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Competition, Colonization, and Temporal Niche

Partitioning

In this chapter, we will explore and compare models in which transient dynamics
at one spatial or temporal scale result in long-term coexistence at another. All
these models assume that species coexist because there exists at least a brief
window in time during which each species has an advantage.
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Fig. 9.1: Successional trajectory of annual and perennial herbaceous and woody plants
in the Buell-Small Succession Study (http://www.ecostudies.org/bss/). These are
mean percent cover from 480 plots across 10 fields, sampled ever 1–2 years.

We begin with a simple model of the competition–colonization tradeoff, ex-
plore habitat destruction and the extinction debt, and then examine a model
that adds an important subtlety: finite rates of competitive exclusion. We finish
up with an introduction to the storage effect

9.1 Competition–colonization Tradeoff

Models of coexistence via this tradeoff have been around for awhile [4,73,80,108,
111, 187, 189]. In this tradeoff, species coexist because all individuals die, and
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therefore all species have to have some ability to colonize new space. Therefore,
this means that species have two ways of being successful. Successful species may
be very good at colonizing open sites, or they may be very good at displacing
other species from a given site. These two extremes setup the basic tradeoff
surface, wherein species coexist when they make this tradeoff in a manner in
which none of them have too superior a combination of both traits.

Here we provide the two-species model of this phenomenon [73]. We explored
the basis of this model back in our chapter on metapopulation dynamics. Sim-
larly, here we focus on the case where the state variable is the proportion of
available sites, rather than N. In addition, we extend this to two species us-
ing [73]. Here we represent the proportion of sites occupied by each of two
species,

dp1

dt
= c1 p1 (1 − p1) − m1 p1 (9.1)

dp2

dt
= c2 p2 (1 − p1 − p2) − m2 p2 − c1 p1 p2 (9.2)

where pi is the proportion of available sites occupied by species i, and ci and
mi are the per capita colonizing and mortality rates of species i. Note that m is
some combination of inherent senescense plus a background disturbance rate;
we will refer to these simply as mortality.

As represented in eq. 9.1, species 1 is the superior competitor. The rate
of increase in p1 is a function of the per capita colonizing ability times the
abundance of species 1 (c1 p1) times the space not already occupied by that
species (1− p1). One could estimate c1 by measuring the rate at which an open
site is colonized, assuming one would also be able to measure p1. The rate of
decrease is merely a density-independent per capita rate m1.

Eq. 9.2 represents the inferior competitor. The first term includes only space
that is unoccupied by either species 1 or 2 (1 − p1 − p2). Note that species 1
does not have this handicap; rather species 1 can colonize a site occupied by
species 2. The second species also has an additional loss term, c1 p1 p2 (eq. 9.2).
This term is the rate at which species 1, the superior competitor, colonizes sites
occupied by species 2, and immediately displaces it. Note that species 1 is not
influenced at all by species 2.

Competition–colonization tradeoff model

Here we implement in R a function of ODEs for eqs. 9.1, 9.2.

> compcol <- function(t, y, params) {

+ p1 <- y[1]

+ p2 <- y[2]

+ with(as.list(params), {

+ dp1.dt <- c1 * p1 * (1 - p1) - m1 * p1

+ dp2.dt <- c2 * p2 * (1 - p1 - p2) - m2 * p2 - c1 *

+ p1 * p2

+ return(list(c(dp1.dt, dp2.dt)))

+ })

+ }
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At equilibrium, species 1 has the same equilibrium as in the Levins single
species metapopulation model.

p∗1 = 1 −
m1

c1

(9.3)

The abundance of species 1 increases with its colonizing ability, and decreases
with its mortality rate.

Species 2 is influenced by species 1 — how do we know? We see the species
1 appears in the equation for species 2. Let’s solve for p∗

2
now.

0 = c2 p2 (1 − p1 − p2) − m2 p2 − c1 p1 p2

0 = p2 (c2 − c2 p1 − c2 p2 − m2 − c1 p1)

0 = c2 − c2 p1 − c2 p2 − m2 − c1 p1

c2 p2 = c2 − c2 p1 − m2 − c1 p1

p∗2 = 1 − p∗1 −
m2

c2

−
c1

c2

p∗1 (9.4)

(9.5)

In addition to the trivial equilibrium (p∗
2
= 0), we see that the nontrivial equilib-

rium depends on the equilibrium of species 1. This equilibrium makes intuitive
sense, in that species 2 cannot occupy sites already occupied by species 1, and
like species one is limited by its own mortality and colonization rates (−m2/c2).
It is also reduced by a bit due to those occasions when both species colonize
the same site ((c1/c2)p1), but only species 1 wins.

Substituting p∗
1

into that equilibrium, we have the following.

p∗2 = 1 −

(

1 −
m1

c1

)

−
m2

c2

−
c1

c2

(

1 −
m1

c1

)

(9.6)

p∗2 =
m1

c1

−
m2 − m1 + c1

c2

(9.7)

What parallels can you immediately draw between the equilibrium for the two
species? The form of the equilibrium is quite similar, but with two additions for
species 2. The numerator of the correction term includes its own mortality, just
like species 1, but its mortality is adjusted downward (reduced) by the mortal-
ity of species 1. Thus the greater the mortality rate of species 1, greater is the
opportunity for species 2. This term is also adjusted upward by the colonizing
ability of species 1; the greater species 1’s colonizing ability, the more frequently
it lands on and excludes (immediately) species 2, causing a drop in species 2’s
equilibrium abundance. In order to focus on the competition–colonization trade-
off, it is common to assume mortality is the same for both species. Tradeoffs
with regard to martality may also be quite important, especially if high mor-
tality is correlated with high colonization rate, and negatively correlated with
competitive ability.

If we assume m1 = m2, perhaps to focus entirely on the competition–
colonization tradeoff, we can simplify eq. 9.7 further to examine when species
2 can invade (i.e. p∗

2
> 0). Eq. 9.7 can simplify to
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m

c1

>
c1

c2

(9.8)

How can we interpret these? Species 2 can invade if the space not occupied
by species 1 (m/c1) is greater the species 1’s ability to colonize an open patch
faster than species 2 (c1/c2). An alternative representation (mc2 > c2

1
) shows

that species two can persist if mortality is high (but cannot exceed c1), or if
species 2’s colonization rate is high. That seems fairly restrictive, on the face
of it. However, if we assume that species 2 is the better competitor, then this
simply specifies how much better it has to be; it also indicates that increasing
disturbance (and hence mortality) will enhance the abundance of the species
which can recolonize those disturbances.

Thus, this model predicts that these species can coexist, even though one is
a superior competitor. Further, it predicts that species 2 will become relatively
more abundant as mortality increases.

