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The use of exponential functions to fit decomposition datasets is common in scientific literature. Olson's
exponential equation (Xt=X0 e

-kt) is widely used, but when strong curvatures are observed, the decomposing
organic matter is commonly split into two compartments (Labile and Recalcitrant), thus obtaining double-
exponential equations that often provide a good fit. Nevertheless, to correlate the so-calculated pools with
quantifiable organic fractions is often very difficult, if not impossible. This suggests that even though these
equationsfit the experimental datawell, theydonotnecessarily reflectwhat reallyhappens in the decomposition
process. The alternative is to apply models in which the organic matter, instead of being split into labile and
recalcitrant compartments, is taken as a single pool whose decomposition rate is not constant.
Here we propose a general approach, which considers a single organic compartment. While the original
exponential function that fits the basic equation is dX/dt=-kdt, here we substitute the constant k by a function,
f (t), i.e. the decomposition rate is assumed to vary with time. Whatever function we choose, the remaining
organic matter at time t is:

Xt = X0⋅e
−∫t

0
f ðtÞdt

and thus the problem being addressed is how to integrate the function that describes the change in the
decomposition rate. In this paper we study four possible dynamics for such a change: (1) an exponential decay,
(2) a wave-form change, simulating seasonal rhythms, (3) a sigmoidal increase or decrease, and (4) a rational-
type dynamics, involving an increase in the initial phase, followed by a gradual decrease. For each one, the
integrated form is calculated, and some practical examples are given. Given its flexibility, our approach allows a
good fit for a wide number of datasets, including those that well fit a single-exponential function, the classic
Olson's function strictly being a specific case of the general equation we suggest.
l rights reserved.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Litter decomposition has been one of the most popular topics in
ecological research for many years. Organic matter decomposition
enables a massive recycling of chemical elements on the scale of
ecosystems and the whole biosphere (Berg and Laskowski, 2006). It
represents a main step in the global carbon cycle in terrestrial
ecosystems and, thanks to the availability of studymethods, andmore
specifically to the widely known litter-bag methods, it is easy to
access sets of field data.

Computermodels (Century, SOMM,Candy, etc),which try to simulate
the processes that provoke the overall decomposition process, have been
applied to study litter decomposition (Zhang et al., 2008). However,most
researchers have looked for single, direct mathematical descriptions of
the overall phenomenon, by fitting decay functions to remaining mass
values. A decay function, simpler than a computer model, can be
advantageous if themain aim of the researcher is to summarise themain
features of the studied decomposition datasets to allow for an easy and
direct comparison between them. Fitting decomposition datasets to a
theoretical equation may be of great value if the equation has been
designed to reflect the mechanisms that result in the overall process.

Not surprisingly, a great number of equations have been proposed,
from the first proposal of Jenny et al. (1949) to recent approaches (Yang
and Janssen, 2000). Despite a considerable number of years since its
publication, the approach of Jenny et al. (1949), further developed in
detail by Olson (1963), is still the most popular one. In this approach,
litter decomposition follows a single-exponential dynamics, in the form

Xt = X0e
−kt ð1Þ
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where Xt is the amount of litter at time t, X0 the initial amount, and k
the decomposition rate. The basic assumption is that k is constant.
This simple equation has been applied extensively. Nevertheless, in
litter decomposition studies, dynamics with a strong curvature that
cannot fit a single-exponential equation, are often obtained. This is
explained by the changes in the decomposing litter: some compo-
nents are degraded first (carbohydrates, hemicelluloses, water-
soluble compounds, etc), while others remain much longer (waxes,
lignin, suberins, etc.) (Minderman, 1968; Berg et al., 1982; Rovira and
Vallejo, 2000). As the former disappear and the latter accumulate, k
decreases. Quadratic or power models have been used in these cases
(reviewed by Wieder and Lang, 1982) but, most commonly, the
phenomenon has been explained by assuming that the whole litter at
zero time (X0, in Eq. (1)) is split into a number of compartments (i=1,
2,..., n), each having its own decomposition rate ki. This is translated
into a multiple-exponential equation:

Xt = ∑
n

i=1
Xi0e

−kit ð2Þ

In practice, up to three compartments have been considered (e.g.,
Adair et al., 2008). However the most usual approach is to set n=2,
i.e., the whole litter is assumed to be split into a‘labile’ and
a‘recalcitrant’ pool, differing in their decomposition rates:

Xt = ae−k1t + be−k2t ð3Þ

where a is the initial amount of the labile pool and k1 its decomposition
rate, and b the initial amount of the recalcitrant pool and k2 its
decomposition rate. By definition, k1Nk2. It is usually assumed that
the sum a+b is equal to the whole initial litter. If we work with
percentages, then a+b=100, and therefore b=100−a. I.e., a three-
parameter equation is finally obtained. This approach usually gives
betterfits thanOlson's single-exponential equation, and iswidely used
(e.g., Lousier and Parkinson, 1976; Gillon et al., 1993; Rovira and
Vallejo, 1997, 2000). Even in studies not directly linked to the
application of an exponential dynamics (e.g. Coûteaux et al., 2001),
the spliting of litter into a labile and a recalcitrant pool is assumed.
These standard exponential models can be refined if correctors for the
several k are applied, to account for climatic variability (e.g., Adair
et al., 2008).

These compartments can sometimes be identified with defined
components of the decomposing litter, such as cellulose or lignin
(Adair et al., 2008), but not always (Dendooven et al., 1997; Rovira
and Vallejo, 2000; Vaieretti et al., 2005). Strictly, Eqs. (2) and (3)
involve two basic assumptions which are known to be wrong: (i) that
the several compartments decompose independently, without any
interaction between them, and (ii) that the quality of the several
compartments does not appreciably change with time, since their
decomposition rates are constant. Whatever the criteria we apply to
separate a labile from a recalcitrant pool (acid hydrolysis, thermo-
gravimetry, etc), we will find that both pools do not behave
independently (e.g., Rovira and Vallejo, 2002), and that they suffer
biochemical changes with time (e.g., Rovira et al., 2008). Highly
recalcitrant polymers release less recalcitrant monomers to the labile
compartment, whereas the labile compartment also releases organic
matter to the recalcitrant one when labile compounds evolve to
poorly biodegradable compounds, for instance through the genera-
tion of refractory polymers between lignin or polyphenols and N
(Nömmik and Vahtras, 1982; Kelley and Stevenson, 1996; Berg and
Laskowski, 2006). Even though a double-exponential equation can be
very useful to fit the data, it does not necessarily reflect what really
occurs during decomposition.

Carpenter (1981) overcomes this drawback by considering the
decomposing organic matter as a continuum of pools varying in their
quality, from 0 (the most refractory) to 1 (the most labile). These
pools are not meant to be independent, but related to each other:
there is a generation of both labile and recalcitrant organic matter
during the decomposition process, following well defined laws. The
concept of a continuum of qualities within the whole decomposing
organic matter was also developed in detail by Bosatta and Ågren
(1985, 1991). In spite of the great theoretical interest—and even
beauty—of these approaches, they have not been widely applied,
owing probably to the mathematical complexity of the resulting
equations. The most recent development in line with this approach is
the K-Model (Feng, 2009a,b,c), which also reaches a considerable
mathematical complexity.

The alternative—and simpler—approach is to consider a single
organic compartment, whose decomposition rate changes with time.
This is the strategy adopted in this paper.

