<u>Modelo</u>	AICc	Delta AICc	N. Parâmetros	Deviance
Phi (1,2)p(1,2)	373.9971	0	4	126.58
Phi(.)p(1,2)	374.0590	0.06	3	128.73
Phi(.)p(.)	376.9136	2.91	2	133.64
Phi(t)p.(t)	379.0123	5.01	8	123.06

- **2)** Partindo da hipótese que a sobrevivência varia entre as colônias, concorri modelos onde as probabilidades de sobrevivência (Phi) variariam entre as colônias. Os melhores modelos, empatados (Delta AICc<2), são os que se encontram nas duas primeiras linhas da tabela. O critério principal foi o resultado comparativo entre os AICc's e o secundário, o da parcimônia (menor número de parâmetros).
- **3)** Não muito bem. Pois resultados opostos foram validados pelo Delta AICc<2 (probabilidades iguais e diferentes de sobrevivência entre as colônias). Os resíduos de ambos os modelos não estão muito bem distribuídos, mostram nítida tendência à porção superior do gráfico.
- **4)** O modelo da primeira linha {Phi (._1,2)p(._1,2)} demonstra que tanto Phi (probabilidade de sobrevivência) quanto p (probabilidade de captura) são constantes no tempo (não variam entre as amostragens), porém são diferentes entres as colônias de andorinhas analisadas. Os resultados apontam para menor sobrevivência do grupo 1 (não protegido) "Estimate" = 59,86% X 73,81% (Grupo 2 protegido), apesar do intervalo de confiança da estimativa para o Grupo 1 (42%-75%) sobrepor o estimado para o grupo 2 (73%), o que não nos dá completo suporte para afirmar o fato.

Já o segundo modelo {Phi(.)p(._1,2)} aponta que as probabilidades de sobrevivência das duas colônias são similares.

Já que ambos os modelos apontaram que a probabilidade de captura varia entre as colônias, provavelmente a taxa de recapturas (para que seja avaliada a taxa de sobrevivência) também varia, o que pode ter causado um viés na conclusão sobre a sobrevivência.

Carlos Eduardo Benfica Caê.