Estimating colonization and mortality rates

Just exactly what corresponds to a “site” is not always defined, although site-
based models such as these have often been used in a qualitative manner to
describe the dynamics plant communities [83,152,153,202]. Indeed, such models
could describe systems such as a single field, where a “site” is a small spot of
ground, sufficient for the establishment of an individual [202]. Alternatively, a
“site” could be an entire field in a large region of mixed successional stages. For
the time being, let us continue to focus on a single field as a collection of small
plots (e.g., 0.1 × 0.1 m), each of which might hold 1–3 potentially reproductive
individuals. There may be several ways to estimate model parameters for these
sorts of models [152,202], and here we try to estimate c and m directly. Assume
that we clear all plants from 100 0.1× 0.1 m plots. In the first year, we find that
annuals (e.g., ragweed) showed up in 95 plots, and perennials (e.g. goldenrod)
showed up in 60 plots. The following year, we find that 70 of the plots have
perennials and 90 plots have annuals. Most plots contain both annuals and
perennials.

If we make sufficient assumptions, we could easily estimate c and m. Further,
in making these assumptions and making estimates, we provide an example that
allows one to think critically about the ways in which the assumptions are close
to reality or are misleading.

Let us assume that
1. perennials are virtually everywhere in this field (p ≈ 1) and annual seeds

are abundant throughout the soil (p ≈ 1, then cp ≈ c,
2. these small plots do not contribute much to the propagule pool, and that

they receive all of their propagules from the ubiquitous rain of propagules
from the surrounding vegetation.

3. in the first two years, these two species do not interact strongly.
Clearly these assummptions are wrong, but perhaps not too wrong, and will
allow us to calculate some back-of-the-envelope estimates of parameters. With
these assumption, we can estimate c and m using the propagule rain metapop-
ulation model, ṗ = c(1− p)−mp. The discrete time version of this is simply the
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difference equation1

pt+1 = pt + cd(1 − pt) − md pt (9.9)

where cd and md are the discrete time versions of the colonization and mortality
constants.

With only two parameters, we need only a small amount of data to estimate
these constants — remember the old rule from algebra? We need two equations
to estimate two unknowns. Based on our data above, we have

0.5 = 0 + cd (1 − 0) − md (0)

0.7 = 0.5 + cd (1 − 0.5) − md (0.5)

and very quickly we find that cd = 0.5 and, given that, we find that md = 0.1.
We have another species as well, and we can estimate cd and md for species

2 as well.

0.95 = 0 + cd (1 − 0) − md (0)

0.90 = 0.95 + cd (1 − 0.95) − md (0.95)

and very quickly we find that cd = 0.95 and, given that, we find that md ≈ 0.1.
What do the dynamics look like if we assume no interaction? Both species

rise to achieve their equilibria (Fig. 9.2a). We have fit the data assuming that
the species did not interact, and clearly this is not true, but we have begun the
process of thinking critically about what we mean.

Let us assume that the species start interacting in year 2 — what would the
dynamics look like? The difference equation for species 2 then becomes

p2,t+1 = p2,t + c2,d(1 − p2,t) − m1,d p2,t − c1,d1 p1,t p2,t (9.10)

where we include the subscript for each species. The dynamics differ radically
when we include competitive exclusion (Fig. 9.2b). The species reach very dif-
ferent equilibria.

Let us extrapolate these dynamics (Fig. 9.2) to secondary succession in
general (e.g., Fig. 9.1). Our model results seem qualitatively consistent with
what we know about successional trajectories. With a lot of open sites, perhaps
early in secondary or primary succession, good colonizers get in quickly and fill
the site. They are subsequently replaced by the competitively superior species.
This is a classic view of succession, with pioneer and climax species. Note that
our example focused on small plots within a single field, but we could apply it
to a much larger scale. This could approximate a landscape mosaic composed
of patches of different sucessional ages, in which species of different dispersal
and competitive abilities persist in the landscape, because they occupy patches
of different ages.

1 In general, we can create a difference equation from any differential equation, Ṅ =

F(N), where Nt+1 = Nt + F(N) but where parameter estimates will differ somewhat.
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Fig. 9.2: Dynamics of perennials (sp. 1) and annuals (sp. 2) without and with in-
teraction. The interaction assumes that species 1 excludes species 2 instantaneously
whenever they come into contact (cd,1 = 0.5, cd,2 = 0.95, md,1 = md,2 = 0.1)

Estimating and using cd and md

Let us code the data we derive above, and project over 20 years. First without
interaction.

> cd1 <- 0.5; cd2 <- 0.95

> md1 <- 0.1; md2 <- 0.1

We create a big enough matrix, and perform the projection.

> t <- 20

> ps <- matrix(0, nrow = t + 1, ncol = 2)

> for (i in 1:t) ps[i + 1, ] <- {

+ p1 <- ps[i, 1] + cd1 * (1 - ps[i, 1]) - md1 * ps[i, 1]

+ p2 <- ps[i, 2] + cd2 * (1 - ps[i, 2]) - md2 * ps[i, 2]

+ c(p1, p2)

+ }

> matplot(0:t + 1, ps, type = "b", ylab = "Proportion of Sites",

+ xlab = "Time", xlim = c(0, t + 1), ylim = c(0, 1))

Now assume they interact from year 2 onward.

> ps2 <- matrix(0, nrow = t + 1, ncol = 2)

> ps2[1, ] <- ps[2, ]

> for (i in 1:t) ps2[i + 1, ] <- {

+ p1 <- ps2[i, 1] + cd1 * ps2[i, 1] * (1 - ps2[i, 1]) -

+ md1 * ps2[i, 1]

+ p2 <- ps2[i, 2] + cd2 * ps2[i, 2] * (1 - ps2[i, 2]) -

+ md2 * ps2[i, 2] - cd1 * ps2[i, 2]

+ c(p1, p2)

+ }

> matplot(1:t + 1, ps2[-(t + 1), ], type = "b", ylab = "Proportion of

+ Sites", xlab = "Time", xlim = c(0, t + 1), ylim = c(0, 1))
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Habitat destruction

Nee and May [146] later showed that, given these tradeoffs, an interesting phe-
nomenon arose. If species coexist via this competition–colonization tradeoff,
destruction of habitat increases the abundance of the inferior competitor. How
does it do this? First let’s derive this analytically, and then consider it from an
intuitive point of view.