Before our study, there have been several attempts in this
direction: Carpenter (1982), Ezcurra and Becerra (1987), Montaña
et al. (1988) and Yang and Janssen (2000), have suggested or applied
flexible single-compartment models. A feature of these models is that
in most of them k is assumed to decrease with time. In a natural
environment, this does not always happen: fluctuations in k may
occur, due either to seasonal cycles or to the changing physical
position of the litter within the soil profile. While the first organic
layers (OL) are often subjected to strong drying events, the deep
organic layers have a more constant water regime: subsequently, the
decomposition rate of a given cohort of litter can increase in these
horizons. It is also possible to observe an initial lag phase in the
decomposition if a period of microbial colonisation in the surface of
the organic debris is needed (Wolters and Schaefer, 1993).

Hereafter we present an alternative approach to the analysis of
decomposition kinetics, more flexible than those mentioned above:
not a single equation, but a global conceptual solution, which, in
practice, can take different forms depending on the dataset being
studied. The aims of this paper are as follows:

1. To introduce a generic mathematical approach to obtain curves to
fit decomposition datasets.

2. To develop several specific examples of this approach: each one of
these is representative of situations that can be found in nature.

3. To apply these examples to real decomposition datasets, to show
how our approach allows us to obtain not only good fitting curves,
but also relevant information concerning the dynamics of the
decomposition process.

2. Materials and methods

2.1. Mathematical description

Henceforth we will call r the instantaneous decomposition rate;
only when r is constant will we use the term k.

To understand our approach we must refer back to the original
concept of Jenny et al. (1949), as developed by Olson (1963). In the
approach of Jenny and Olson, r is assumed to be constant (i.e., k).
Given in differential equation terms:

dX
X

= −kdt ð4Þ

where X is the amount of litter in a givenmoment, k the instantaneous
decomposition rate, and t the time. We integrate Eq. (4), to obtain the
remaining litter at time t (i.e., Xt):

lnðXtÞ = −kt + lnðX0Þ ð5Þ

where X0 is the amount of litter at time zero. Taking antilogarithms, we
obtain the classical single-exponential model, widely known and applied:

X = X0e
−kt ð6Þ
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If the decomposition rate r is not constant, but changes in a way
that can be mathematically described as a function of time, f (t), then
Eq. (4) can be rewritten in a more generic form:

dX
X

= f ðtÞdt ð7Þ

We integrate Eq. (7), to obtain a new generic equation, which fits
the experimental data when the decomposition rate cannot be
assumed as constant:

Xt = X0e
− ∫

t

0

f ðtÞdt
� �

ð8Þ

Thus, the whole problem of fitting a decomposition dataset to a
theoretical curve is reduced to: first, detecting a function f (t) that
describes the behaviour of r, and, second, integrating f (t). The Olson's
model is merely a specific example of Eq. (7), in which f (t)=k
(constant). A priori, f (t) could be any function. However, f (t) must
not only be correct in mathematical terms, but also logical in
biological terms, which limits the options. For instance, decomposi-
tion implies, strictly speaking, a loss of organic matter: therefore, f (t)
can never be negative.

Henceforth, several possible changes in r will be examined. Since
all of them match situations that can be seen in nature, they are
expected to give integrated equations capable of fitting—and, at least
partly, explaining—several dynamics sometimes found in decompo-
sition experiments. In this section we only show the initial functions
and their integrated forms; a description of how we obtained the
functions is detailed in Appendix A.
Fig. 1. Main features of the composite-exponential function for r. A: Decomposition rate.
B: Remaining mass, resulting from the changing decomposition rate. The initial decom-
position rate (a+b) changes to the final rate (a) following an exponential curve,m being
the decay rate. Usually a, b andm are positive: which means that the decomposition rate
will decrease with time. In the example given, a=0.2, b=1.8,m=2.
Case 1. Exponential decrease of the decomposition rate (Fig. 1).

The decomposition rate r decreases from an initial value (a+b, at
t=0) to a final value (a, at t=∞). The change follows an exponential
curve. That is,

f ðtÞ = a + be−mt ð9Þ

where m is the exponential rate of decay of b. Since both a, b and m
are instantaneous rates, their units are the same: time−1. We must
note that the change is not necessarily a decrease: if either b or m is
negative, the decomposition rate will increase. In contrast, a must be
always≥0; if a is negative, then the decomposition rate can eventually
be negative, and this is not possible in a decomposition process.

We integrate Eq. (9) relative to t, to obtain:

∫
t

0

f ðtÞdt = at− b
m

ðe−mt−1Þ ð10Þ

To obtain the decay curve, we must replace Eq. (10) in Eq. (8).

Case 2. Wave-form dynamics of the decomposition rate (Fig. 2).

Such a dynamics is to be expected in ecosystems subjected to
strong seasonal changes, resulting in rhythmic fluctuations in r. If the
decomposing litter is sampled at intervals small enough to reflect
these changes (e.g. 1–3 months), it is possible to detect rhythms in the
decomposition process, which usually result in datasets hard to fit
with the usual exponential curves.

The seasonal changes in r can be approached by a trigonometric
function:

f ðtÞ = m + a sin
2π
b

t + c
� �

ð11Þ

wherem is themean value of r, a is the amplitude of the change (i.e., the
possible values for r are betweenm+a andm−a), b is the amplitude of
the period, and c is the angular shift in the cycle (i.e., the decomposition
does not necessarily start when the decomposition rate is r=m). Fig. 2
illustrates the meaning of all these parameters. Since a and m are
possible values for r, then both have the same units: time−1. In contrast,
b represents time lags, and its units are time units (days, months, etc).

An important constraint is a≤m. If aNm, the decomposition rate r
would be negative at some stage, which biologically speaking is
impossible. The period (b) can be forced to 1 year, and thus the
function becomes simplified, with only 3 parameters instead of 4.

By integrating Eq. (11), we obtain

∫
t

0

f ðtÞdt = mt− ab
2π

cos
2π
b

t + c
� �

− cos c
� �

ð12Þ

To obtain the decay curve, we must replace Eq. (12) in Eq. (8).

Case 3. Sigmoidal change of the decomposition rate (Fig. 3).

The change in r can take a sigmoidal-type shape when there is a
change in the conditions under which the decomposition takes place.
This shift in r can be negative: in waterlogged soils, for instance, r may
drop when, after a period in a well-oxygenated L horizon, litter reaches
an F or H horizon with low oxygen availability. The shift can be also
positive: the initial r may be low, due to a constraint that may reduce
even further. For instance, where there is a lack ofmicrobial biomass: as
soon as the litter surface has beenmassively colonised bymicroflora, an
activation of the decomposition process is likely to happen.



Fig. 3.Main features of the sigmoidal function for r. A: Decomposition rate. B: Remaining
mass, as resulting from the changing decomposition rate. The maximum value for r is
given by a+c, while the minimum is given by c. The parameter b gives the speed at
which the change from the initial to the final value will occur: the smaller the absolute
value of b, the faster the change. The sign of b determines the sense of the change: if bN0,
the decomposition rate increases (grey line), while if bb0 the decomposition rate
decreases (black line). The parameter t0 gives the middle point of the change in r. In this
example, a=1, b=0.1 or -0.1, c=0.2 and t0=0.5.

