

BIE 5786

R.A. Kraenkel

Operaçõe Inversas

Integra

Densidade

Fim

BIE 5786 - Ecologia de Populações

Roberto André Kraenkel

http://www.ift.unesp.br/users/kraenkel

Apontamentos de Cálculo Diferencial e Integral Parte II

BIE 5786

R.A. Kraenke

Operaçõe: Inversas

B ...

Delisidad

Operações Inversas

BIE 5786

R.A. Kraenke

Operaçõe Inversas

Integr

Areas

Densidades

Fin

Operações Inversas

2 Integral

BIE 5786

R.A. Kraenke

Operaçõe Inversas

Integr

Densidade

Fin

- Operações Inversas
- 2 Integral
- 3 Áreas

BIE 5786

R.A. Kraenke

Operaçõe: Inversas

Integra

Áreas

Densidades

Fin

- Operações Inversas
- 2 Integral
- 3 Áreas
- 4 Densidades

BIE 5786

R.A. Kraenke

Operaçõe Inversas

Integr

Áreas

Densidade

Fin

- Operações Inversas
 - 2 Integral
- 3 Áreas
- 4 Densidades
- 5 Fim

Invertendo Operações

BIE 5786

R.A. Kraenkel

Operações Inversas

Integra

.

Dancidada

Densidade

Fin

Exemplos

- Vamos nos ocupar de operações inversas: aquelas que o tem efeito inverso que uma outra operação.
- Tomemos por exemplo a operação: "elevar ao quadrado": ela pega um número e o eleva ao quadrado.
- Seja um número x. Chamemos o seu quadrado de y:
- $y = x^2$
- Qual é a operação inversa de "elevar ao quadrado"?
- $\acute{E} x = \sqrt{y} = y^{1/2}$
- É a operação que pega um número (y) e acha um outro (x), tal que "o quadrado desse número (x) "é o número inicial (y).
- Aplicar uma operação e em seguida a sua inversa resulta em uma identidade:
- Elevar ao um número x quadrado : $y = x^2$ e depois tirar a raiz $\sqrt{y} = \sqrt{x^2} = x$ resultou no próprio x.

Invertendo Operações II

BIE 5786

R.A. Kraenkel

Operações Inversas

Integra

,

Densidade

Densidad

Exemplos II

- Assim, temos que:
- A inversa de e^x é $\ln(x)$, pois $\ln(e^x) = x$.
- A inversa de "somar 5" é "subtrair 5, pois x + 5 5 = x.
- A inversa de "multiplicar por 2" é "dividir por 2", pois (2x)/2 = x.
- A inversa de sin(x) é o arcsin(x): o arco cujo seno é x.

E agora nos perguntamos qual é a inversa da operação de derivação.

A antiderivada

BIE 5786

R.A. Kraenkel

Operaçõe Inversas

Integral

Areas

Densidade

Diferenciação e sua Inversa

- Lembremos da derivada.
- Temos uma **função**, f(x).
- Podemos calcular a sua derivada $\frac{df}{dx}$.
- A sua derivada é uma nova função.
- Veja a analogia:
- Elevar um <u>número</u> ao quadrado, nos fornece um novo <u>número</u>.
- A operação anterior (chamada de potenciação) leva <u>números</u> em <u>números</u>.
- E a sua inversa ("tirar a raiz"), também.
- A operação "tomar a derivada de f(x)"(chamada de diferenciação) leva uma função noutra função.
- Assim, a operação inversa da diferenciação tem que também levar uma função noutra função.
- Provisoriamente, chamemos esta operação de antiderivada.

A antiderivada II

BIE 5786

R.A. Kraenkel

Integral

Um primeiro cálculo

- A antiderivada deve portanto "desfazer" a operação de derivação.
- Seja por exemplo

$$f(x) = x^2$$

Vimos que neste caso

$$\frac{df}{dx} = 2x$$

Assim, a antiderivada da função

$$g(x) = 2x$$

• é

$$x^2$$

pois x^2 é a função cuja derivada é 2x.