We can alter the above equations to include habitat destruction, D.

dp1

dt
= c1 p1 (1 − D − p1) − m1 p1

dp2

dt
= c2 p2 (1 − D − p1 − p2) − m2 p2 − c1 p1 p2

We can then solve for the equilibria.

p∗1 = 1 − D −
m1

c1

(9.11)

p∗2 =
m1

c1

−
m2

c2

−
c1

c2

(

1 − D −
m1

c1

)

(9.12)

(9.13)

What does this mean to us? First note that habitat destruction has a simple
and direct negative effect on the abundance of species 1. For species 2, we
see the first two terms are unaltered by habitat destruction. The third and
last term represents the proportion of colonization events won by the superior
competitor, species 1, and thus depends on the abundance of species 1. Because
habitat destruction has a direct negative effect on species 1, this term shows
that habitat destruction can increase the abundance of inferior competitors by
negatively affecting the superior competitor.

We must also discuss what this does not mean. Typically, an ecologist might
imagine that disturbed habitat favors the better colonizer, by making more sites
available for good colonizers, and perhaps creating microhabitat conditions that
favor rapid growth (e.g., pulse of high resources). This is different than habitat
destruction, which removes entirely the habitat in question. Imagine a parking
lot is replacing a grassland, or suburban sprawl is replacing forest; the habitat
is shrinking — rather than merely being disturbed — and this has a negative
impact on the better competitor.

Multispecies competition–colonization tradeoff and habitat

destruction

The work of David Tilman and his colleagues in grassland plant communities
at the Cedar Creek Natural History Area (a NSF-LTER site) initially tested
predictions from the R∗ model, and its two-resource version, the resource ratio
model [200,201,218,222]. They found that soil nitrogen was really the only re-
source for which the dominant plant species (prairie grasses) competed strongly.
If this is true, then the single resource R∗ model of competition predicted that
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the best competitor would eliminate the other species, resulting in monocul-
tures of the best competitor. The best competitors were little bluestem and
big bluestem (Schizachyrium scoparium and Andropogon gerardii), widespread
dominants of mixed and tall grass prairies, and R∗ predicted that they should
exclude everything else. However, they observed that the control plots, although
dominated by big and little bluestem, were also the most diverse. While big and
little bluestem did dominate prairies, the high diversity of these communities di-
rectly contradicts the R∗ model of competition.2 Another pattern they observed
was that weaker competitors colonized and became abundant in abandoned
fields sooner than the the better competitors. It turned out that variation in
dispersal abilities might be the key to understanding both of these qualitative
patterns [65,162,174].

In an effort to understand how bluestem-dominated prairies could maintain
high diversity in spite of single resource competition, Tilman generalized the [73]
equations to include n species [202].

dpi

dt
= ci pi

















1 −

i
∑

j=1

p j

















− mi pi −

















i−1
∑

j=1

c j p j pi

















(9.14)

where the last term describes the negative effect on species i of all species of
superior competitive ability.

Multispecies competition–colonization model

Here we create an R function for eq. 9.14.

> compcolM <- function(t, y, params) {

+ S <- params[["S"]]

+ D <- params[["D"]]

+ with(params, list(dpi.dt <- sapply(1:S, function(i) {

+ params[["ci"]][i] * y[i] * (1 - D - sum(y[1:i])) -

+ params[["m"]][i] * y[i] - sum(params[["ci"]][0:(i -

+ 1)] * y[0:(i - 1)] * y[i])

+ })))

+ }

This code seems strange, that is, unlike previous systems of ODEs in which we wrote

each separate equation out. The above code merely implements the strict hierarchy

of eq. 6.12, and is inspired by a similar approach by Roughgarden [181]. It also

allows us to specify, on the fly, the number of species we want. We also sneak in a

parameterization for habitat destruction, D, and we will address that later.

One goal was to explain the successional patterns of grasses in his study
area, the low nutrient grassland/savanna of Minnesota sand plains. Following
early succession, the common perennial prairie grass species seemed to form an
abundance hierarchy based on competitive ability: the best competitors were the
most abundant, and the worst competitors were least abundant. A caricature

2 For different views see [40,204].
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of a generic species abundance distribution is the geometric distribution, where
each species, with rank i makes up a constant, declining, fraction of the total
density of all individuals (see Chapter 10 for more detail).3 Specifically, the
proportional abundance of each species i can be calculated as a function of
proportional abundance of the most abundant species, d, and the species rank,
i.

pi = d(1 − d)i−1 (9.15)

Thus if the most abundant species makes up 20% of the assemblage (d = 0.20),
the second most abundant species makes up 20% of the remaining 80%, or
0.2(1 − 0.2)1

= 0.16 = 16% of the community. Tilman et al. [202] showed that if
all species experience the same loss rate, then species abundances will conform
to a geometric distribution when colonization rates conform to this rule

ci =
m

(1 − d)2i−1
(9.16)
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Fig. 9.3: (a) Rank–abundance distribution and the colonization rates that create them
(m = 0.04). (b) Successional dynamics with the competition–colonization tradeoff, from
low initial abundances. Here, equilibrium abundance of the best competitor is 20%
(d = 0.2), mortality is 4% (m = 0.04), and colonization rates are determined by eq.
9.16, resulting, at equilibrium, in a geometric species rank–abundance distribution.

3 The most abundant species has rank equal to 1.
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Calculating rank–abundance distributions and colonization rates (Fig. 9.3a)

Here we select 10 species, with the most abundant species equaling 20% of the
biomass in the community, and specify a common mortality or disturbance rate m.
We then create expressions for eqs. 9.15 and 9.16.

> S <- 10; ranks <- 1:S

> d <- 0.2; m = 0.04

> geo.p <- expression(d * (1 - d)^(ranks - 1))

> ci <- expression(m/(1 - d)^(2 * ranks - 1))

Next we create a plot with two y-axes.

> par(mar = c(5, 4, 1, 4), mgp = c(2, 0.75, 0))

> plot(ranks, eval(geo.p), type = "b", ylab = "Proportional Abundance",

+ xlab = "Rank", xlim = c(1, S))

> par(new = TRUE)

> plot(ranks, eval(ci), type = "b", axes = FALSE, ann = FALSE,

+ lty = 2)

> axis(4)

> mtext("Colonization Rates", side = 4, line = 2)

Sucessional dynamics of prairie grasses (Fig. 9.3b)

Here, we set all mortality rates to the same value, one per species, pool all the
necessary parameters into a vector (params), and select initial abundances. The
initial abundances are merely very low abundances — this merely results in fun,
early successional dynamics.

> params <- list(ci = eval(ci), m = rep(m, S), S = S, D = 0)

> init.N <- rep(0.01, S)

> t = seq(1, 200, 0.1)

> cc.out <- ode(init.N, t, compcolM, params)

> par(mgp = c(2, 0.75, 0))

> matplot(t, cc.out[, -1], type = "l", ylab = "Proportion of Habitat",

+ xlab = "Years", col = 1)

Tilman and colleagues [203] startled folks when they showed that a com-
mon scenario of habitat destruction led to a perfectly counterintuitive result:
that habitat destruction led to the very slow but deterministic loss of the best
competitor. It was unsettling not only that the dominant species would be lost
first (a result demonstrated by Nee and May [146]), but also that the loss of
dominant species will take a long time. This implied that we would not realize
the true cost of habitat destruction until long after the damage was done. These
two conclusions posed a problem for conservationists.

