
CHAPTER 1

Introduction

1

Ecology is frequently defined as the study of the distribution and abundance
of plants and animals (e.g., Andrewartha and Birch 1954; Krebs 1972). Con-
sequently, the practice of counting animals in order to draw inferences about
their numbers and distribution has a long tradition in animal ecology and man-
agement. In his classic book, Animal Ecology, Charles Elton (1927:173) wrote:
“The study of numbers is a very new subject, and perfect methods of record-
ing the numbers and changes in the numbers of animals have yet to be
evolved.” Elton then devoted 6 pages to the topic of animal “census” methods.
In his equally influential classic, Game Management, Aldo Leopold (1933:139)
listed “Census” as the first of four steps required to initiate game management
on any piece of land. He then devoted a 30-page chapter to “game census” and
another 25 pages to “measurement and diagnosis of productivity,” a chapter
that focused on assessing vital rates and population change. Methods for
counting animals have indeed evolved over the last 70 years, and animal ecol-
ogists and managers now have an impressive methodological toolbox for esti-
mating parameters associated with animal abundance and with the vital rates
that produce changes in abundance (e.g., Seber 1973, 1982; Williams et al.
2002).



Today, biologists interested in understanding and managing animal popu-
lations and communities include some individuals who make full use of the
methods available for drawing inferences about variation in animal numbers
over time and space, and many others who do not appear to recognize the
importance of appropriate inferential procedures. Because of those scientists
and managers who do not take advantage of available estimation methods, the
fields of animal population and community ecology, wildlife management, and
conservation biology include numerous examples of substantial field efforts
that do not produce reliable conclusions. These disciplines suffer not only from
the failure of animal ecologists and managers to utilize the range of available
methods for drawing inferences about animal abundance and associated vital
rates but also from the lack of rigorous methods for estimating other quanti-
ties that may be biologically relevant. For example, other variables that could
be used to quantify the current status of a community or population (we refer
to these as state variables) include species richness (number of species) and
occupancy (proportion of an area occupied by a species or fraction of land-
scape units where the species is present). Scant attention has been devoted to
estimation of these latter state variables, with the result that there is a great
need for methodological development.

In this book, we emphasize the need for estimation methods that permit
inference about occupancy based on so-called presence-absence data and
report results of our initial efforts to develop a set of such methods. We begin
this chapter by providing brief operational definitions for some important
terms, then move on to an outline of general principles for sampling animal
populations, focusing on the why, what, and how of such sampling. This
outline is followed by a more detailed look at the critical step of using field
data to discriminate among competing hypotheses about system response to
environmental variation and management actions. We note different field
designs that are used to generate system dynamics for such discrimination and
comment on the different strengths of inference resulting from these designs.
The chapter concludes with a more detailed statement of book objectives and
contents.

1.1. OPERATIONAL DEFINITIONS

The methods presented in this book should be useful to biologists involved in
either science or management of biological populations. Both endeavors use
the following three constructs: hypothesis, theory, and model. These terms are
not always used consistently in the literature, and therefore we provide our
own operational definitions for use in this book (also see Nichols 2001). We
view a hypothesis simply as a plausible explanation (i.e., a “story”) about 
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how the world, or part of it, works. For example, we would deem density-
dependent recruitment for mid-continent, North American mallards (Anas
platyrhynchos) as a hypothesis, with density-independent recruitment as an
alternative, competing hypothesis (Johnson et al. 1997). Once a hypothesis
has withstood repeated efforts to falsify it, to the extent that we have some
faith in predictions deduced from it, the hypothesis may become a theory (e.g.,
Einstein’s theory of relativity). A theory can still be disproved in the future
given new data or the expansion of the part of the world to which the theory
is thought to be applicable (e.g., Newtonian physics).

Very generally, we view a model as an abstraction of a real-world system,
which can be used to describe observed system behavior and predict how the
system may respond to changes or perturbations. Within this broad definition
we recognize many different kinds of models (Nichols 2001), three of which
are especially useful within the context of this book. A conceptual model is a
set of ideas about how the system of interest works, and may include one or
more hypotheses or theories about the system. A verbal model is created by
translating these ideas into words. Finally, a mathematical model results from
translating a conceptual or verbal model into a set of mathematical equations,
using defined parameters to symbolize the key processes of the system. In this
book we derive mathematical expressions from our conceptual ideas about the
processes that occur when collecting occupancy field data, placing particular
attention on using the collected data to estimate the parameters of these
models.