Fig. 2. Main features of the sinusoidal function for r. A: Decomposition rate. The
decomposition rate changes rhythmically: m is the mean value of r, a is the amplitude,
b the length of a cycle, and c the angular shift between the start of the experiment and
the start of a cycle. For an annual seasonal cycle, b should be 1 year. In this example,
a=0.18, b=1, c=2 and m=0.2. B: Remaining mass, resulting from the changing
decomposition rate. C: relationship between the c value and the shift (in years) in the
position of the maximum r value, relative to the start of the decomposition.
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Many curves described in mathematical literature could be used
here.We can suggest, because of its simplicity (four parameters only):

f ðtÞ = a

1 + e
t−t0
b

+ c ð13Þ

in which b (adimensional) gives the shape of the function, because if
bb0, then r decreases with time, whereas if bN0 then r increases. The
lower the absolute value of b, the faster the increase or decrease in r.
As for a and c, both are time−1: the sum a+c gives the uppermost
value for r, and c the lowermost. The moment in which the change
occurs is given by t0 , which gives the time at which r is exactly at the
mean point between the lowermost (c) and the uppermost (a+c)
value. The meaning of these parameters is shown in Fig. 3.

We integrate Eq. (13) relative to t, thus obtaining

∫
t

0

f ðtÞdt = ct + a t−b ln
1 + e−ðt0−tÞ=b

1 + e−t0 =b

" #
ð14Þ

To obtain the decay curve, we must replace Eq. (14) in Eq. (8).

Case 4. Rational-type change in the decomposition rate (Fig. 4).

The decomposition rate may show a strong initial increase, and a
decrease thereafter (for instance, Wolters and Schaefer, 1993). There
can be several reasons for such a pattern: for instance, an initial period
of microbial colonisation may be needed before the decomposition
process starts. This reason has already been mentioned to explain a
sigmoidal-type increase for r; but the main difference is that, whereas
in the sigmoidal dynamics the decomposition rate r is assumed to
remain constant after the period of increase, in the rational-type
dynamics r is assumed to decrease gradually, after reaching its
maximum value.

Among many other possibilities, we suggest the following
equation for the rational-type change:

f ðtÞ = c +
at

t2 + b

� �d

ð15Þ

Fig. 4 illustrates the meaning of the various parameters, which in
this equation are less obvious than in Cases 1–3. In this equation, c is
the lowermost value for r, and is found at time t=0 and at time t=∞.



Fig. 4. Main features of the rational function for r. In these examples, a=1, b=0.2 and c=0.2. A: Decomposition rate. In this example, d=3. The initial and final values for r are
given by the constant term, c, while the square root of b gives the time at which r reaches its maximum. B: Evolution of the decomposition rate for contrasting d values. As d
increases, the change in the decomposition rate (increase and further decrease) concentrates around the maximum value. C: Remaining mass, resulting from the changing
decomposition rate, for several d values. The ‘S’ shape becomes stronger as d increases.
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The parameter b (actually, its square root) gives the time at which the
decomposition rate reaches its uppermost value; this uppermost
value is given by

rmax = c +
a

2
ffiffiffi
b

p
� �d

ð16Þ

The exponent d (non-dimensional) determines the speed of
increase and further decrease in the decomposition rate, r. When
d=0, r is a constant (r=c); as d increases, the change in r becomes
more concentrated around the uppermost point.

There is no single solution integral to Eq. (15). The solution is
different for eachvalue of d. For d=1, the solution is rather
immediate:

∫ t

0
f ðtÞdt = ct +

a
2
ln

x2 + b
b

 !
ð17Þ

For dN1, the general solution is:

∫
t

0

f ðtÞdt = ct +
adffiffiffiffiffiffiffiffiffiffi
bd−1

p 1
2−2d

z
z2 + 1

� �d−1
" #t= ffiffibp

0

+
1
2

∫
t= ffiffibp

0

zd−2

ðz2 + 1Þd−1
dz

8><
>:

9>=
>;

ð18Þ

which is obtained through a change of variable: t = z
ffiffiffi
b

p
. For d=2,

Eq. (18) becomes:

∫
t

0

f ðtÞdt = ct +
a2

2
ffiffiffi
b

p arctan
tffiffiffi
b

p − a2t
2ðt2 + bÞ ð19Þ

whereas for d=3, becomes:

∫
t

0

f ðtÞdt = ct +
a3

4b
t4

ðt2 + bÞ2 ð20Þ

To obtain the decay curve, wemust replace Eq. (17), (19) or (20) in
Eq. (8).

In practice, we always apply Eq. (20), i.e., we assume d=3. The
reason is obvious from Fig. 4C: the ‘S’ shape is clear only when d=3.
When db3 the calculated decay curves are very similar to a typical
composite-exponential curve, which means that the initial peak in
microbial activity is barely reflected in the integral curve during the
first decomposition stages. In this case, the choice of a rational
equation for r, more complex than the composite-exponential one,
would not be justified.

2.2. Datasets used in the study

To evaluate the extent to which our approach satisfies the most
common situations arising in litter decomposition studies, we have
taken data from previously published datasets. The main criterion for
our selection was their intrinsic quality, i.e., the clearness and
consistency of the observed trends, with data dispersion as low as
possible.

1. Dataset A. This includes three experiments of litter decomposition
carried out at Jädraås (Sweden): Scots pine (Pinus sylvestris)
needles, incubated for N5 years; birch (Betula pubescens) leaves,
incubated for 4 years; and cowberry (Vaccinium vitis-idaea) leaves,
incubated for 2 years. The numerical data have been taken from
Berg et al. (1984).

2. Dataset B. This includes three experiments of litter decomposition
carried out at Blackhawk Island (Wisconsin, USA) for 2 years:
white pine (Pinus strobus), white oak (Quercus alba) and red oak
(Quercus borealis); original data taken from Berg et al. (1984).

3. Dataset C. This dataset includes litter from four species: aspen
(Populus tremula), Scots pine (P. sylvestris), silver birch (B. pubescens),
and stone pine (Pinus pinea). Two sets of litter (aspen and scots pine)
were incubated both as green and brown needles. All litter were
submitted to field decomposition experiments in Jädraås (Sweden)
and Monte Taburno (Italy); original data summarised in Berg et al.
(2003).

4. Dataset D. Data taken from Rahman Barbhuiya et al. (2008). Litter-
bag experiments in the Namdapha National Park, northeast India.
Due to the tropical conditions, decomposition was much faster
than in the previous datasets, and the majority, if not all of the
incubated litter, was lost in a single year. The dataset includes ten
different species.

5. Dataset E. Data taken from Li et al. (2007). Litter decomposition
studies carried out in Fusong (NW China). The dataset includes
nine different tree species, incubated in the field for almost 3 years.

For some datasets it was not possible to obtain the original
numerical data. In these cases, the amounts of remaining litter were
obtained from the original paper in PDF form, by translating the
document into a Corel Draw v.11 graph, and positioning the points
accurately using the tools of this software.



Fig. 5. Results obtained for dataset A. Experimental data have been fitted to both a double-exponential (Eq. (3)) and to a composite-exponential model (Eq. (10), placed in Eq. (8)).
The curves obtained for both models were virtually identical, and therefore only the latter has been drawn. The parameters of the obtained curves are given in Table 1. The R2 values
were the same for both models.