• Species that were thought safe from extirpation at local scales — the best
competitors — could actually be the ones most likely to become extinct,
and further,

• That the process of extinction may take a long time to play out, and so the
data demonstrating this loss might require a long time to collect (Fig. 9.4).
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These two predictions constitute the original conception for extinction debt.
However, the term has become more broadly used to described the latter phe-
nomenon, that extinction due to habitat destruction may take a long time, and
current patterns may be a function of past land use [75,114].

We see (Fig. 9.4) the predictable, if counterintuitive, result: the most abun-
dant species, the competitive dominant, becomes extinct over a long period of
time, and the next best competitor replaces it as the most abundant species.
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Fig. 9.4: Extinction debt. Destruction of 25% of the habitat causes the loss of the
competitive dominant (wide solid line). Parameters the same as in Fig. 9.3b, but initial
abundances are equilibrium abundances in the absence of habitat destruction. The
second best competitor (wide dashed line) will eventually become the most common
species.

Competition is a local phenomenon, and the better competitor can typically
hold onto a given site; however, individuals of all species eventually die. There-
fore, for two species to actually coexist in a landscape, even the best competitor
must colonize some new space at some point. If habitat destruction reduces habi-
tat availability too far, the worst colonizer (i.e., the best competitor) will be
unable to disperse effectively to new habitat.
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Extinction debt (Fig. 9.4)

We use the same functions and parameters as above. We add habitat destruction
for a quarter of the available habitat, which is greater that the equilibrium for the
dominant species, and will result in the slow loss of the dominant species. We also
start the species off at their equilibrium abundances, determined by the geometric
distribution.

> params["D"] <- 0.25

> init.N <- eval(geo.p)

> cchd.out <- ode(init.N, t, compcolM, params)

> matplot(t, cchd.out[, -1], type = "l", lty = 1:5, lwd = rep(c(3,

+ 1), each = 5), col = 1, ylab = "Proportion of Habitat",

+ xlab = "Years")

9.2 Adding Reality: Finite Rates of Competitive

Exclusion

While the competition–colonization tradeoff is undoubtedly important, it ig-
nores some fundamental reality that may be very important in explaining pat-
terns and understanding mechanisms. The models above all assume competitive
exclusion is instantaneous. That assumption may be approximately or quali-
tatively correct, but on the other hand, it may be misleading. Given the im-
plications of extinction debt for conservation, it is important to explore this
further. Indeed, Pacala and Rees did so [152], and came to very different con-
clusions than did Tilman et al. [202]. This section explores the work of Pacala
and Rees [152].

If we look at species in the real world, a couple of observations arise, with
respect to tradeoff of species of different successional status. First, species char-
acterized by high dispersal ability are also often characterized by high maximum
growth rates, related to high metabolic and respiration rates, and allocation to
reproductive tissue. These we refer to as r-selected species [119,122]. Second, we
observe that when deaths of individuals free up resources, individuals with high
maximum growth rates can take advantage of those high levels of resources to
grow quickly and reproduce. Third, we observe that the arrival of a propagule
of a superior competitor in the vicinity of a poor competitor does not result in
the instantaneous draw down of resource levels and exclusion of the poor com-
petitor. Rather, the poor competitor may continue to grow and reproduce even
in the presence of the superior competitor prior to the reduction of resources
to equilibrium levels. It is only over time, and in the absence of disturbance,
that better resource competitors will tend to displace individuals with good
colonizing ability and high maximum growth rates.

Pacala and Rees [152] wanted to examine the impact of finite rates of com-
petitive exclusion on the competition–colonization tradeoff. Implicit in this is
the role of maximum growth rate as a trait facilitating coexistance in the land-
scape. High growth rate can allow a species to reproduce prior to resource re-
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duction and competitive exclusion. This creates an ephemaral niche, and Pacala
and Rees referred to this as the successional niche. Species which can take good
advantage of the successional niche are thus those with the ability to disperse
to, and reproduce in, sites where resources have not yet been depleted by supe-
rior competitors. To facilitate their investigation, Pacala and Rees added finite
rates of succession to a simple two species competition–colonization model.

Possible community states

They envisioned succession on an open site proceeding via three different path-
ways. They identified five possible states of the successional community (Fig.
9.5).

1. Free — Open, unoccupied space.
2. Early — Occupied by only the early sucessional species.
3. Susceptible — Occupied by only the late successional species and susceptible

to invasion because resource levels have not yet been driven low enough to
exclude early successional species.

4. Mixed — Occupied by both species, and in transition to competitive ex-
clsuion.

5. Resistant — Occupied by only the late successional species and resistant
to invasion because resource levels have been driven low enough to exclude
early successional species.

Pathways

Given the five states, succession can then proceed along any of three pathways
(Fig 9.5):

1. Free → Early → Mixed → Resistant,
2. Free → Susceptible → Mixed → Resistant,
3. Free → Susceptible → Resistant.

In this context, Pacala and Rees reasoned that the competition–colonization
tradeoff focuses on mutually exclusive states, and assumes there are only Free,
Early, and Resistant states. In contrast, if species coexist exclusively via the
competition–maximum growth rate tradeoff, then we would observe only Free,
Mixed, and Resistant states. They showed that these two mechanisms are not
mutually exclusive and that the roles of finite rates of competitive exclusion
and the successional niche in maintaining diversity had been underestimated.

Note that the interpretation of this model is thus a little different than
other models that we have encountered. It is modeling the dynamics of differ-
ent community states. It makes assumptions about species traits, but tracks the
frequency of different community states. Technically speaking, any metapopula-
tion model is doing this, but in the contexts we have seen, the states of different
patches of the environment were considered to be completely correlated with the
abundance of each species modeled. Here we have five different state variables,
or possible states, and only two species.
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Fig. 9.5: The state variables in the [152] model. Dashed lines indicate mortality; the
larger size of the Mixed state merely reminds us that it contains two species instead
of one. Each pathway is labelled with the per capita rate from one state to the other.
For instance the rate at which Mixed sites are converted to Resistant sites is g(M),
and the rate at which Free sites are converted to Early sites is ac(M + E)

The traits of the two species that create these four states are embedded in
this model with four parameters, c, α, m, γ. There is a base colonization rate, c,
relative colonization rate of the poor competitor, α, mortality (or disturbance
rate), m, and the rate of competitive exclusion, γ. We could think of γ as the
rate at which the better competitor can grow and deplete resources within a
small patch. We model the community states as follows, using F to indicate a
fifth state of Free (unoccupied) space.

dS

dt
= [c (S + R + M)] F − [αc (M + E)] S − γS − mS (9.17)

dE

dt
= [αc (M + E)] F − [c (S + R + M)] E − mE (9.18)

dM

dt
= [αc (M + E)] S + [c (S + R + M)] E − γM − mM (9.19)

dR

dt
= γ (S + M) − mR (9.20)

F = 1 − S − E − M − R (9.21)
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Successional niche model

In addition to representing the original successiona niche model, we can also slip in a
parameters for habitat destruction, D. As with the above model, habitat destruction
D is simply a value between 0–1 that accounts for the proportion of the habitat
destroyed. Pacala and Rees [152] didn’t do that, but we can add it here. We also
have to ensure that F cannot be negative.