By following the logical progression above, note that a mathematical model
is ultimately a representation of one or more hypotheses or theories about the
system. Therefore, competing hypotheses can be formulated into competing
mathematical models. Applying each model to the same set of available data,
it may be possible to formally determine which model (and therefore which
hypothesis) has a greater degree of support given the data at hand. Essentially
this is an exercise in model selection. We advocate and use such an approach
throughout this book.

1.2. SAMPLING ANIMAL POPULATIONS AND
COMMUNITIES: GENERAL PRINCIPLES

It is our belief that many existing programs for sampling animal populations
and communities are not as useful as they might be because investigators have
not devoted adequate thought to fundamental questions associated with estab-
lishment of such programs. These failures have greatly reduced the value of
efforts ranging from individual scientific investigations to large-scale moni-
toring programs. These latter programs are especially troubling, because they



can require nontrivial fractions of the total funding and effort available for the
conduct of science and management of animal populations and communities.
Here we present some opinions about the sort of thinking that should precede
and underlie good animal sampling programs. These opinions are structured
around three basic questions to be addressed during the design of an animal
sampling program (see Yoccoz et al. 2001): Why? What? and How?

WHY?

Efforts to sample animal populations are generally associated with one of two
main classes of endeavor, science or conservation and management (or pos-
sibly both). Science can be viewed as a process used to discriminate among
competing hypotheses about system behavior, that is, discriminating among
different ideas about how the world, or a part of it, works (e.g., whether
recruitment to a population is density dependent). This process typically
involves mathematical models. For example, a mathematical model that could
be used to represent the number of recruits to a population (r) that assumes
no density dependence would be r = NFb, where NF is the number of breeding
females in the population and b is the average number of female births per
adult female and is viewed as a constant (with respect to current breeding
female population size). A different model that conceptualizes the effect of
density-dependent recruitment would be r = NFb(NF), where b(NF) specifies a
functional relationship, such that number of recruits per female is a function
of total female abundance. The primary use of models is to project the conse-
quences of hypotheses, that is, to deduce predictions about system behavior
(e.g., Nichols 2001). In the case of our example, the model is used to predict
the number of recruits at different levels of population density.

The key step in science, then, involves the confrontation of these model-
based predictions with the relevant components of the real-world system
(Hilborn and Mangel 1997; Williams et al. 2002). Faith and confidence
increase for those models (and hence those underlying hypotheses) whose 
predictions match observed system behavior well and decrease for models 
that do a poor job of predicting. However, for most practical situations involv-
ing animal populations and communities, true system behavior cannot be
directly observed, but must be estimated from data collected from sampling
programs. Thus, sampling programs constitute a key component of scientific
research.

In the conduct of management and conservation, estimates of state vari-
ables for animal populations and communities serve three distinct roles
(Kendall 2001). First, estimates of system state are needed in order to make
state-dependent management decisions (e.g., Kendall 2001; Williams et al.
2002). For example, the decision of which management action to take fre-
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quently depends upon the current population size. Second, system state is fre-
quently contained in the objective functions (precise, usually mathematical,
statements of management objectives) for managing animal populations and
communities. Evaluation of the objective function is an important part of man-
agement, addressing the question “To what extent are management objectives
being met?” Finally, good management requires either a single model thought
to be predictive of system response to management actions or a set of models
with associated weights reflecting relative degrees of faith in their validity. 
The process of developing faith in a single model or weights for members 
of a model set involves the confrontation of model predictions with estimates
of true system response. This confrontation is the scientific component of
informed management and requires animal sampling programs that provide
reliable estimates of state variables and associated vital rates.

