Gotelli	&	Ellison	~=	10)	



Fazer	a	amostragem	equitativa	ou	proporcional	aos	estratos?	

Alocação	equitativa	é	mais	útil	quando	se	quer	estimativas	igualmente	
precisas	para	todos	os	estratos	ou	para	a	população	geral	

Analiticamente	mais	fácil	de	lidar	com	números	iguais	de	UAs	



Fazer	a	amostragem	equitativa	ou	proporcional	aos	estratos?	

Alocação	proporcional	é	mais	útil	quando	os	maiores	estratos	são	os	
mais	importantes	



SE	FOR	POSSÍVEL	SEGUIR	TODOS	OS	PROCEDIMENTOS	INDICADOS:	

VANTAGENS:	

-	É	POSSÍVEL	UTILIZAR	A	MÉDIA	E	A	VARIÂNCIA	COMO	ESTIMADORES	

-	MELHORA	MUITO	A	SUA	ESTIMATIVA	COM	UM	NÚMERO	MENOR	DE	UNIDADES	AMOSTRAIS	

AMOSTRAGEM	ALEATÓRIA	ESTRATIFICADA	

Other sampling designs take into account het-
erogeneity in the population from which we are
sampling. Stratified sampling is where the popu-
lation is divided into levels or strata that repre-
sent clearly defined groups of units within the
population and we sample independently (and
randomly) from each of those groups. For
example, we may wish to estimate characteristics
of a population of stones in a stream (our variable
might be species richness of invertebrates). If the
stones clearly fall into different habitat types, e.g.
riffles, pools and backwaters, then we might take
random samples of stones from each habitat
(stratum) separately. Stratified sampling is likely
to be more representative in this case than a
simple random sample because it ensures that the
major habitat types are included in the sample.
Usually, the number of units sampled from each
stratum is proportional to the total number of
possible units in each stratum or the total size of
each stratum (e.g. area). Estimating population
means and variances from stratified sampling
requires modification of the formulae provided in
Chapter 2 for simple random sampling. If sam-
pling within a stratum is random, the estimate of
stratum population mean is as before but the esti-
mate of the overall population mean is:

ȳstr! Wh ȳh (7.1)

where there are h!1 to l strata, Wh is the propor-
tion of total units in stratum h (often estimated
from the proportion of total area in stratum h)
and ȳh is the sample mean for stratum h (Levy &
Lemeshow 1991). If our sample size within each
stratum is proportional to the number of possible
units within each stratum, Equation (7.1) sim-
plifies to:

ȳstr! (7.2)

where there are i!1 to nh observations sampled
within stratum h, yhi is the ith observation from
the hth stratum and n is the total sample size
across all strata. The standard error of this mean
is:

sȳstr
! (7.3)!"

l

h!1
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sh
2
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l
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l
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where sh
2 is the sample variance for stratum h.

Approximate confidence intervals can also be
determined (Levy & Lemeshow 1991, Thompson
1992). When statistical models are fitted to data
from stratified sampling designs, the strata
should be included as a predictor variable in the
model. The observations from the different strata
cannot be simply pooled and considered a single
random sample except maybe when we have evi-
dence that the strata are not different in terms of
our response variable, e.g. from a preliminary test
between strata.

Cluster sampling also uses heterogeneity in
the population to modify the basic random sam-
pling design. Imagine we can identify primary
sampling units (clusters) in a population, e.g. indi-
vidual trees. For each primary unit (tree), we then
record all secondary units, e.g. branches on each
tree. Simple cluster sampling is where we record
all secondary units within each primary unit. Two
stage cluster sampling is where we take a random
sample of secondary units within each primary
unit. Three stage cluster sampling is where we
take a random sample of tertiary units (e.g. leaves)
within each secondary unit (e.g. branches) within
each primary unit (e.g. trees). Simple random sam-
pling is usually applied at each stage, although
proportional sampling can also be used. These
designs are used to estimate variation at a series
of hierarchical (or nested) levels, often represent-
ing nested spatial scales and nested linear ANOVA
models are often fitted to data from two or more
stage cluster sampling designs (Section 9.1).