> succniche <- function(t, y, params) {

+ S <- y[1]

+ E <- y[2]

+ M <- y[3]

+ R <- y[4]

+ F <- max(c(0, 1 - params["D"] - S - E - M - R))

+ with(as.list(params), {

+ dS = c * (S + R + M) * F - a * c * (M + E) * S -

+ g * S - m * S

+ dR = g * (S + M) - m * R

+ dM = a * c * (M + E) * S + c * (S + R + M) * E -

+ g * M - m * M

+ dE = a * c * (M + E) * F - c * (S + R + M) * E -

+ m * E

+ return(list(c(dS, dE, dM, dR)))

+ })

+ }

Now we can examine the dynamics of this model. When we make the
rate of competitive exclusion very high, the model approximates the simple
competition–colonization tradeoff (Fig. 9.5)4 The susceptible and mixed states
are not apparent, and the better competitor slowly replaces the good colonizer.

4 When γ = 5, this means that in one year, exclusion will be 99.3% complete, because
it is a pure negative exponential process, where Xt = X0eγt. Similarly, recall our cal-
culation of doubling time, t = log(X)/r, where X is the relative size of the population
(e.g., 2, if the population doubles); here r < 0 and time is < 1.
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Dynamics of the successional niche model with a high rate of competitive
exclusion (Fig. 9.6a)

For no particular reason, we pretend that the poor competitor is 7× as fast at
colonizing (α = 7), and that the rate of competitive exclusion is very high, γ = 5. We
assume mortality is low, and there is no habitat destruction.

> params.suc <- c(a = 7, c = 0.2, g = 5, m = 0.04, D = 0)

Next we let time be 50 y, and initial abundances reflect a competitive advantage to
the early successional species, and run the model.

> t = seq(0, 50, 0.1)

> init.suc <- c(S = 0.01, E = 0.03, M = 0, R = 0)

> ccg.out <- data.frame(ode(init.suc, t, succniche, params.suc))

Last we plot our projections.

> matplot(t, ccg.out[, -1], type = "l", ylab = "Relative Frequency",

+ xlab = "Time", ylim = c(0, 1), col = 1)

> legend("right", colnames(ccg.out)[5:2], lty = 4:1, bty = "n")

Now let’s slow down competitive exclusion, that is, we will slow the tran-
sition from M to R. We set γ to be a small number, so that only 10% of the
mixed plots become resistant plots over one year (γ = 0.1). When we slow down
competitive exclusion, we see that we get two phenomena (Fig. 9.6b). First, we
get long term persistance of the mixed state, where we always see a fraction of
the habitat occupied by both species. In addition, the fraction of the habitat in
the mixed state rises to nearly 40% of the habitat, because we are mimicking
early succession. We go through a phase where both species frequently co-occur,
even if this is a tranisitory phase.

Dynamics of the successional niche model with a low rate of competitive
exclusion (Fig. 9.6b)

Here we slow down the rate of competitive exclusion, and 90% of the mixed sites
stay mixed after a one year interval.

> params.suc["g"] <- 0.1

> exp(-0.1)

[1] 0.9048

> ccg.out <- data.frame(ode(init.suc, t, succniche, params.suc))

We plot our projections.

> matplot(t, ccg.out[, -1], type = "l", ylab = "Relative Frequency",

+ xlab = "Time", ylim = c(0, 1), col = 1)

Now let’s imagine that mortality rates increase, where only 90% of the habi-
tat remains intact each year (0.90 = e−m). Even with only a 10% overall distur-
bance/mortality rate, the system takes much longer to approach an equilibrium,
and has a very high frequency of sites with just the early sucessional species
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(b) γ = 0.1
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(c) γ = 0.1, m = 0.105
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(d) α = 1, γ = 0.1

Fig. 9.6: Unless otherwise noted in the figure, α = 7, c = 0.7, γ = 5,
m = 0.04. (a) Competition–colonization (high rate of competitive exclusion), (b)
Competition–colonization and the successional niche (slower competitive exclusion),
(c) Competition–colonization with intermediate disturbance, and (d) Successional
niche (equal colonizing ability).

(Fig. 9.6c). Where we have moderate disturbance (Fig. 9.6c), we have greater
frequency of the mixed habitat. This reflects the mechanisms underlying the in-
termediate disturbance hypothesis [37]. At very low disturbance rates, the best
competitor prevails. At intermediate disturbance rates, however, we have far
more habitat, M, that supports both pioneer species (good colonizers) as well
as climax species (superior competitor).
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Dynamics of the successional niche model with an intermediate disturbance
rate (Fig. 9.6c)

Here we have a low rate of competitive exclusion (as above), but higher disturbance
rates (10% of the habitat is disturbed each year).

> params.suc["g"] <- 5

> params.suc["m"] <- abs(log(0.9))

> ccg.out <- data.frame(ode(init.suc, t, succniche, params.suc))

> matplot(t, ccg.out[, -1], type = "l", ylab = "Relative Frequency",

+ xlab = "Time", ylim = c(0, 1), col = 1)

Now let’s explore the pure successional niche. Imagine that there is no
competition–colonization tradeoff: both species have high colonization rates, but
the superior competitor retains its competitive edge. However, we also assume
that the rate of competitive exclusion is finite (γ ≪ ∞). The pure competition–
colonization model would predict that we do not get coexistence. In contrast,
we will find that the successional niche model allows coexistence. Let’s set the
relative competitive ability equal (α = 1) and increase the base colonization rate
to the higher of the two original rates (c = 7). We also let the rate of competitive
exclusion be small (γ < 1).

What do the dynamics of the pure successional niche model look like (Fig.
9.6d)? We see that we achieve coexistence because the system retains both the
mixed state and the resistant state. With both species colonizing everywhere
(high c), the successional niche allows coexistence because of the finite rate of
competitive exclusion. Species 1 now occupies a pure successional niche (Fig.
9.6d).