334 P. Rovira, R. Rovira / Geoderma 155 (2010) 329–343
2.3. Statistical analysis

In order to select an equation for curve fitting (either composite-
exponential, sinusoidal, sigmoidal, or rational), we compared the
datasets with the plots of remaining weight as they result from the
proposed equations (i.e., Figs. 1B, 2B, 3B and 4C); using visual
comparison it is easy to detect which equation is themost appropriate
for each dataset.

Curve fitting was carried out with the NCSS statistical package,
which uses the iterative Marquardt–Levenberg algorithm to obtain
the best values for all parameters. Since the success of this algorithm
(i.e., the obtaining of convergent values for the curve parameters)
depends on the initial values given to these parameters, we previously
approached credible values for each of them using a conventional
computer spreadsheet.

In addition to the fitted equation (composite-exponential, sinu-
soidal, sigmoidal, and rational) we also fitted all datasets to the classic
Olson's model, in order to show how the equations we suggest
improve the fit. There is indeed an improvement, but at the price of an
increase in the number of parameters involved. As the estimation of
each parameter contains a margin of error, more uncertainty may
have been added to the model, in spite of the improvement in fit. To
account for this problem, the Akaike's Information Criterion (AIC) is
often applied (see Anderson, 2008, for a detailed description). AIC is a
measure of the deviance of any proposed model, relative to the
(unknown) ‘true’ model. It is usually written as

AIC = −2 log L½ðθ jxÞ� + 2K ð21Þ

where L [(θ | x)] is the maximized likelihood of the model, given the
estimated parameters and the available data, and K the number of
parameters involved in themodel. Usually, thebest-fitting values for the
Table 1
Dataset A (Berg et al., 1984). Parameters of the best-fitting double-exponential curves
obtained (Eq. (3)), and those of the best-fitting composite-exponential curves obtained
(Eq. (10), placed in Eq. (8)). The degree of fit (R2) was identical for both (Fig. 5).

Species Double-exponential Composite-exponential

a b c a b m

Pinus sylvestris 46.49 0.1573 0.5074 0.0467 0.2995 0.1157
Betula pubescens 71.39 0.1912 5.7079 0.1913 1.7942 5.3327
Vaccinium vitis-idaea 86.61 0.1559 10.8597 0.1559 1.5336 10.6678
parameters are not obtained through likelihood procedures, but
through least squares regression. In this case, log (L)maybe rewritten as

logðLÞ = −n
2
logðσ̂ 2Þ ð22Þ

where n is the sample size, andσ̂ 2 is the residual variance. Thus Eq. (21)
becomes

AIC = n logðσ̂ 2Þ + 2K ð23Þ

By applying Eq. (23) to a given model applied to a given dataset, a
numerical value is obtained. This number increases with increasing
either the residual variance, n, or K. Two models, applied to the same
dataset,will give different AIC values. Themodel closest to the true (and
unknown) model is the one having the lowest AIC number. This
criterion, applied to our data, means that any of the proposed equations
will be preferable to the classic Olson's model if AICOLSONNAICEQ, or, in
other words, if Δ AICb0, being Δ AIC=AICEQ−AICOLSON.

It has been noted that AIC may perform poorly when the dataset is
small (low n values), especially for high K values. A corrected version
of the AIC (AICC) is then recommended:

AICC = AIC +
2KðK + 1Þ
n−K−1

ð24Þ

We applied both AIC and AICC, because the comparison ofΔAIC and
ΔAICC gives interesting information. If both are positive, then the
Fig. 6. Evolution of the decomposition rate in the experiments of dataset A, as obtained
from the application of the composite-exponential model.



Table 2
Dataset B (Berg et al., 1984). Parameters of the best-fitting sinusoidal curves obtained
(Eq. (12), placed in Eq. (8)). The obtained curves, together with the obtained R2 values,
are shown in Fig. 7.

Species m a b c

Pinus strobus 0.4353 0.4353 1.2737 3.8376
Quercus alba 0.5146 0.5146 1.0133 3.0049
Quercus borealis 0.4438 0.4018 1.3234 4.2358
Quercus borealisa 0.4377 0.4377 1.3145 4.1762

a Improved model, assuming X0b100 (see text).
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replacement of the classic Olson's model by any of the proposed
equations is not justified, in spite of the (expected) increase in R2. If
ΔAIC is negative but ΔAICC is positive, the result is doubtful: the
proposed equation may be closer to the truth, but the dataset is too
small to state it clearly. Finally, if both ΔAIC and ΔAICC are negative,
the proposed equation is clearly better than Olson's model for the
studied dataset.

The obtainedR2 values for Olson's equation are given in AppendixA
(Table A1), together with the R2 values obtainedwith the equationwe
apply in each case, and the increases in both AIC and AICC values, when
passing from Olson's model to the proposed equation.

3. Results

3.1. Dataset A (Berg et al., 1984)

The decomposition experiments of this dataset follow exponential-
type decay (Fig. 5). The data can be fitted easily with a double-
exponential model (Eq. (3)), but an equally good fit is achieved
assuming an exponential decrease of the decomposition rate
(Eq. (10)) (Table 1). Thus the latter can be seen as an alternative to
the former, since the number of parameters to obtain it is the same (3,
in both cases). The curves obtained from both equations are virtually
identical (same R2 values) and, therefore, only one graph has been
drawn in Fig. 5 for each tree species.

The two models, however, explain the experimental data in a
contrasting way: the double-exponential equation, on one hand, as the
result of thepersistenceof a resistant pool against the rapid loss of a labile
one; and the composite-exponential equation, on the other hand, as the
result of a drop in the overall decomposition rate, without assuming any
splitting of the decomposing litter into functional compartments.

Leaves of Betula and Vaccinium show initial decomposition rates
(a+b) much higher than that of Pinus, but in Pinus the decomposition
rate drops much more steadily: during most of the experiment its
decomposition rate is higher than in the other litters, and this explains
why, in the end, its decomposition is faster (Fig. 6). Actually, for Pinus
the fit obtained by applying a single-exponential equation (Olson's
Fig. 7. Results obtained for dataset B. Experimental data have been fitted to a sin
model) is quite high (R2=0.984), and is only slightly improved when
moving to a composite-exponential equation (Table A1).

3.2. Dataset B (Berg et al., 1984)

The results of the remaining litter in this dataset clearly show
rhythms in the decomposition activity, and the periodicity of these
rhythms (about 1 year) suggests a seasonal fluctuation in biological
soil activity. From this apparent behaviour of r, we have assumed a
sinusoidal-type function (Eq. (11)). The best-fitting parameters are
given in Table 2; the plots resulting from the integrated equations,
together with the overall R2 values, are shown in Fig. 7.

The resulting fits are very close, particularly the first two (R2=
0.997 for P. strobus, R2=0.996 for Q. alba) (Fig. 7). For Q. borealis the
original fit was also good (R2=0.991), and it was improved when
considering X0 as an additional parameter, i.e., by assuming that X0

could be ≠100%. In this way we approached X0=98.3, i.e., we
assumed a loss of 2.7% of the initial litter at the very start of the field
incubation, likely due to leaching. Thus, R2 increases slightly, up to
0.993. This was not observed in the other litters, where whenever X0

was added as a variable to fit the equation, the software always yielded
X0=100 as the best-fitting value.