A antiderivada II

BIE 5786

R.A. Kraenkel

Operações Inversas

Integral

Áreas

Densidade

2) UII)I ditta

Notação e nomenclatura

- Você notou que ainda não introduzimos uma notação para a a antiderivada
- Aqui vai:

A antiderivada da função f(x) é denotada por $\int_{-\infty}^{x} f(x)dx$

Assim, por exemplo:

$$\int_{0}^{x} (2x)dx = x^{2}$$

- Vamos agora dar um novo nome para a antiderivada: **integral indefinida**.
- Lê-se a expressão acima como : a integral indefinida de $2x \notin x^2$.
 - O adjetivo indefinida é muitas vezes omitido. Adiante veremos que existe um outro objeto matemático chamado de integral definida.
 - Muitas vezes chama-se a integral indefinida de uma função de primitiva.
 Não usaremos esta nomenclatura extensamente aqui, mas é bom conhece-la.
 Assim, a primitiva de 2x é x².

Integral Indefinida

BIE 5786

R.A. Kraenkel

Operações Inversas

Integral

Áreas

Densidade

Fim

Somando constantes

- Voltemos ao exemplo acima
- •

$$\int_{-\infty}^{x} (2x)dx = x^2 \quad ,$$

pois $\frac{d(x^2)}{dx} = 2x$

Mas veja que

$$\frac{d(x^2+K)}{dx}=2x \quad ,$$

onde *K* é qualquer constante.

Assim, podemos escrever que

$$\int_{-\infty}^{\infty} (2x)dx = x^2 + K$$

Conclusão: Sempre podemos somar uma constante arbitrára ao resultado de uma integral indefinida.

Integral Indefinida II

BIE 5786

R.A. Kraenkel

Operações Inversas

Integral

Áreas

Densidade

Fim

Alguns cálculos

- Vamos então obter algumas integrais indefinidas a partir de sua definição.
 - A integral indefinida de uma função f(x) é a uma outra função, g(x), cuja derivada é f(x).

$$\int_{-\infty}^{x} x dx = \frac{x^2}{2} \quad \text{pois} \quad \frac{d(x^2/2)}{dx} = x$$

•

•

$$\int_{-\infty}^{x} x^2 dx = \frac{x^3}{3} \quad \text{pois} \quad \frac{d(x^3/3)}{dx} = x^2$$

•

$$\int_{-\infty}^{x} x^{n} dx = \frac{x^{n+1}}{n+1} \quad \text{pois} \quad \frac{d(x^{n+1}/n+1)}{dx} = x^{n}$$

•

$$\int_{-\infty}^{x} 5x dx = \frac{5x^2}{2} \quad \text{pois} \quad \frac{d(5x^2/2)}{dx} = 5x$$

aonde ainda podemos somar uma constante a cada resultado.

Integral Indefinida III

BIE 5786

R.A. Kraenkel

Operações Inversas

Integral

.

Densidades

Densidado

Fim

Alguns cálculos, bis

•

$$\int_{0}^{x} e^{x} dx = e^{x} \quad \text{pois} \quad \frac{de^{x}}{dx} = e^{x}$$

•

$$\int_{0}^{x} e^{2x} dx = \frac{e^{2x}}{2} \quad \text{pois} \quad \frac{d\frac{e^{2x}}{2}}{dx} = e^{2x}$$

•

$$\int_{-\infty}^{\infty} e^{Kx} dx = \frac{e^{Kx}}{K} \quad \text{pois} \quad \frac{d\frac{e^{Kx}}{K}}{dx} = e^{Kx}$$

•

$$\int_{-x}^{x} \frac{1}{x} dx = \ln(x) \quad \text{pois} \quad \frac{d \ln(x)}{dx} = \frac{1}{x}$$

aonde ainda podemos somar uma constante a cada resultado.