Despite the importance of being explicit about why a program for sampling
animal populations or communities is needed, we believe that many studies
suffer from a failure to clearly articulate specific study objectives. This is espe-
cially evident in many large-scale monitoring programs (Yoccoz et al. 2001).
For example, the following objectives statements from a report on ecological
monitoring programs in the United States (LaRoe et al. 1995:3, 4) are fairly
typical: “The goal of inventory and monitoring is to determine the status and
trends of selected species or ecosystems”; “Inventory and monitoring programs
can provide measures of status and trends to determine levels of ecological
success or stress.” The second statement implies an interest in management
and conservation, but without specification of available management actions
and hypotheses about system response to those actions, the statement provides
little basis for monitoring program design. Thus, we advocate clear specifica-
tion of monitoring program objectives.

Objective specification is facilitated by the recognition that monitoring of
animal populations and communities is not a stand-alone activity of great
inherent utility, but is more usefully viewed as a component of the processes
of science and/or management. This recognition leads naturally to detailed
consideration of exactly how the monitoring program results are to be used in
the conduct of science or management or both. Such considerations lead
directly to decisions about monitoring program design, whereas vague objec-
tives that fail to specify use of program data and estimates provide little 
guidance for program design and can lead to endless debate about design
issues.

WHAT?

The selection of what state variable(s) and associated vital rates to estimate
will depend largely on the answer to the initial question of “Why?” The selec-



tion of state variables for scientific programs will depend on the nature of the
competing hypotheses and specifically on the quantities most likely to lead to
discrimination among the hypotheses (i.e., for what quantities are predictions
of competing hypotheses most different?). The selection of state variables for
management programs will depend on the most relevant characterization of
system state, on management objectives, and on the ability to discriminate
among competing hypotheses about system response to management actions.
Practicality must also be considered in both cases as, most likely, logistical
resources will be limited.

When dealing with single species, the most commonly used state variable
is abundance or population size. Estimation of abundance frequently requires
substantial effort, but it is a natural choice for state variables in studies of pop-
ulation dynamics and management of single-species populations. Some studies
of animal abundance focus directly on changes in abundance, frequently
expressed as the ratio of abundances in two sampling periods (e.g., two suc-
cessive years) and termed the finite rate of population increase or population
growth rate, l. In scientific studies, mechanistic hypotheses frequently concern
the vital rates responsible for changes in abundance, rates of birth (reproduc-
tive recruitment), death, and movement in and out of the population. In 
management programs, effects of management actions on animal abundance
must also occur through effects on one or more of these vital rates. Thus, 
many animal sampling programs involve efforts to estimate abundance and
rates of birth, death, and movement for animals inhabiting some area(s) of
interest.

We believe that another useful state variable in single-species population
studies is occupancy, defined as the proportion of area, patches, or sample units
that is occupied (i.e., species presence). Sampling programs designed to esti-
mate occupancy tend to require less effort than programs designed to estimate
abundance (e.g., Tyre et al. 2001; MacKenzie et al. 2002; Manley et al. 2004).
In the case of rare species, it is sometimes practically impossible to estimate
abundance, whereas estimation of occupancy is still possible (MacKenzie et al.
2004a, 2005). Thus, for reasons that include expense and necessity, occupancy
is sometimes viewed as a surrogate for abundance. However, there are also a
number of kinds of questions for which occupancy would be the state vari-
able of choice regardless of the effort involved in sampling. For example,
metapopulation dynamics (e.g., Hanski and Gilpin 1997; Hanski 1999) are fre-
quently described by patch occupancy models. So-called incidence functions
(e.g., Diamond 1975a; Hanski 1994a) relate patch occupancy to patch char-
acteristics such as size, distance to mainland or some source of immigrants,
habitat, etc. Occupancy is the natural state variable for use in studies of dis-
tribution and range (e.g., Brown 1995; Scott et al. 2002) and should also be
useful in the study of animal invasions and even disease dynamics. Patch occu-
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pancy dynamics may be described using the rate of change in occupancy over
time, and the vital rates responsible for such change are patch-level probabil-
ities of extinction and colonization. Historical, current, and proposed uses of
patch occupancy as a state variable for science and management will be dis-
cussed in more detail in Chapter 2.