The best-fitting values for the parameters (Table 2) showm=a. For
Q. borealis, this occurs in the improvedmodel, i.e., whenX0=98.3. Thus,
at some stage the decomposition rate is r=0, most likely in the winter.
However, Eq. (11) implies that in the next cycle the decomposition rate
recovers the previous maximum value. The good fit (R2N0.99 in all
cases) suggests that the seasonal cycle is enough to explain changes in r:
it is not necessary to assume any additional processes that drive extra
decreases in r. Our analysis on dataset B suggests that a detectable
decrease in litter quality has not yet occurred even when, after two
years, more than 50% of the initial litter has been lost. Thus the
decomposition rate can be reasonably assumed as constant, only
affected by a seasonal fluctuation. In agreement with this, the degree
of fit reached by Olson's equation is also quite high (Table A1).

3.3. Dataset C (Berg et al., 2003)

All the experiments included in this dataset follow a relatively
standard curvature, and therefore match a composite-exponential
decomposition dynamics (Eq. (10)). The results of curve fitting are
summarised in Fig. 8 and Table 3. In three cases, all in Monte Taburno,
a (the lowermost limit for r) is zero. Nevertheless, this should occur at
time t=∞; thus the eventual accumulation of a true inert or almost
inert residue should be null, in practice.

It is noteworthy that we have obtained negative values for b for
the Lodgepole pine both at Jädraås and Monte Taburno, i.e., the
decomposition rate increases with time.
usoidal model (Eq. (12), placed in Eq. (8)). Parameters are given in Table 2.



Fig. 8. Results obtained for dataset C. Experimental data have been fitted to a composite-exponential model (Eq. (10), placed in Eq. (8)). Parameters are given in Table 3.
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Due to the homogeneity and extension of this dataset (14 litter-
bag experiments in total, all described by the same equation), it is
worth trying to detect a consistent relationship between the
parameters of the curves obtained. We particularly focused on the
relationship between the initial decomposition rate (a+b) and its
decay rate (m). As shown in Fig. 9, both are directly related, i.e., the
higher the initial decomposition rate, the faster its decay. This had also
been observed for dataset A; here we see the phenomenon on a wider
scale. The relationship is particularly clear for Jädraås datasets. When
the decomposition rate shows just a slight decrease (i.e., in coniferous
litters), the R2 values attained with Olson's equation are close to those
obtained with the composite-exponential equation, whereas for
broad-leaved litters, in contrast, the composite-exponential equation
fits the datasets much better (Table A1).

In the original work, Berg et al. (2003) fitted the several datasets to
the model

y = m 1−e
−kt
m

� �
ð25Þ

where y is the accumulated mass loss (in percent), t the time in days,m
the (asymptotic) maximum accumulated mass loss, and k is the initial
decomposition rate. Berg et al. (2003) gave only the m values for each
experimental condition (litter type×site); from them, however, and



Table 3
Dataset C (Berg et al., 2003). Parameters for the best-fitting composite-exponential
curves obtained (Eq. (10), placed in Eq. (8)). The obtained curves are shown in Fig. 8,
together with the obtained R2 values.

Site Species a b m

Jädraås Green Populus tremula 0.1853 2.8721 6.8950
Brown Populus tremula 0.1709 1.8112 4.2484
Green Pinus sylvestris 0.2383 0.5920 1.6572
Brown Pinus sylvestris 0.2490 4.5302 48.1034
Pinus contorta 3.1646 −3.0435 0.0274
Betula pubescens 0.1787 1.2990 3.3095
Pinus pinea 0.2076 5.1559 49.8298

Monte Taburno Green Populus tremula 0.4581 28.1787 127.8485
Brown Populus tremula 0.0000 0.8313 0.4613
Green Pinus sylvestris 0.0000 0.4787 0.1407
Brown Pinus sylvestris 0.0000 0.6400 0.3784
Pinus contorta 0.5238 −0.5094 1.0214
Betula pubescens 0.1389 1.4384 1.7207
Pinus pinea 0.2488 0.4322 3.3146

Table 4
Dataset C (Berg et al., 2003). Parameters for the best-fitting to Eq. (21), which was the
originally applied by Berg et al. to study their data.

Site Species k m R2

Jädraås Green Populus tremula 0.230 62.74 0.910
Brown Populus tremula 0.214 63.00 0.940
Green Pinus sylvestris 0.160 72.76 0.949
Brown Pinus sylvestris 0.091 82.86 0.958
Pinus contorta 0.062 100.00 0.933
Betula pubescens 0.200 62.28 0.933
Pinus pinea 0.081 77.76 0.940

Monte Taburno Green Populus tremula 0.224 79.71 0.965
Brown Populus tremula 0.208 77.63 0.975
Green Pinus sylvestris 0.130 85.05 0.994
Brown Pinus sylvestris 0.165 74.34 0.994
Pinus contorta 0.084 100.00 0.941
Betula pubescens 0.325 69.56 0.988
Pinus pinea 0.110 67.76 0.992
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from the data of mass loss, we have calculated the k values, and the R2

values obtainedwhenfitting Eq. (21) to the data (Table 4). Eq. (21) gave
overall a good fit; the mean R2 value is 0.958±0.026. Our approach
gives overall a better fit, with a mean R2 value of 0.976±0.019. Strictly
speaking, Eq. (21) implies (when mb100%) that a fraction of the
decomposing litter is indecomposable, which is difficult to accept.
Actually Berg et al. (1996) stress that the term [100−m]must bemeant
not as a truly inert compartment, but as a fraction which decomposes
very slowly. Our approach (Eq. (8)) lacks this conceptual problem
because it does not assume the existence of any inert fraction, even
though it needs one more parameter (3, instead of 2).

3.4. Dataset D (Rahman Barbhuiya et al., 2008)

The decomposition experiments of dataset D can be thoroughly
explained by assuming a positive-sigmoidal increase of the decompo-
sition rate r (Fig. 10). The best-fitting parameters obtained are provided
in Table 5. The degree of the fit is excellent: R2 values are always N0.99,
much higher than those reached with the single-exponential equation
(Table A1), and in spite of the increase in K (4 parameters are needed),
the Akaike criterion clearly states that a sigmoidal dynamics explains
the data much better than Olson's model.

We must stress the fact that, according to such a dynamics, r
continuously increases with time. A decrease in the decomposition
rate (due to the accumulation of recalcitrant plant polymers and/or
residual by-products of microbial activity, such as humic substances)
is not yet detectable. If such a phenomenon occurs, it will only do so in
Fig. 9. Dataset C: relationship between the initial decomposition rate (a+b) and its decay
panel A).
the very long term, beyond the time scope of this dataset, and will
obviously affect a very small fraction of the initial litter.

We did not detect significant statistical relationships between any
of the parameters of the fitting curves and the initial biochemical
characteristics of the studied litters (not shown). Most of the litter
disappeared in less than 1 year in all cases: such an intense
decomposition may indicate that litter quality was not a relevant
constraint at any stage. It is also possible that the true constraints for
litter decomposition were not the parameters analysed by the authors
(content of hemicellulose and cellulose, lignin), but rather alter-
natives not included in this study: for instance, Mn content (Berg
et al., 2007), or physical properties of leaves such as toughness
(Gallardo and Merino, 1993; Pérez-Harguindeguy et al., 2000).