Dynamics of the successional niche model with no competition–colonization
tradeoff (Fig. 9.6d)

Here we equal and high colonization rates, and a slow rate of competitive exclusion.

> params.suc <- c(a = 1, c = 0.7, g = 0.1, m = 0.04, D = 0)

> ccg.out <- data.frame(ode(init.suc, t, succniche, params.suc))

> matplot(t, ccg.out[, -1], type = "l", ylab = "Relative Frequency",

+ xlab = "Time", ylim = c(0, 1), col = 1)

Let’s consider the successional niche analytically, by effectively eliminating
colonization limitation for either species (c >> 1, α = 1). If there is no coloniza-
tion limitation, then propagules of both species are everywhere, all the time.
This means that states F, E, and S no longer exist, because you never have free
space or one species without the other. Therefore M is one of the remaining
states. The only monoculture that exists is R, because in R, both propagules
may arrive, but the early successional species 1 cannot establish. Therefore the
two states in the pure successional niche model are M and R.

How does M now behave? M can only increase when R dies back. M will
decrease through competitive exclusion. We might also imagine that M would
decrease through its own mortality; we have stipulated, however, that colo-
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nization is not limiting. Therefore, both species are always present, if only as
propagules. The rates of change for M and R, therefore are,

dM

dt
= mR − γM

R = 1 − M

The equilibria for the two states can be found by first setting Ṁ = 0 and
substituting 1 − M in for R, as

0 = m (1 − M) − γM

M∗ =
m

γ + m

making R∗ = γ/(γ + m).
Up until now, we have focused on the frequencies of the four states, rather

than the frequencies of the two types of species (early successional and compet-
itive dominant). If we are interested in the relative abundances of the two types
of species, we merely have to make assumptions about how abundant they are
in each different state. If we assume that they are equally abundant in each
state, then the abundance of the early successional species is E + M and the
abundance of the competitive dominant is S + M + R.

Let us finally investigate extinction debt with this model. We should first
verify that we get extinction debt with a“pure”competition–colonization trade-
off (large γ, large α). We should then reduce γ and α to make the successional
niche the primmary mechanism, and see what happens to the pattern of extinc-
tion.

We can compare patterns of extinction under these two scenarios (Fig. 9.7,
without and with the successional niche). In doing so, we find a complete re-
versal of our conclusions: when the primary mechanism of coexistence is the
successional niche, we find that the competitive dominant persists, rather than
the early successional species. (Recall that when colonization rates are equal,
the rate of extinction must be slow in order to achieve coexistance even without
habitat destruction).

These opposing predictions highlight the important of getting the mecha-
nism right. They also illustrate the power of simplistic models to inform under-
standing.



274 9 Competition, Colonization, and Temporal Niche Partitioning

0 20 40 60 80 100

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Time

R
e

la
ti
v
e

 F
re

q
u

e
n

c
y

(a) α = 10, γ = 10
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(b) α = 1, γ = 0.1

Fig. 9.7: Extinction dynamics beginning equilibrium abundances. (a) Relying on the
competition–colonization tradeoff results in a loss of the competitive dominant, (b)
Relying on the successional niche tradeoff results in a persistance of the competitive
dominant.

Dynamics of the extinction with the successional niche model (Fig. 9.7)

Here we approximate the competitive-colonization model with unequal colonization
rates, and a very high rate of competitive exclusion. We then find, through brute
force, the equlibria for our parameter set by integrating a long time and keeping the
last observations as the equilibria.

> params.suc1 <- c(a = 10, c = 0.1, g = 10, m = 0.04, D = 0)

> Xstar1 <- ode(init.suc, 1:500, succniche, params.suc1)[500,

+ -1]

We then create habitat destruction, and plot the result.

> params.suc1D <- c(a = 10, c = 0.1, g = 10, m = 0.04,

+ D = as.numeric(Xstar1["R"]))

> t = 1:100

> ccg.out1 <- data.frame(ode(Xstar1, t, succniche, params.suc1D))

> matplot(t, ccg.out1[, -1], type = "l", col = 1,

+ ylab = "Relative Frequency", xlab = "Time")

Next, we include the successional niche, by making colonization rates equal and high,
and γ small. We then find our equilibria, without habitat destruction.

> params.suc2 <- c(a = 1, c = 1, g = 0.1, m = 0.04, D = 0)

> Xstar2 <- ode(init.suc, 1:500, succniche, params.suc2)[500,

+ -1]

We then create habitat destruction, and plot the result.

> params.suc2D <- c(a = 1, c = 0.7, g = 0.1, m = 0.04,

+ D = as.numeric(Xstar1["R"]))

> ccg.out2 <- data.frame(ode(Xstar2, t, succniche, params.suc2D))

> matplot(t, ccg.out2[, -1], type = "l", ylab = "Relative Frequency",

+ xlab = "Time", col = 1)

> legend("topright", colnames(ccg.out2[5:2]), lty = 4:1, bty = "n")
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9.3 Storage effect

What if all of this is wrong? What if none of these tradeoffs underlie coexistance?
Jim Clark and his colleagues [31] examined dispersal traits of co-occurring de-
ciduous forest trees (fecundity, dispersal), and successional status, and found
no evidence that early successional species had higher dispersal capacity. This
suggests a lack of support for competition–colonization tradeoffs. Rather, they
found evidence that asynchronous success in reproduction of these long-lived or-
ganisms allowed them to coexist. Together, these traits constitute a mechanism
referred to as the storage effect [28,217].

In the storage effect, competing species can store energy for reproduction
until favored conditions arise [28,217]. Assumptions include:

Variable environment Each species encounters both favorable and unfavor-
able periods for reproduction.

Buffered population growth Each species stores energy in a resistant stage
(e.g., long lived adults, seeds, spores, eggs) between favorable periods.

Environment–competition covariation The same conditions that favor re-
production for a particular species also increase competition intensity for
that species. If, for instance, winter rains favor a particular desert annual,
that desert annual will experience the greatest intraspecific competition fol-
lowing a wet winter precisely because of its large population size.

One prediction of the storage effect is that small population sizes will be more
variable (have higher CV, coefficient of variation) than large populations of
competing species [89].

In one sense, the storage effect constitutes a temporal niche [28]. That is,
the theory simply stipulates that different species succeed at different times. For
rare species to coexist with common species, their relative success needs to be
somewhat greater than the relative success of common species. In the absence
of environmental variability, species would not coexist.

Here we provide one set of equations describing the dynamics of the storage
effect for each species i in the community [26].