When scientific or conservation attention shifts to the community level of
organization, many possible state variables exist. The basic multivariate state
variable of community ecology is the species abundance distribution, specify-
ing the number of individuals in each species in the community. Many derived
state variables are obtained by attributing different values or weights to indi-
viduals of different species (Yoccoz et al. 2001). Several common diversity
indices are computed by providing a weight of 1 to every individual of each
species (e.g., Pielou 1975; Patil and Taillie 1979), but it is also possible to give
additional weight to individuals of species thought to be of special importance
(e.g., endemic species or species of economic value) (Yoccoz et al. 2001). A
state variable that is used commonly in community studies is simply species
richness, the number of species within the taxonomic group of interest that is
present in the community at any point in time or space. This state variable is
used in scientific investigations (e.g., Boulinier et al. 1998b, 2001; Cam et al.
2002) and programs for management and conservation (e.g., Scott et al. 1993;
Keddy and Drummond 1996; Wiens et al. 1996). The vital rates responsible
for changes in species richness over time are rates of local species extinction
and colonization.

In this book we focus largely on the state variable of occupancy, but note
how these methods can also be applied where species richness-type metrics
may be of interest (Chapter 9).

HOW?

Proper estimation of state variables and inferences about their variation over
time and space require attention to two critical aspects of sampling animal
populations: spatial variation and detectability (Fig. 1.1) (Lancia et al. 1994;
Thompson et al. 1998; Williams et al. 2002). Spatial variation in animal abun-
dance is important because in large studies and most monitoring programs
investigators cannot directly survey the entire area of interest. Instead, inves-
tigators must select a sample of locations to which survey methods are applied,
and this selection must be done in such a way as to accomplish two things.
First, selection of study locations should be based on study objectives. In the
case of scientific objectives, study locations should be selected to provide the
best opportunity to discriminate among the competing hypotheses of interest
(see Section 1.3 for further discussion). For example, in the case of an obser-



vational study involving hypotheses about habitat variables, selected study
locations might be extremes with respect to the variable(s) of interest or else
might be locations at which changes in the variable(s) are anticipated. In the
case of a management program, study locations should of course include the
areas to which management actions are applied. Second, within larger areas
selected based on study objectives, sample locations should be selected in 
a manner that permits inferences about the locations that are not surveyed 
and hence about the entire area(s) of interest. Approaches to sampling that
accomplish this inferential goal include simple random sampling, unequal
probability sampling, stratified random sampling, systematic sampling, cluster
sampling, double sampling, and various kinds of adaptive sampling (e.g.,
Cochran 1977; Thompson 1992; Thompson and Seber 1996).
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FIGURE 1.1 Illustration of the two critical aspects of sampling animal populations, spatial 

variation and detectability. The shaded region indicates the area or population of interest, with

the small squares representing the locations selected for sampling. Within each sampling location,

animals will be detected (filled circles) or undetected (hollow circles) during a survey or 

count.
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Detectability refers to the reality that, even in locations that are surveyed by
investigators, it is very common for animals and even entire species to be
missed and go undetected. Most animal survey methods yield some sort of
count statistic. For example, when abundance is the quantity of interest, the
count statistic might be the number of animals caught, seen, heard, or har-
vested. Let Nit be the true number of animals associated with an area or sample
unit of interest, i, at time t, and denote as Cit the associated count statistic. This
statistic can be viewed as a random variable whose expectation (basically the
average value of the count if we could somehow conduct the count under the
exact same conditions many times; see Chapter 3) is the product of the quan-
tity of interest, abundance at the surveyed location, and the detection proba-
bility associated with the count statistic:

E(Cit) = Nitpit, (1.1)

where pit is the detection probability (probability that a member of Nit appears
in the count statistic, Cit). Estimation of Nit thus requires estimation of pit:

(1.2)

where the “hats” in this expression denote estimators (see Chapter 3). Expres-
sion (1.2) is very general and widely applicable. In fact, virtually all of the
abundance estimation methods summarized and reviewed by Seber (1973,
1982), Lancia et al. (1994, 2005), Thompson et al. (1998), Williams et al.
(2002), and Borchers et al. (2003) involve different approaches to the estima-
tion of detection probability followed by (or integrated with) application of
expression (1.2).