3.5. Dataset E (Li et al., 2007)

The data of Li et al. (2007) are summarised in Fig. 11, together with
the curves that match best. For all litters, the decomposition data
matched well with a rational-type dynamics, assuming d=3
(Eq. (20), placed in Eq. (8)). Fig. 12 shows the dynamics of
decomposition, as obtained from Eq. (15); the fitted values for the
several parameters are summarised in Table 6. The degree of the fit
was always N0.96, higher than that obtained with Olson's equation
(Table A1). It is often found that c=0; when this was not the case, c
was always very low. Therefore we repeated the curve fitting,
supressing c from the Eq. (20), thus reducing the number of
parameters to be fitted down to only two. The new R2 values were
(m). A: all data. B: detail of panel A, for the smallest a+b values (small square, within



Fig. 10. Results obtained for dataset D. Experimental data have been fitted to a positive-sigmoidal curve (Eq. (14), placed in Eq. (8)). Parameters are given in Table 5.

Table 5
Dataset D (Rahman Barbhuiya et al., 2008). Parameters of the best-fitting sigmoidal
curves obtained (Eq. (14), placed in Eq. (8)). The obtained curves and R2 values are
shown in Fig. 10.

Species a b c t0

Ailanthus grandis 6.5597 −0.1446 0.4422 0.5086
Mesua ferrea 2.4427 −0.0388 0.4377 0.3650
Altingia excelsa 8.2227 −0.1295 0.0000 0.4173
Talauma hodgsonii 5.1669 −0.0292 1.2092 0.2341
Castanopsis indica 3.5107 −0.0777 0.1827 0.3079
Terminalia myriocarpa 2.8247 −0.0156 1.3028 0.3047
Dysoxylum binectariferum 5.1169 −0.0435 1.1140 0.3379
Shorea assamica 9.3008 −0.1096 0.8217 0.4933
Duabanga sonneratioides 6.9681 −0.0413 1.9632 0.3109
Vatica lancefolia 4.3121 −0.0659 0.6297 0.3437

338 P. Rovira, R. Rovira / Geoderma 155 (2010) 329–343
identical to the previous ones; therefore these simplified models are
those shown in Figs. 11 and 12, and also in Table A1.

To the eye, dataset E looks similar to dataset D (compare Figs. 10
and 11), but this similarity is only superficial. We tried to fit the data
of Li et al. (2007) to Eq. (14) (placed in Eq. (8)), i.e., to assume a
positive-sigmoidal dynamics for the decomposition rate, but the
results were not satisfactory (data not shown). Thus, for dataset E it
was necessary to assume that, after a period of increase, r finally
decreases in all litters, in contrast with the results obtained with
dataset D, in which r increased continuously in all litters. In addition
to differences in litter quality, the differences in climate (tropical in
dataset D, cold monsoonic in dataset E) may be responsible for these
contrasting evolutions.



Fig. 11. Results obtained for dataset E. Experimental data have been fitted to a rational-type curve (Eq. (20), placed in Eq. (8)). Parameters are given in Table 6.

Fig. 12. Changes in the decomposition rates for the several litters of dataset E, as given
by applying to Eq. (15) the parameters given in Table 6. 1: Quercus mongolica. 2: Po-
pulus davidiana. 3: Betula papyrifera. 4: Juglans mandshurica. 5: Fraxinus mandshurica. 6:
Acer mono. 7: Tilia amurensis. 8: Pinus koraiensis. 9: Ulmus propinqua.

Table 6
Dataset E (Li et al., 2007). Results for curve fitting: values obtained for the three
parameters. Decomposition data have been fitted to rational-type dynamics, assuming
d=3 (Eq. (20), placed in Eq. (8)). (a) Original results for the three parameters: a, b, c.
(b) Repetition of the fitting for the four species in which originally cN0, but deleting c
in the equation. The obtained curves are shown in Fig. 11, together with the obtained
R2 values.

Species a b c

a) Original results
Quercus mongolica 1.3514 0.5868 0.0000
Populus davidiana 1.6135 0.6836 0.0020
Betula platyphylla 1.4041 0.5535 0.0000
Juglans mandshurica 1.7054 0.5826 0.0446
Fraxinus mandshurica 1.6060 0.4675 0.0000
Acer mono 1.5749 0.5750 0.0000
Tilia amurensis 1.6782 0.5603 0.0000
Pinus koraiensis 1.3908 0.7929 0.0252
Ulmus propinqua 1.3132 0.5640 0.0242

b) Repetition, deleting c
Populus davidiana 1.6147 0.6828 –

Juglans mandshurica 1.7229 0.5725 –

Pinus koraiensis 1.4182 0.7768 –

Ulmus propinqua 1.3388 0.5619 –
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4. Discussion

4.1. Precedents of our approach

Throughout the past century, to fit decomposition datasets some
authors suggested equationswhichwere based on the two assumptions
which also form the basis of our study: (i) the decomposing organic
matter is taken as a unique pool, avoiding switching it into labile and
recalcitrant compartments, and (ii) for this unique compartment, a non-
constant decomposition rate is assumed. These studies are clear
precedents of our approach, and important to mention.

Thus, Godshalk andWetzel (1978) suggested a variation in Olson's
equation in which the instantaneous decomposition rate decayed
exponentially with time. Such an approach is a clear precedent of
Case 1 studied in this paper. The main difference is that in Godshalk
and Wetzel's approach the asymptotical end value of the decompo-
sition rate is necessarily 0, in contrast with our approach (Eq. (9)).
Almost a decade later, Ezcurra and Becerra (1987) studied several
datasets of litter decomposition in tropical forests, and suggested
replacing the constant term k in Eq. (4) by several functions, i.e., to
repeat the process given by Olson (1963) but assuming a non-
constant decomposition rate.

In all of these precedents, the decomposition rate was assumed to
decrease with time. We did not make this assumption: in our
approach, r may follow virtually any behaviour. The only limitation is
that this behaviour must make biological sense.

4.2. Main features: discussion

Our approach allows to fit virtually any decomposition dataset, as
long as (i) the change in the decomposition rate can be described as a
mathematical equation, and (ii) this equation is integrable in the
interval (0, t), where t is the total decomposition time. This second
condition can be a problem. If the function is not integrable, then the
integral could be approached by numerical methods, but this implies
that the decomposition data cannot be fitted directly, by algorithms
such as that of Marquardt–Levenberg, to obtain the parameters that
fits best.

There could be as many models as datasets to fit, but in practice
the ways in which r can change are finite. The examples we have
shown can be applied to a wide range of experimental data. In the
end, all the equations proposed in this paper deal with three basic
questions: (i) what is the initial r, (ii) what is the final r, and (iii)
how the change in r occurs. The third point (iii) determines the
kind of equation chosen for the behaviour of r. All the equations
shown in this paper may be interpreted in biological terms, and
their application yields results that suggest future research. Thus, it
is worth looking in more detail at the apparent lack of decrease in
litter quality in dataset B, even following the loss of over 50% of the
litter (the rhythmic fluctuations in r, likely seasonal, are enough to
explain this data). It is also worth studying the increase in litter
quality in dataset D (as deduced from the application of a positive-
sigmoidal dynamic for r), by studying the biochemical changes
occurring in the decomposed litters.