Ni,t+1 = (1 − d) Ni,t + Ri,tNi,t (9.22)

Ri,t = eEi,t−Ci,t (9.23)

Ei,t = F
(

Xi,t

)

(9.24)

Ci,t =

S
∑

i=1

αie
Ei,t Ni,t (9.25)

(9.26)

Here, E is an unspecified function of the environment, Xi,t, so that E specifically
differs among species and across time. We can think of exp(Ei,t) (the first growth
factor in Ri,t) as the maximum per capita reproductive rate for species i, at time
t, in the absence of competition. It is determined by the environment at time t.
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The other growth factor, exp(−Ci,t), is the effect of competition. It allows us
to intensify competition at large population sizes (e.g., during favorable condi-
tions), and lessen competition at low population sizes (e.g., during poor condi-
tions). These two factors allow us to represent independently the positive and
negative effects of the environment on an organism’s capacity to grow (Ei), and
also to represent how competition intensity covaries with population density
(Ci). There are many other representations of the storage effect [29, 217], but
this is a simple and convenient one [26].

The storage effect is a special case of lottery models [143]. Originally de-
veloped for reef fishes [183], lottery models are considered general models for
other systems with important spatial structure such as forest tree assemblages.
Conditions associated with lottery systems [30] include:

1. Juveniles (seedlings, larvae) establish territories in suitable locations and
hold this territory for the remainder of their lives. Individuals in non-
suitable sites do not survive to reproduce.

2. Space is limiting; there are always far more juveniles than available sites.
3. Juveniles are highly dispersed such that their relative abundances and their

spatial distributions are independent of the distribution of parents.

These conditions facilitate coexistence because the same amount of open space
has a greater benefit for rare species than for common species. While the invul-
nerable nature of successful establishment slows competitive exclusion, perma-
nent nonequilibrium coexistence does not occur unless there is a storage effect,
such as with overlapping generations, where a reproductive stage (resting eggs,
seeds, long lived adults) buffers the population during unfavorable environmen-
tal conditions, and negative environment–competition covariation.

9.3.1 Building a simulation of the storage effect

Here we simulate one rare and one common species, wherein the rare species
persists only via the storage effect. We conclude with a simple function, ches-
son, that simplifies performing more elaborate simulations.

Fluctuating environment

First we create a variable environment. Environments are frequently noisy and
also temporally autocorrelated — we refer to a special type of scale-independent
autocorrelation as red noise or 1/ f noise (“one over ’f’ noise”) [67]. Here we
use simply white noise, which is not temporally autocorrelated, but rather,
completely random at the time scale we are examining.

> years <- 100

> t <- 1:years

> variability = 4

> env <- rnorm(years, m = 0, sd = variability)

> plot(t, env, type = "l")



9.3 Storage effect 277

Differential responses to the environment

A key part of the storage effect is that species have differential reproduction
in response to a fluctuating environment (Fig. 9.8). However, species can differ
for all sorts of reasons. Therefore, we will let our two species have different
average fitness. We do this specifically because in the absence of the stochastic
temporal niche of the storage effect, the species with the higher fitness would
eventually replace the rare species. We want to show that the storage effect
allows coexistance in spite of this difference. We will let these fitnesses be

> w.rare <- 0.5

> w.comm <- 1

but as we will see in the simulation, competitive exclusion does not happen —
the species coexist. For the example we are building (Fig. 9.8), we will pretend
that

• our rare species grows best when the environment (maybe rainfall) is above
average,

• our common species grows best when the environment is below average,
and,

• both grow under average conditions; their niches overlap, and we will call
the overlap rho, ρ.

As merely a starting point, we let overlap, ρ, be equal to the standard
deviation of our environmental variabiity.

> rho <- sd(env)
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Fig. 9.8: Environmental variability, niche overlap (ρ), and the resulting buffered pop-
ulation growth rates.
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Code for a pretty histogram (Fig. 9.8)

Here we simply create a pretty histogram.

> hist.env <- hist(env, col = "lightgray",

+ main = "Histogram of Environment")

> abline(v = c(c(-rho, rho)/2), lty = 3)

> arrows(x0 = -rho/2, y0 = mean(hist.env[["counts"]]), x1 = rho/2,

+ y1 = mean(hist.env[["counts"]]), code = 3, length = 0.1)

> text(0, mean(hist.env[["counts"]]), quote(italic(rho)), adj = c(1.5,

+ 0), cex = 1.5)

> text(min(hist.env[["breaks"]]), mean(hist.env[["counts"]]),

+ "Common sp.\ngrows best", adj = c(0, 0))

> text(max(hist.env[["breaks"]]), mean(hist.env[["counts"]]),

+ "Rare sp.\ngrows best", adj = c(1, 0))

To quantitfy reproduction as a function of the environment, we will simply
let each species growth rate be, in part, the product of its fitness and the
environment, with the sign appropriate for each species.

> a.rare <- (env + rho/2) * w.rare

> a.comm <- -(env - rho/2) * w.comm

This will allow the rare species to have highest reproduction when the environ-
ment variable is above average, and the common species to have high reproduc-
tion when the environmental variable is below average. It also allows them to
share a zone of overlap, ρ, when they can both reproduce (Fig. 9.8a).

Buffered population growth

A key feature of the storage effect is that each species has buffered population
growth. That is, each species has a life history stage that is very resistant to poor
environmental conditions. This allows the population to persist even in really
bad times. In some cases, the resistant stage may be a long-lived adult, as with
many tree species, or other large-bodied organisms. In other cases, species have
very resistant resting stages, such as the eggs of zooplankton [20], or the seeds
of annual plants [54].

To model this buffering effect, we will simply prevent the reproductive rates
from falling below zero. (We will, however, create mortality (below) that is
independent of the growth rate of each species). Let us impose this constraint
of reproduction ≥ 0 now.

> Es <- matrix(NA, nrow = years, ncol = 2)

> Es[, 1] <- ifelse(a.rare > 0, a.rare, 0)

> Es[, 2] <- ifelse(a.comm > 0, a.comm, 0)

> matplot(t, Es, type = "l", col = 1)

> matplot(env, Es, col = 1)

As we said, however, organisms will die. Let us create a variable for community-
wide mortality, δ, as if a disturbance kills a constant fraction of the community.

> d <- 0.1
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Covariance between competition and environment

We also want to assume that species compete for shared, limiting resources.
Individuals have negative effects on each other. As a result, the more individuals
of all species there are (increasing Ntotal), the more negative the total effect is. To
account for this, we will stipulate a per capita negative effect α of any individual
on any other. Therefore, in good times (high Ntotal), the effect of competition
increases. In contrast, when times are bad, and N is small, competition is low.
This is what Chesson and colleagues mean by covariation between competition
and the environment.