Systematic sampling is where we choose sam-
pling units that are equally spaced, either spa-
tially or temporally. For example, we might choose
plots along a transect at 5 m intervals or we might
choose weekly sampling dates. Systematic sam-
pling is sometimes used when we wish to describe
an environmental gradient and we want to know
where changes in the environment occur. For
example, we want to measure the gradient in
species richness away from a point source of pol-
lution. Simple random sampling away from the
source might miss the crucial region where the
species richness undergoes rapid change.
Sampling at regular intervals is probably a better
bet. Various methods exist for estimating means
and variances from systematic sampling,
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adiciona-se	um	termo	de	peso	(W)	para	cada	estrato	h	

-	RESOLVE	O	PROBLEMA	DE	AMBIENTES	RAROS	



DESVANTAGENS	E	PROBLEMAS:	

SOLUÇÕES:	

-	ANALÍTICAS	(PÓS-ESTRATIFICAÇÃO	com	dados	adicionais)	
	
-	MEDIÇÕES	ADICIONAIS	
	
-	OPÇÃO	POR	OUTROS	ESQUEMAS	DE	AMOSTRAGEM	
	

-	NO	CASO	DE	HETEROGENEIDADE	PERCEPTÍVEL		

AMOSTRAGEM	ALEATÓRIA	ESTRATIFICADA	

Necessidade	de	conhecimento	prévio	
e/ou	de	tomada	de	dados	adicionais	

-	NO	CASO	DE	HETEROGENEIDADE	IMPERCEPTÍVEL		 Erro	no	"grão"	para	definir	estratos		



PRINCÍPIO	BÁSICO:		
A	partir	de	um	ponto	inicial,	as	unidades	amostrais	estão	espalhadas	a	uma	distância	fixa	

AMOSTRAGEM	SISTEMÁTICA	

http://www.fao.org/forestry/11649/en/	

PROCEDIMENTOS:	

-	DEFINIR	O	ESPAÇAMENTO	



VANTAGENS:		

AMOSTRAGEM	SISTEMÁTICA	

-	FÁCIL	EXECUÇÃO		

-	ACESSO	FACILITADO	AOS	PONTOS	DE	MEDIÇÃO/	FÁCIL	RECUPERAÇÃO	PARA	RECENSOS	

-	ESPALHA	MELHOR	AS	UNIDADES	AMOSTRAIS	(INTERSPERSÃO)	-	Maior	representatividade	

-	PODE	SER	ASSOCIADA	COM	OUTROS	ESQUEMAS	DE	AMOSTRAGEM	

-	ADEQUADA	PARA	REVELAR	MUDANÇAS	AO	LONGO	DE	GRADIENTES		



DESVANTAGENS	E	PROBLEMAS:	

AMOSTRAGEM	SISTEMÁTICA	

-	DEPENDÊNCIA	ENTRE	UNIDADES	AMOSTRAIS,	A	DEPENDER	DA	DISTÂNCIA	ENTRE	ELAS	

-	SINCRONIA	INDESEJADA	COM	ALGUM	FATOR	AMBIENTAL	

-	DIFICULDADE	DE	DEFINIR	O	GRAU	DE	ESPAÇAMENTO		



ESCALA	(GRÃO	E	EXTENSÃO)		

Grão	Pequeno	X	Extensão	Pequena	
Grão	Pequeno	X	Extensão	Grande	

Grão	Grande	X	Extensão	Grande	

Grão	Grande	X	Extensão	Pequena	



SOLUÇÕES:	

-	MEDIÇÕES	ADICIONAIS	ANTERIORES	(Evitar	sincronia;	definir	espaçamento)	
	
-	ASSOCIAR	COM	OUTROS	ESQUEMAS	DE	AMOSTRAGENS	
	
-	ANALÍTICAS	(PÓS-ESTRATIFICAÇÃO;	SERPENTINA)	