The first handicap of our approach is that the number of
parameters needed for the proposed curves is relatively high (3 or
more). Unfortunately, this is almost unavoidable. If the changes in the
decomposition rate (r) must be reflected in a mathematical way, at
least three parameters are needed: two to state the uppermost and
the lowermost possible values for r, and also parameters (1, at least)
that in the equation we apply will determine the shape of the change
and/or how fast the change occurs. The models may be simplified: for
instance, the rational model (3 parameters, assuming d=3) becomes
a 2-parameter model if we suppress the constant term (c) from
Eq. (20). Simplifications, however, should be done a posteriori, only if
one of the parameters is found to be really unnecessary, which will
not always occur. This can be a problem when applying strict
statistical criterions (e.g., Akaike's) to establish whether the new
equationmay be preferred to a simpler one (e.g., Olson's), because the
decomposition datasets are often small (less than 10 points, for
instance), and AIC strongly penalizes complex equations, even when
the fit is greatly improved. The dataset of V. vitis-idaea (Table A1:
dataset A) is an example of this: the composite-exponential equation
fits the data clearly better than the Olson's, but the increase in both
AIC and AICC is negative, owing clearly to the small dataset (only 6
points). The results given in Table A1 stress that, for a given
decomposition experiment, establishing the kind of dynamics (e.g.,
single-exponential, composite-exponential, sigmoidal, etc.) may be
impossible if the dataset is too small.

A second drawback of our approach is that the integrated
equations cannot always be simple. The composite-exponential
equation (Eq. (9)) has quite a simple integrated form (Eq. (10)), but
the rest of the integrated forms are much more complex than the
conventional—and most widely used—double-exponential equation
(Eq. (3)). Nevertheless, this should not be a serious obstacle to
applying our approach, since most of the current statistical packages
include powerful and user-friendly tools for curve fitting, which allow
the fit of complex equations in a very short time. The need to solve the
integral of f (t) can be seen as a serious handicap; nevertheless, the
availability of mathematical compilations of solved integral equations
(Abramowitz and Stegun, 2008), showing the solution of a very high
number of useful formulas, is a helpful option for researchers who are
not used to standard calculus.

Researchers should be careful when choosing an equation to fit
decomposition data. The simplicity of the equation is often the main
criterion for choosing it, becausemany authors look for an easyway to
comparemany datasets (many different species in the same paper, for
instance). The availability of computer tools for curve fitting makes it
a merely routine practice, which is risky when the chosen equation
(often, the Olson's equation) does not properly match the experi-
mental data. A different problem also arises when the equation
chosen gives a good fit, but describes a process that does not agree
with what happens in nature. The double-exponential model (Eq. (3))
is a good example of this. The results obtained with dataset A (Fig. 5,
Table 1) stress that contrasted equations can give very similar, if not
almost identical curves, at least within the range of the experimental
data. Conversely, the good fit obtained when applying a given
equation does not imply that this equation truly reflects what
happens in the decomposition process. In contrast with the double-
exponential model (Eq. (3)), none of the equations we propose in this
paper makes any a priori hypothesis about the internal structure of
the decomposing substrate (i.e., its split into functional compart-
ments), a fact that may look unfair for some researchers, but that gives
a high robustness to our approach.

5. Conclusions

We propose a generalised exponential approach to the decompo-
sition process, more flexible than others currently available, for it
considers the possibility of increases, decreases, and rhythmical
changes in the decomposition rate. Thanks to this approach, it is
possible to obtain equations that match a wide number of decompo-
sition datasets, equations of which we give several examples. In all
cases, the parameters of the proposed equations have a clear meaning,
as they affect the shape of the obtained curve. Thus, for many datasets
the application of our approach allows an interpretation of their
results in biological terms.
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Appendix A
Table A1
Results of fitting the single-exponential model (Olson's equation: Eq. (1)) to all
datasets. The R2 obtained by applying the proposed equations is given also for a direct
comparison. The increase in AIC and AICC is given.

Species Single-exponential Proposeda Akaike criterion

k R2 R2 Δ AIC Δ AICC

i) Dataset A (Berg et al., 1984)
Pinus sylvestris 0.2977 0.984 0.993 2.455 4.330
Betula pubescens 0.3522 0.763 0.990 −10.818 −7.834
Vaccinium vitis-idaea 0.2576 0.874 0.985 −1.200 9.800

ii) Dataset B (Berg et al., 1984)
Pinus strobus 0.3436 0.916 0.997 −10.276 −4.054
Quercus alba 0.4164 0.926 0.996 −4.263 1.959
Quercus borealis 0.3862 0.943 0.993 −3.341 2.881

iii) Dataset C (Berg et al., 2003). Data from Jädraås
Pinus sylvestris green 0.4246 0.852 0.964 −2.396 0.204
Pinus sylvestris brown 0.3006 0.930 0.975 0.663 3.263
Pinus pinea 0.2536 0.894 0.969 −0.084 2.516
Pinus contorta 0.2069 0.957 0.932 −2.245 0.356
Populus tremula green 0.4350 0.519 0.976 −10.355 −7.755
Betula pubescens 0.4070 0.529 0.978 −9.709 −7.109
Populus tremula brown 0.4192 0.605 0.990 −14.830 −12.230

iv) Dataset C (Berg et al., 2003). Data from Monte Taburno
Pinus sylvestris green 0.4808 0.981 0.994 1.231 4.215
Pinus sylvestris brown 0.4344 0.987 0.993 −3.286 −0.301
Pinus pinea 0.3364 0.964 0.997 −7.788 −4.804
Pinus contorta 0.2958 0.953 0.941 −6.451 −3.467
Populus tremula green 0.6594 0.923 0.984 −3.369 −0.385
Betula pubescens 0.6221 0.886 0.994 −12.843 −9.859
Populus tremula brown 0.6007 0.960 0.973 −0.428 2.556

v) Dataset D (Rahman Barbhuiya et al., 2008)
Ailanthus grandis 1.7988 0.887 0.997 −10.620 −4.398
Mesua ferrea 1.3488 0.872 0.995 −12.553 −7.916
Altingia excelsa 1.9995 0.856 0.998 −12.713 −5.213
Talauma hodgsonii 2.8764 0.911 0.999 −12.021 −2.593
Castanopsis indica 1.6844 0.883 0.996 −13.036 −8.400
Terminalia myriocarpa 2.1951 0.934 0.997 −9.106 −2.884
Dysoxylum binectariferum 2.3230 0.895 0.999 −13.353 −5.853
Shorea assamica 2.1649 0.887 0.997 −10.116 −2.616
Duabanga sonneratioides 3.1513 0.926 0.997 −5.396 7.271
Vatica lancefolia 1.9902 0.891 0.999 −15.758 −10.444

vi) Dataset E (Li et al. 2007)
Quercus mongolica 0.3794 0.937 0.986 −2.602 −0.402
Populus davidiana 0.5198 0.917 0.965 −0.595 1.605
Betula platyphylla 0.4621 0.930 0.986 −2.964 −0.764
Juglans mandshurica 0.7961 0.954 0.990 −2.684 −0.484
Fraxinus mandshurica 0.8704 0.932 0.976 −1.111 1.089
Acer mono 0.6138 0.940 0.992 −3.972 −1.772
Tilia amurensis 0.7613 0.937 0.985 −2.268 −0.068
Pinus koraiensis 0.2956 0.935 0.976 −0.951 1.249
Ulmus propinqua 0.3934 0.947 0.985 −1.733 0.467

a Composite-exponential (datasets A and C), sinusoidal (dataset B), sigmoidal
(dataset D), rational (dataset E).
Appendix B. Obtaining the integrated forms of the
studied equations

The general form is:

Xt = X0e
− ∫

t

0

f ðtÞdt
� �

ð8Þ
and therefore the problem to solve is to integrate f (t), for the several
functions we can imagine. Here we describe the obtention of the
integrated forms of the four examples of f (t) suggested in this paper.