Eq. (9.22) provides a reasonable way to represent the competitve effect Ci,t.
Here we simplify further, and assume that the per capita effect of competition
on growth is constant through time. However, to emphasize that point that one
species has higher average fitness, we let the rare species experience greater per
capita effects of competition. For our example, let us set αrare = 0.0002, αcomm =

0.0001.

> alpha <- c(2 * 1e-05, 1e-05)

Thus, these α are the species-specific effects of all individuals on the rare and
common species.

Simulating dynamics

Finally, we simulate these dynamics. We should create matrices to hold stuff as
we simulate each year, for N, C, and R. Unlike E, these are simplest to collect
as we simulate N, year by year.

> Ns <- matrix(NA, nrow = years + 1, ncol = 2)

> Cs <- matrix(NA, nrow = years, ncol = 2)

> Rs <- matrix(NA, nrow = years, ncol = 2)

Next we initialize our populations at t0.

> Ns[1, ] <- c(1000, 1e+05)

Finally, we run the for-loop

> for (i in 1:years) Ns[i + 1, ] <- {

+ juveniles <- sum(exp(Es[i, ]) * Ns[i, ])

+ Cs[i, ] <- alpha * juveniles

+ Rs[i, ] <- exp(Es[i, ] - Cs[i, ])

+ (1 - d) * Ns[i, ] + Rs[i, ] * Ns[i, ]

+ }

and plot the populations.

> matplot(c(0, t), Ns, type = "b", log = "y")
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Fig. 9.9: A simulation of coexistence via the storage effect. E (middle panel) is maxi-
mum environment-mediated reproduction, in the absence of competition. See text and
Fig. 9.8 for more information about species responses to the environment and average
fitness.

Examining characteristics of the storage effect

Let us go back and examine a few of the characteristics that we should observe,
if the storage effect is operating. First, note that above we showed differential
responses to the environment, incomplete niche overlap, and buffered growth
(Fig. 9.8).

Next, we will try to examine the environment-competition covariation. This
is not trivial, and papers are written about how to estimate this. For now,
recall that in Chapter 3, we began with an examination of negative density-
dependence. Here we quantify the magnitude of this negative effect, as our
“effect of competition.” Let us invent a new value, ν, to measure how much the
observed growth rate is affected by large population sizes,
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νi,t = log

(

Rmax

Ri,t

)

(9.27)

where Ri,t is the observed annual population growth rate, Nt+1/Nt, for species i,
and Rmax is the maximum of these.

To measure the covariation, we will find first Ntotal,t, Ri,t, and Ri,max.

> Nt1 <- rowSums(Ns)[1:years]

> R.obs <- Ns[-1, ]/Ns[-(years + 1), ]

> Rmax <- apply(R.obs, 2, max)

Now we calculate νi, and estimate the covariance.

> nu <- log(t(Rmax/t(R.obs)))

> colnames(nu) <- c("nu.rare", "nu.comm")

> var(Nt1, nu)

nu.rare nu.comm

[1,] 314.1 763.1

This illustrates that both populations exhibit positive covariation between the
quality of the environment (defined operationally as Ntotal) and the intensity of
competition.

Last, recall that we stated above that the CV (coefficent of variation) should
be greater for rare species than for common species. If we check that for our
populations (eliminating the first half of the time series),

> apply(Ns[round(years/2):years, ], 2, function(x) sd(x)/mean(x) *

+ 100)

[1] 29.82 18.14

we see that, indeed, the rare species has a higher CV. Examination of the time
series (Fig. 9.9) confirms this.

To facilitate playing more games, the function chesson provides an easy
wrapper for storage effect simulations (Fig. 9.10). Please try ?chesson at the
Rprompt.

Here we run the chesson model, and calculate the overlap, ρ, for each sim-
ulation.

> outA <- chesson(years = 500, specialization = 1, spread = 0.1)

> outB <- chesson(years = 500, specialization = 5, spread = 0.67)

> outA$overlap

[1] 0.9172

> outB$overlap

[1] 0.1234

By specifying greater specialization and greater spread between the environ-
mental optima of the species pair in the second model, we have reduced niche
overlap (Fig. 9.10a). Overlap in this model is the area under both species fitness-
independent response curves. Note that large differences in overall fitness can
alter effective overlap described by the density-independent reproductive rate,
Ei,t (Fig. 9.10b).
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> matplot(outB[["env"]], outB[["Es"]], pch = 1:2, xlim = c(-0.6,

+ 0.6),ylab = "Density-independent Reproduction",xlab = "Environment")

> matplot(outA[["env"]], outA[["Es"]], pch = c(19, 17), add = TRUE)
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Fig. 9.10: Species responses to the environment, using the chesson model. Relative to
the pair of species represented by solid circles, the pair of species with open symbols
shows greater difference between optimal environments (greater spread), and nar-
rower niches (greater specialization). (a) The underlying Beta probability density
distributions; the grey area under the curves of the more differentiated species is ρ,
the degree of niche overlap. (b) Density-independent reproduction (the parameter Ei,t

from eq. 9.22). (grey/red triangles - common species, black circles - rare species; open
symbols - highly differentiated species, solid symbols - similar species). See text and
help page (?chesson) for more details.

9.4 Summary

This chapter focused far more than previous chapters on the biological impor-
tance of temporal dynamics.

• In the framework of this chapter, the dynamics of succession result from the
processes of mortality or disturbance, dispersal, and competitive exclusion.
This framework can be applied over a broad range of spatial and temporal
scales.

• Coexistence is possible via tradeoffs between competition, dispersal, and
growth rate; the level of disturbance can influence the relative abundances
of co-occuring species.

• The consequences of habitat destruction depend critically on the mecha-
nisms underlying coexistence.
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• The storage effect is an example of temporal niche differentiation. It depends
on differential responses to the environment, buffered population growth,
and covariation between competition intensity and population size.

Problems

Competition, colonization, and the successional niche

9.1. Basic interpretation

(a) Explain each of the paramters c, α, γ and m. Explain what each does in the
model.

9.2. Two models in one?

(a) Given the model of Pacala and Rees, explain which parameters you would
manipulate and to what values you would set them to make it a pure competition–
colonization model.
(b) Given the model of Pacala and Rees, explain which parameters you would
manipulate and to what values you would set them to make it a pure succes-
sional niche model.

9.3. For each “pure” model, explain how transient dynamics at the local scale
result in a steady state at the large scale.

9.4. How would you evaluate the relative importance of these two mechanisms
in maintaining biodiversity through successional trajectories and at equilib-
rium?

Storage effect

9.5. Develop a two-species example of the storage effect, in which you manip-
ulate both (i) fitness differences, and (ii) environmental variation. Show how
these interact to determine relative abundances of the two species.