AMOSTRAGEM	SISTEMÁTICA	

Existem	formas	analíticas	de	incorporar	o	efeito	da	amostragem	sistemática	

Manly	2008	

Environmental Sampling 41

of as the local sampling errors. With a systematic sample of size n, there are 
n − 1 such squared differences, leading to a combined estimate of the vari-
ance of local sampling errors of
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On this basis, the estimate of the standard error of the mean of the systematic 
sample is

 SÊ(y) = sL/√n (2.29)

Site Boundary

FIGURE 2.4
Grouping sample points from a systematic sample so that it can be analyzed as a stratified 
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FIGURE 2.5
Defining a serpentine line connecting the points of a systematic sample so that the sampling 
variance can be estimated using squared differences between adjacent points on the line.
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usa	essa	variância	corrigida	para	
estimar	o	erro	padrão	



VÁRIOS	OUTROS	ESQUEMAS	DE	AMOSTRAGEM	

AMOSTRAGEM	ANINHADA		

AMOSTRAGEM	MULTI-ESTÁGIOS	

AMOSTRAGEM	REPETIDA	

ESTIMATIVA	DE	RAZÃO	(RATIO-ESTIMATION)	

AMOSTRAGEM	ADAPTATIVA	

CAPTURA-RECAPTURA	

AMOSTRAGEM	ROBUSTA	->	DETECTABILIDADE	

TAMBÉM	COMBINAÇÕES	ENTRE	DIFERENTES	ESQUEMAS	



PRINCIPAIS	REQUISITOS	DE	UMA	BOA	AMOSTRAGEM:	

-	UNIDADES	AMOSTRAIS	ALOCADAS	DE	FORMA	ALEATÓRIA		
	
	
-	NÚMERO	DE	UNIDADES	AMOSTRAIS	DEVE	SER	"SUFICIENTE"	(Lei	dos	Grandes	Números)	
	
	
-	UNIDADES	AMOSTRAIS	INDEPENDENTES	
	

PODEMOS	UTILIZAR	A	AMOSTRA	PARA	ESTIMAR	OS	PARÂMETROS	POPULACIONAIS		

Número	adequado	de	amostras	e	aleatorização	devem	sempre	andar	juntos!!	



Oceano	Atlântico	-	Leste	(E)	

Oeste	(W)	

Sul	(S)	 Norte	(N)	

Você	identifica	potenciais	problemas	na	amostragem	anterior	que	realizou?	

Gostaria	de	realocar	as	10	unidades	amostrais?	Indique	na	figura	com	#	
Gostaria	de	realocar	as	60	unidades	amostrais?	Indique	na	figura	com	+	



	
Após	a	coleta	dos	dados	da	nossa	planta,	notamos	que	existe	uma	

variação	muito	grande	na	produção	de	sementes,	mesmo	
considerando	as	60	unidades	amostrais	estabelecidas.		

	
	
	

Quais	fatores	poderiam	estar	determinando	essa	variação?	
	



Oceano	Atlântico	-	Leste	(E)	

Oeste	(W)	

Sul	(S)	 Norte	(N)	

Como	você	alocaria	agora	as	10	unidades	amostrais?	Indique	na	figura	com	z		
Como	você	alocaria	agora	as	60	unidades	amostrais?	Indique	na	figura	com	*		

Será	que	pode	haver	diferenças	entre	as	faces	N	e	S,	em	função	da	radiação	
incidente	sobre	as	folhas,	afetando	a	fotossíntese	e	a	reprodução	?	



Encontramos	diferenças	significativas	na	produção	de	sementes	
entre	unidades	amostrais	localizadas	na	face	norte	e	na	face	sul	

	
	

Qual	o	processo/mecanismo	que	determina	essas	diferenças?	
	



Oceano	Atlântico	-	Leste	(E)	

Oeste	(W)	

Sul	(S)	 Norte	(N)	

Será	que	as	diferenças	entre	as	faces	N	e	S	são	em	função	do	ressecamento	do	solo?	



Oceano	Atlântico	-	Leste	(E)	

Oeste	(W)	

Sul	(S)	 Norte	(N)	

Como	separar	o	efeito	da	radiação	sobre	as	folhas	e	o	efeito	do	ressecamento	do	solo?	