Frequently, interest will not be in abundance itself but in relative abun-
dance, the ratio of abundances at two locations (lijt = Nit/Njt, where i and j
denote locations and t still denotes time), or in rate of population change, the
ratio of abundances in the same location at two times (lit = Nit+1/Nit). Some-
times count statistics are treated as indices, and their ratio is used to estimate
the true ratio of abundances. For example, consider the estimator it = Cit+1/Cit.
The expectation of this estimator can be approximated using expression 
(1.1) as:

(1.3)

As can be seen from (1.3), the ratio of counts estimates the product of the
quantity of interest, lit, and the ratio of detection probabilities. If the detec-
tion probabilities are very similar for the two sample times, then the estima-
tor will not be badly biased, but when detection probabilities differ, then the
index-based estimator will be biased. If detection probability itself is viewed
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as a random variable, then we still require E(pit) = E(pit+1) in order for a ratio
of counts to be a reasonable estimator.

Proponents of the use of count statistics as indices for estimating relative
abundance typically recommend standardization of survey methods as one
means of trying to insure similar detection probabilities. Standardization
involves factors that are under the control of the investigator (e.g., effort, trap
type, bait, season and time of day of survey). While standardization of survey
methods is usually a good idea, we believe that this approach is unlikely to
produce equal detection probabilities, because there are always likely to be
unidentified and uncontrollable factors that influence detection probabilities
(Conroy and Nichols 1996). Sometimes it is possible to identify uncontrol-
lable factors that could influence detection probability and incorporate them
as covariates into analyses of count statistics. This approach is reasonable when
dealing with factors that could only affect detection probability and not animal
abundance itself. For example, differences in detection probabilities among
observers are often incorporated into analyses of avian point count data (Link
and Sauer 1997, 2002). However, it would not be wise to use a similar
approach with habitat data, as habitat would be expected to influence not only
detection probability but also animal abundance itself. Thus, “controlling” for
habitat effects by incorporating them into analyses as covariates would not be
appropriate. Of course, factors that we do not identify but still affect detection
probability cannot be treated as covariates either.

Another common claim supporting the use of indices is that they are 
relatively assumption free, unlike the methods used to actually estimate 
abundance (e.g., Seber 1982; Williams et al. 2002). However, there are a large
number of implicit assumptions to be made if the index is to be related to
animal abundance. In fact, interpretation of an index as some indicator of true
population size typically requires all the assumptions used to estimate abun-
dance plus the assumption that a constant fraction of the population is counted
each survey. Some uses of indices require the assumption that all animals are
counted during each survey. As these assumptions are unlikely to be true, we
believe that indices have a very limited use in good monitoring programs. 
We conclude that estimation of both absolute and relative abundance re-
quires information about detection probability (also see Lancia et al. 1994;
MacKenzie and Kendall 2002; Williams et al. 2002).

The importance of obtaining information about detection probability
extends to other state variables as well. Investigations of species richness
usually involve counts of the number of different species. Under some designs
the counts are conducted at multiple locations within some large area to which
inference is to apply, whereas other designs use counts conducted at multiple
times (e.g., days) on a single area of interest (e.g., Nichols and Conroy 1996;
Williams et al. 2002). In both designs, it is recognized that some species may
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go undetected, and the replication (geographic or temporal) is used to esti-
mate a species level detection probability, the probability that at least one indi-
vidual of a species will be detected given that the species inhabits the area of
interest. Efforts to estimate species richness from samples of animal commu-
nities are not new (Fisher et al. 1943; Preston 1948; Burnham and Overton
1979). Nevertheless, community ecologists have tended to ignore the issue of
detection probabilities less than 1, and only recently has adequate attention
been devoted to this estimation problem (e.g., Chao and Lee 1992; Bunge and
Fitzpatrick 1993; Colwell and Coddington 1994; Walther et al. 1995; Chao
et al. 1996; Nichols and Conroy 1996; Boulinier et al. 1998a; Cam et al. 2000;
Williams et al. 2002; Dorazio and Royle 2005).