Integral Indefinida IV

BIE 5786

R.A. Kraenkel

Operações Inversas

Integral

Areas

Densidade

Fim

Alguns cálculos, ter

 $\int_{-\infty}^{\infty} \ln(x) dx = x(\ln(x) - 1) \quad \text{pois} \quad \frac{d[x(\ln(x) - 1)]}{dx} = \ln(x)$

$$\int_{-x}^{x} \sin(x)dx = -\cos(x) \quad \text{pois} \quad \frac{d(-\cos(x))}{dx} = \sin(x)$$

$$\int_{-x}^{x} \sin(Kx)dx = \frac{-\cos(x)}{K} \quad \text{pois} \quad \frac{d(-\cos(x)/K)}{dx} = \sin(Kx)$$

$$\int_{-x}^{x} \cos(x)dx = \sin(x) \quad \text{pois} \quad \frac{d(\sin(x))}{dx} = \cos(x)$$

aonde ainda podemos somar uma constante a cada resultado.

Integral Indefinida V

BIE 5786

R.A. Kraenkel

Operaçõe Inversas

Integral

Áreas

Densidade

Delisidad

Alguns cálculos, quater

Podemos continuar a nossa brincadeira invertendo tabelas de derivação:

Função	Derivada
xe^x	$(x+1)e^x$
$\sin(x^2)$	$2x.\cos(x^2)$
$x.\sin(2x)$	$\sin(2x) + 4x\cos(2x)$

Função	Integral
$(x+1)e^x$	xe^x
$2x.\cos(x^2)$	$\sin(x^2)$
$\sin(2x) + 4x\cos(2x)$	$x.\sin(2x)$

aonde ainda podemos somar uma constante a cada resultado da integral acima.

Tem um ótimo texto sobre integração, com exemplos, na página

http://www.tech.plym.ac.uk/maths/resources/PDFLaTeX/indef_integrals.pdf

Integral Indefinida VI

BIE 5786

R.A. Kraenkel

Operaçõe Inversas

Integral

Aicas

Densidade

Fim

Algumas regras

- O processo de integração não é tão simples quanto do de derivação.
- Muitas vezes recorremos a tabelas de integrais,
- Ou a softwares que tem capacidade de manipulação algébrica
- Por exemplo: Mathematica ou Maxima.
- Mas devemos ter em mente algumas regras simples:

Integral Indefinida VII

BIE 5786

R.A. Kraenkel

Operações Inversas

Integral

Areas

Densidade

Fin

Algumas regras, bis

-

$$\int_{-\infty}^{x} dx = x$$

Da própria definição de integral indefinida:

$$\int_{-\infty}^{\infty} \frac{df}{dx} dx = f(x)$$

•

$$\int_{-\infty}^{x} Af(x)dx = A \int_{-\infty}^{x} f(x)dx$$

onde A é uma constante (ou uma função que não depende de x).

$$\int_{0}^{x} [f(x) + g(x)]dx = \int_{0}^{x} f(x)dx + \int_{0}^{x} g(x)dx$$

• Mas note que a integral do produto **não** é o produto das integrais.

Áreas

BIE 5786

R.A. Kraenkel

Operaçõe Inversas

Áreas

n ...

Densidade

Fim

Áreas

- Você se lembra que no fim de nossa discussão sobre derivadas demos uma interpretação para derivada como sendo a inclinação da curva tangente ao gráfico da função que estamos derivando.
- A integral também pode ser interpretada geometricamente.
- Está relacionada à área embaixo de uma curva.
- Vejamos.

Áreas II

BIE 5786

R.A. Kraenkel

Operaçõe Inversas

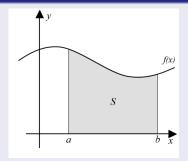
Integra

Áreas

Densidade

Fim

Área embaixo de uma curva



- Aí está o gráfico da função f(x) e a área embaixo da curva entre os pontos a e b.
- Como podemos calculá-la?

Áreas III

BIE 5786

R.A. Kraenkel

Operaçõe Inversas

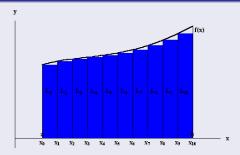
Integra

Áreas

Densidade

Fim

Área embaixo de uma curva, bis



- Uma forma de calcular a área é somar a área de todos os retângulos da figura acima.
- Mas note que tem sempre um pequeno erro nisto.
- Mas quanto mais retângulos tivermos, cada vez menores, mais próximos estaremos da área real.