DELINEAMENTOS	PARA	ESTUDOS	EXPERIMENTAIS	
(não	exclusivamente)	



VARIÁVEIS	PREDITORAS	SÃO	MANIPULADAS	E	ISOLADAS	DE	OUTROS	FATORES	

DELINEAMENTOS	EXPERIMENTAIS	

O	QUE	MUDA?	



DELINEAMENTOS	EXPERIMENTAIS	

O	QUE	MUDA?	

PREMISSAS	MAIS	RÍGIDAS:	

-	Seleção	das	unidades	experimentais	e	atribuição	dos	
tratamentos	são	independentes	das	variáveis	resposta	de	
interesse	

-	Efeitos	aleatórios	e	erros	experimentais	são	independentes	

-	Efeitos	aleatórios	e	erros	experimentais	são	igualmente	
distribuídos,	como	uma	variável	aleatória	com	média	zero	



TRÍADE	DE	PROCEDIMENTOS	EXPERIMENTAIS	

REPLICAÇÃO	-	ALEATORIZAÇÃO	-	CONTROLE	

IDEALMENTE	NÃO	EXISTEM	FATORES	DE	CONFUSÃO	EM	UM	EXPERIMENTO		
(True-experiment)	

Replicação	e	Aleatorização	devem	sempre	andar	juntas!!	



DIFERENTES	TIPOS	DE	CONTROLE:	
	
	
CONTROLE	DE	EFEITO	
-		Sem	a	aplicação	do	tratamento	
	
	
CONTROLE	DE	PROCEDIMENTO		
-	Gaiolas	sem	telas	
	
-	Garrafas	sem	furos	
	
-	Sham	surgery	
	
	



ALEATORIZAÇÃO	SIMPLES	-	UM	FATOR	

PRINCÍPIO	BÁSICO:		
Qualquer	réplica	tem	a	mesma	chance	de	ter	um	tratamento	atribuído	a	ela	

-	ANALITICAMENTE	FÁCIL	LIDAR	COM	NÚMEROS	DIFERENTES	DE	RÉPLICAS	POR	TRATAMENTO	

É	o	delineamento	básico	para	a	ANOVA	de	um	fator	



BLOCOS	ALEATORIZADOS	

PRINCÍPIO	BÁSICO:		
Aloca	tratamentos	aleatoriamente	dentro	de	blocos	

Minimiza	a	chance	de	algum	efeito	desconhecido	atuar	em	apenas	um	tratamento	

É	o	delineamento	básico	para	a	ANOVA	aninhada	(Nested)	

Blocos	não	representam	um	outro	fator	conhecido		



up six wood frame cages in the littoral zone and
applied one of six competition treatments (low
density Asynarchus, low density Limnephilus,
high density Asynarchus, high density Limnephilus,
high density both species, control with no caddis-
flies) to each cage within each pond. The role of
hydroperiod (permanent or autumnal) was inves-
tigated by having four ponds in each category. The
response variables were body mass and survival of
each species analyzed separately, so there were
only three density treatments (those containing
the same species). So there are two factors: hydro-
period was “applied” (non-experimentally) to
whole ponds (plots) and is termed the between
plots factor and density treatment was applied to
cages within plots and is termed the within plots
factor. Split-plot designs are characterized by
having factors applied to experimental units at
different, usually spatial, scales.

There are a number of practical design issues
for this experiment.

• The experimental design that would be sim-
plest to analyze would be to have whole ponds
that are subjected to levels of both factors,
hydroperiod and density treatment, forming a
completely randomized (CR) factorial arrange-
ment of two hydroperiods by six density treat-
ments with n ponds per cell. Ponds are large
units and we would expect considerable vari-
ability between them, resulting in large resid-
ual variance.

• It is often difficult to install cages, especially
large ones. For example, covering whole ponds
with cages to maintain experimental densities

would be very expensive to set up and probably
require an immense amount of labour. We
may find that we cannot physically deal with
the required size of cages in the time available
to set the experiment up, because the research
grant has dried up, or we’ve exhausted the
supply of eager volunteers in earlier experi-
ments. We would also need a lot more ponds.
The current design uses eight ponds, whereas a
completely randomized design with even only
two ponds per density and hydroperiod combi-
nation would need 24. That many ponds may
simply not exist.