Case 1. Exponential decay of the decomposition rate.

f ðtÞ = a + be−mt ðA1Þ

We integrate Eq. (A1):

∫
t

0

ða + be−mtÞdt = at +
be−mt

m

" #t
0

ðA2Þ

at +
be−mt

m

" #t
0

= at−be−mt

m
+

b
m

= at− b
m

ðe−mt−1Þ ðA3Þ

Case 2. Wave-form changes in the decomposition rate.

The function that describes the changes in the decomposition rate
r is

f ðtÞ = m + a sin
2π
b

t + c
� �

ðA4Þ

where a, b, c andm are constants. The integral of such a function, as in
most of trigonometric integrals, is almost immediate:

∫
t

0

f ðtÞdt = ∫
t

0

m + a sin
2π
b

t + c
� �� �

dt = ðA5Þ

= mt +
ab
2π

∫
t

0

2π
b

sin
2π
b

t + c
� �

dt = mt− ab
2π

cos
2π
b

t + c
� �� �t

0
=

ðA6Þ

mðt−0Þ− ab
2π

cos
2π
b

t + c
� �

− cos c
� �

ðA7Þ

From Eq. (A7), Eq. (12) is obtained immediately.

Case 3. Sigmoidal decrease or increase of the decomposition rate.

The function that describes the changes in the decomposition rate
r is

f ðtÞ = a

1 + e
t−t0
b

+ c ðA8Þ

So the integral is:

∫
t

0

f ðtÞdt = ct + ∫
t

0

a

1 + e
t−t0
b

dt ðA9Þ

To solve the second term, a change of variable has been applied:

x =
t−t0
b

→ bdx = dt ðA10Þ

Then, it becomes

∫
t

0

a

1 + e
t−t0
b

dt = ab ∫
t−t0
b

−t0
b

1
1 + ex dx ðA11Þ
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This integral can be easily obtained using the following equation
(Spiegel, 1970; equation 14.515, adapted):

∫ 1
1 + ex

dx = x− lnð1 + exÞ ðA12Þ

Therefore:

∫
t

0

a

1 + e
t−t0
b

dt = ab ∫
t−t0
b

−t0
b

1
1 + ex dx = ab x− lnð1 + exÞ	 
t−t0

b

−t0
b

ðA13Þ

And, finally,

= ab
t−t0
b

− ln 1 + e
t−t0
b

� �
+

t0
b

+ ln 1 + e−
t0
b

� �� �

= a t−b ln
1 + e

t−t0
b

1 + e−
t0
b

2
4

3
5

ðA14Þ

We finally re-build the overall equation:

∫
t

0

f ðtÞdt = ct + a t−b ln
1 + e−ðt0−tÞ=b

1 + e−t0 =b

" #
ðA15Þ

which is Eq. (14) of this paper.

Case 4. Rational-type change of the decomposition rate.

The equation that describes the changes in the decomposition rate
r is

f ðtÞ = c +
at

t2 + b

� �d

ðA16Þ

Whatever the value of d, the integral can be decomposed in the
following way:

∫
t

0

f ðtÞdt = ∫
t

0

cdt + ∫
t

0

at
t2 + b

� �d

dt = ct + ∫
t

0

at
t2 + b

� �d

dt ðA17Þ

and hence the problem becomes simplified to solve the second
component of the right term of the equation. There is no general
solution for this equation, but a particular solution for each possible
value of d.

For d=1, the solution is rather immediate (logarythm of the
denominator). Hence we can write

∫
t

0

f ðtÞdt = ct +
a
2

lnðt2 + bÞ
h it

0
= ct +

a
2
ln

t2 + b
b

 !
ðA18Þ

For dN1 the solution is less simple. To obtain the integral form, a
change of variable has been applied:

t = z
ffiffiffi
b

p
ðA19Þ

and thus the integral form of Eq. (A17) becomes

∫
t

0

at
t2 + b

� �d

dt =
adffiffiffiffiffiffiffiffiffiffi
bd−1

p ∫
t= ffiffibp

0

zd

ðz2 + 1Þd dz ðA20Þ

We re-write the subintegral part of Eq. (A20) in a different form:

zd

ðz2 + 1Þd = zd−1 z
ðz2 + 1Þd ðA21Þ
and we replace Eq. (A21) in Eq. (A20). Then, we integrate by steps:

adffiffiffiffiffiffiffiffiffiffi
bd−1

p ∫
t= ffiffibp

0

zd

ðz2 + 1Þd dz =
adffiffiffiffiffiffiffiffiffiffi
bd−1

p ∫
t= ffiffibp

0

zd−1 z
ðz2 + 1Þd dz ðA22Þ

Let us take:

dv =
z

ðz2 + 1Þd dz→ v =
1

ð2−2dÞðz2 + 1Þd−1
ðA23Þ

u = zd−1→du = ðd−1Þzd−2dz ðA24Þ

Then applying the well-known integration by steps formula:

∫
b

a

udv = ½uv�ba−∫
a

b

vdu ðA25Þ

we obtain:

adffiffiffiffiffiffiffiffiffiffi
bd−1

p ∫

t� ffiffi
b

p

0

zd−1 z
ðz2 + 1Þd dz =

=
adffiffiffiffiffiffiffiffiffiffi
bd−1

p 1
2−2d

z
z2 + 1

� �d−1
" #t� ffiffi

b
p

0

− d−1
2−2d

∫

t� ffiffi
b

p

0

zd−2

ðz2 + 1Þd−1
dz

8>><
>>:

9>>=
>>;

ðA26Þ

We re-write a bit the above equation:

∫
t

0

at
t2 + b

� �d

dt

=
adffiffiffiffiffiffiffiffiffiffi
bd−1

p 1
2−2d

z
z2 + 1

� �d−1
" #t= ffiffibp

0

+
1
2

∫
t= ffiffibp

0

zd−2

ðz2 + 1Þd−1
dz

8><
>:

9>=
>;
ðA27Þ

and, adding the constant term (ct), the general solution for dN1 is

∫
t

0

c +
at

t2 + b

� �d

dt

= ct+
adffiffiffiffiffiffiffiffiffiffi
bd−1

p 1
2−2d

z
z2 + 1

� �d−1
" #t= ffiffibp

0

+
1
2

∫
t= ffiffibp

0

zd−2

ðz2 + 1Þd−1
dz

8><
>:

9>=
>;

ðA28Þ

which is Eq. (18) of this paper.
We must mention that, for dN1, an alternative way to solve

Eq. (A17) would be through an iterative procedure. The primitive
function may be obtained by applying the following recurrent
development (Spiegel, 1970; equation 14.142):

∫ xm

ðx2 + a2Þn dx = ∫ xm−2

ðx2 + a2Þn−1 dx−a2∫ xm−2

ðx2 + a2Þn dx ðA29Þ

By applying this approach to our problem (i.e., replacing x by t, and
n by d), we finally obtain for d=2 and d=3 the same results (i.e.,
Eqs. (19) and (20)), even though the procedure is much longer than
that proposed in this appendix. For dN3, the application of Eq. (A29)
to our problem gives highly complex, poorly useful mathematical
equations, not shown here.
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