Áreas IV

BIE 5786

R.A. Kraenkel

Operaçõe Inversas

Integr

Áreas

Densidade

Fim

Área embaixo de uma curva, ter

- A área total embaixo do gráfico é portanto a soma de um número infinito de retângulos cujas bases são infinitesimais.
- \bullet Chamamos de dx o comprimento de cada base.
- A área de cada retângulo será f(x)dx.
- E a área total será a soma de todos estas área, e a denotamos por:

$$\int_{b}^{a} f(x)dx$$

Áreas V

BIE 5786

R.A. Kraenkel

Operaçõe Inversas

Integral

Áreas

Densidades

Densidadi

Integrais

- A notação usada para representar a área debaixo de uma curva é sugestiva;
- Mas o que a esta área tem a ver com a integral indefinida (que era, como vimos, uma antiderivada).
- Há um teorema que diz (é o teorema fundamental do cálculo) :

$$\int_{b}^{a} f(x)dx = \int_{a}^{a} f(x)dx - \int_{a}^{b} f(x)dx$$

aonde as integrais do lado direito são as integrais indefinidas de f(x) calculadas nos pontos a e b.

 A integral do lado esquerdo é chamada de "integral definida de f(x) entre a e b".

Áreas VI

BIE 5786

R.A. Kraenkel

Operaçõe Inversas

Integra

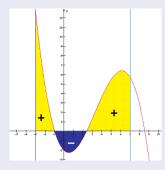
Áreas

Densidades

Fim

Integrais, bis

- Só que temos que ter cuidado:
- As áreas das quais falamos tem sinal:



• A parte negativa conta com sinal negativo.

Densidades

BIE 5786

R.A. Kraenkel

Operaçõe Inversas

Integra

Densidades

Fim

Densidades

- Voltemos agora a alguns conceitos que podemos usar em biologia de populações.
- Muitas das medidas que podemos fazer são de número de indivíduos por área.
- Ou seja a densidade de indivíduos.
- Se estudamos uma certa população, esta densidade pode variar de ponto para ponto.
- Há lugares mais fortemente populados e outros menos.
- E se quisermos saber a população total numa certa região?

Densidades II

BIE 5786

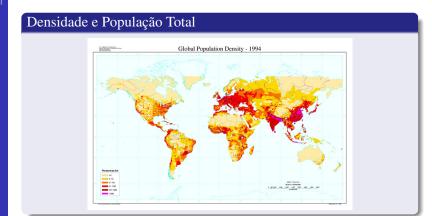
R A Kraenke

Operações

Integr

Densidades

Fim



Densidades III

BIE 5786

R.A. Kraenkel

Operaçõe Inversas

Integral

e

Densidades

Densidade

Fim

Densidade e População Total, bis

- Na página anterior mostra-se um mapa da densidade de pessoas no mundo.
- Para saber a população total do mundo você poderia:
 - Dividir o mundo em minúsculas regiões;
 - calcular a população de cada uma destas regiões multiplicando a densidade pela área;
 - somar as populações de todos as regiões
 - Em suma você quer calcular a integral definida da densidade....
 - Ou seja:

Número total de Indivíduos entre os pontos a e $b = \int_{b}^{a} \rho(x)dx$

onde $\rho(x)$ é a densidade da população no ponto x.

Resumo Final

BIE 5786

R.A. Kraenkel

Operaçõe Inversas

Integr

Areas

Densidade

Fim

O que devo lembrar

- A integração indefinida é a operação inversa da diferenciação.
- Ou seja: a integral indefinida de f(x) é uma outra função g(x) tal que a derivada de desta é a primeira função, f(x).
- Podemos relacionar a integral indefinida com o cálculo de áreas (com sinal) debaixo da curva do gráfico de f(x)..
- Usamos isso no dia-a-dia para obter, por exemplo, populações totais a partir de densidades populacionais.