• The split-plot design chosen allows us to group
our density treatments within ponds, minimiz-
ing spatial variation in environmental charac-
teristics, and giving us a clearer test of the
effects of density. It also reduces the size of
cages. We have, however, linked together
groups of cages, and changed our statistical
model dramatically compared to the CR
design. If anything happens to a pond (e.g. it
dries up at the wrong time, or gets an algal
bloom), we would be forced to discard all cages
in that pond. If we’d used a CR design, we
would lose just a single replicate in a cell.

As another example, Leonard et al. (1999) tested
the prediction that flow had strong effects on the
abundances of mussels and barnacles in an
estuary but that these effects might vary with
tidal height. They had a number of general design
options for testing this prediction.

• They could have sampled a range of sites in the
estuary. In the simplest case, they could
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Figure 11.1. Diagrammatic
representation of the split-plot
experiment from Wissinger et al.
(1996).There are four ponds (only
two shown here) in each of two
hydroperiods (permanent and
autumnal, represented by different
shading), the between plots factor.
Within each pond, there were six
cages, each containing one level of
the within plots factor, competition
treatment.

SPLIT-PLOT	

-	PRINCÍPIO	BÁSICO:	Uma	réplica	de	cada	nível	de	tratamento	de	um	dos	fatores	do	
experimento	em	cada	réplica	do	segundo	fator.	Caso	particular	de	blocos.			

Fator	1:		05	antifúngicos	diferentes	injetados	em	peixes	em	gaiolas	e	um	controle	(06	níveis)		

Fator	2:		02	tipos	de	lagos	(cinza	=	lagos	profundos;		branco	=	lagos	rasos)			

Exemplo	



MULTIFATORIAL	-	DOIS	FATORES	(com	vários	níveis	cada)	

-	PRINCÍPIO	BÁSICO:	Os	tratamentos	são	completamente	cruzados	e	ortogonais.	Todo	
nível	de	tratamento	do	primeiro	fator	é	representado	com	todos	os	níveis	do	segundo	



O	número	de	combinações	é	exponencial	e,	se	considerar	o	
número	de	réplicas	necessárias	para	cada	combinação,	pode	tornar	
o	experimento	inviável	(economicamente	e	em	termos	de	esforço)	

Atenção	às	combinações	que	não	fazem	sentido...	

Cuidado	com	o	ESFORÇO	AMOSTRAL	nos	split-plot	e	nos	multifatoriais	
Aumentos	muito	rápidos	...	
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Example 4. We return to our l-m isobath to test
whether oak. (Quercus) leaves will decompose more
rapidly than will maple (Acer) leaves at that depth.
This will be a manipulative experiment, though our
operations in the field will be very similar to those of
our earlier mensurative experiments (Examples 2, 3).
Now we are actually altering a single variable (species)
and not just comparing a system property at two points
in space or time.

We place eight bags of maple leaves at random with-
in a 0. 5-m2 plot (A) on the 1 -m isobath and eight bags
of oak leaves at random within a second “identical”
plot (B) contiguous to the first one. Because the treat-
ments are segregated and not interspersed, this is an
uninteresting experiment. The only hypothesis tested
by it is that maple leaves at location A decay at a
different rate than do oak leaves at location B. The
supposed “identicalness” of the two plots almost cer-
tainly does not exist, and the experiment is not con-
trolled for the possibility that the seemingly small ini-
tial dissimilarities between the two plots will have an
influence on decomposition rate. Nor is it controlled
for the possibility of nondemonic intrusion, i.e., the
possibility that an uncontrolled extraneous influence
or chance event during the experiment could increase
the dissimilarity of the two plots.

Example 5. We use eight leaf bags for each species
and distribute them all at random within the same plot
on the 1 -m isobath. This experiment will allow us val-
idly to test whether the two species decompose at the
same rate at this location. If our interest is primarily
in a comparison of the two species, we may feel this
experiment is sufficient, and it is. However, if it is
important to us to state how the two species’ rates
compare on t h e  1 -m isobath, then we should carry out
an experiment in which both sets of leaves are dis-
persed over two or more randomly selected points on
the l-m isobath. Also, if we wish to generalize to the
l-m isobaths of a certain class of lakes, obviously two
sets of leaf bags must be distributed in some random-
ized fashion over all or a random sample of these lakes.
The appropriate dispersion of replicates is as important
in manipulative as in mensurative experiments.

Modes of spatial interspersion
and segregation

Fig. 1 illustrates schematically three acceptable ways
and four (not five; B-4 is equivalent to A- 1, with respect
to the interspersion criterion) unacceptable ways of
interspersing treatments in a two-treatment experi-
ment. The boxes or experimental units could be aquar-
ia on a laboratory bench, a string of ponds, or a row
of plots, with either real (structural) or imaginary
boundaries, in a field or in the intertidal zone. Each
unit is assumed to have been treated (fish introduced,
insecticide applied, starfish removed) independent of
the other units in the same treatment.

A-1 Completely Randomized WIHIlWIlBBcl

A-2 Randomized Block LIB Wcl WEI 04

A-3 Systematic •nWIlWIl~cl

B-1 Simple Segregation l ~~~ElElclEl

B-2 Clumped Segregation WWUU Ixl~cl
------mm - - - - - - -

B-3 lsolative Segregation !BBWW! klOUO!iI CHAMBER 1 Imm----mm
, C H A M B E R 2  1

-w-m---m

T

B-4 Randomized, but with
inter-dependent replicates

B-5 No replication

FIG. 1. Schematic representation of various acceptable
modes (A) of interspersing the replicates (boxes) of two treat-
ments (shaded, unshaded) and various ways (B) in which  the
principle of interspersion can be violated.

A few comments are now offered concerning each
design illustrated in Fig. 1.

Completely randomized design (A- 1). -Simple ran-
domization is the most basic and straightforward way
of assigning treatments to experimental units. How-
ever, it is not frequently employed in ecological field
experiments, at least not when the experimental units
are large (ponds, l-ha plots, etc.). In these cases there
usually are available only a few experimental units per
treatment, replication as great as four-fold being un-
common. In that circumstance, a completely random
assignment process has a good chance of producing
treatments which are segregated rather than spatially
interspersed. For example, the chances of the random
numbers table giving us simple segregation (B- 1 in Fig.
1) are  3 %  when there is four-fold replication and
10% when there is three-fold replication. I strongly
disagree with the suggestion (Cox 1958:71;  Cochran
and Cox 1957:96)  that the completely randomized de-
sign may be most appropriate in “small experiments.”
Clearly we cannot count on randomization always giv-
ing us layouts as “good” as A-l (Fig. 1).

Few examples of strict randomization leading to in-
adequate interspersion of treatments are found in the
ecological literature. Perhaps experimental ecologists
fall primarily into two groups: those who do not see
the need for any interspersion, and those who do rec-
ognize its importance and take whatever measures are
necessary to achieve a good dose of it. In Fig. 2 are
shown three actual experimental layouts in which the
degree of interspersion seems unsatisfactory. Fig. 2-1
is the only example I have found of poor interspersion
having resulted from clearly specified and formally cor-
rect randomization procedures. And even in this case,
the experimental layout is only that of one block in a
four-block randomized complete block design. For the
other two experiments (Fig. 2-11, III) the authors did
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MUITOS	OUTROS	DELINEAMENTOS	

E	MAIS:	
QUADRADO	LATINO	
SÉRIES	TEMPORAIS	

ANTES-DEPOIS-CONTROLE-IMPACTO	(ADCI)	
...	



Oceano	Atlântico	-	Leste	(E)	

Oeste	(W)	

Sul	(S)	 Norte	(N)	

O	menor	número	de	sementes	produzido	pelas	plantas	localizadas	na	face	norte	é	
explicado	pelo	efeito	do	excesso	de	radiação	sobre	as	folhas	ou	pelo	efeito	do	
ressecamento	do	solo?	