Detection probability is also very relevant to the estimation of occupancy.
Define occupancy, y, as the probability that a randomly selected site or sam-
pling unit in an area of interest is occupied by a species (i.e., the site contains
at least one individual of the species). If x and s represent the number of occu-
pied and total sites, respectively, then we can estimate occupancy as = x/s.
However, x is not typically known. Instead, we will have a count of sites where
the species has been detected, but this count will likely be smaller than x,
because species will not always be detected in occupied sites (i.e., due to “false
absences”). Thus, we must develop methods (e.g., based on multiple surveys
of sites) to estimate detection probability and thus to estimate x. For example,
we can use an analog of expression (1.2), where the count is the number of
sites at which the species is detected, and the detection probability is the prob-
ability that the species is detected during sampling of an occupied site. Occu-
pancy can then be estimated as:

(1.4)

We have actually developed more direct ways to estimate occupancy (e.g.,
MacKenzie et al. 2002; Royle and Nichols 2003; Chapters 4, 5), but the basic
rationale underlying these approaches is the same as outlined here.

Inferences about occupancy may be misleading when detection probability
is not incorporated into the methods of data analysis. Not only will naïve
approaches underestimate occupancy (as above), but indices intended to
reflect relative occupancy also could be biased (MacKenzie 2006) and the effect
of casual factors or variables may be underestimated (Tyre et al. 2003) or
misidentified, particularly if detection probability covaries with the factors or
variables thought to affect occupancy (Gu and Swihart 2004; MacKenzie
2006). Inferences about the dynamic processes that drive changes in occu-
pancy may also be inaccurate (Moilenan 2002; MacKenzie et al. 2003). Indeed,
an important theme of this book is that robust inference about occupancy and
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related dynamics can only be made by explicitly accounting for detection 
probability.

1.3. INFERENCE ABOUT DYNAMICS AND CAUSATION

Chapter 2 will focus on the “what” of animal sampling programs and discuss
the use of occupancy as a state variable. Much of the remainder of the book
will then focus on the “how” question of sampling animal populations. That
is, given interest in occupancy, how do we estimate this state variable and the
vital rates responsible for its change in reasonable ways? Although we believe
that this emphasis is justified by the absence of previous work and good guid-
ance on drawing inferences about occupancy, we regret the need to abandon
issues about “why” we sample animal populations. In our introductory dis-
cussion about why we might want to sample animal populations and com-
munities, we emphasized that sampling programs are usefully viewed as
components of the larger processes of science or management. In this section,
we briefly discuss the manner in which results of animal sampling programs
are used to draw the inferences needed for science or management. This dis-
cussion touches aspects of design that extend well beyond efforts to obtain
reasonable estimates of state variables of interest.

The key step in the scientific process involves a comparison of estimates of
state variables with model-based predictions associated with competing
hypotheses. Such comparisons also constitute an important management use
of estimates from animal sampling programs, as the ability to predict conse-
quences of different management actions is critically important to informed
management. Scientific programs include interest in responses of animal pop-
ulations and communities to a variety of factors (e.g., changes in predators,
competitors, weather, habitat, disease, toxins/pesticides). Management pro-
grams focus not only on responses to management actions but also on other
factors that might improve predictive abilities. We would like to discriminate
among competing hypotheses about the relevance of different causal factors to
system dynamics with the ultimate goal of being able to predict the magnitude
of the state variable(s) at time t + 1, given the magnitude of the state variable
at time t and knowledge of the causal factors operating between times t and 
t + 1 (Williams 1997; Williams et al. 2002).

GENERATION OF SYSTEM DYNAMICS

The scientific process usually includes some means of generating system
dynamics so that estimated changes in state variables can be compared with
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the predictions of competing models. Multiple approaches are used to gener-
ate system dynamics in population and community ecology, and we classify
these approaches broadly as true manipulative experiments, constrained
designs or quasi-experiments, and observational studies (Romesburg 1981;
Skalski and Robson 1992; Manly 1992; Williams et al. 2002). These approaches
merit brief discussion here, as they provide different strengths of inference
(Fig. 1.2).

Inferences are strongest when system dynamics are generated via the
conduct of true manipulative experiments (see Fisher 1947; Hurlbert 1984;
Skalski and Robson 1992; Manly 1995). Such experiments are characterized
by replication, randomization in the assignment of different treatments (appli-
cation of different hypothesized causal factors) to experimental units, and the
use of a control or standard treatment group. In the context of population and
community ecology, experimental units may be populations or communities
occurring naturally or created as part of the experimental design. Replication
refers to the application of treatments to multiple experimental units as a
means of estimating the experimental error or error variance. The error vari-
ance reflects the variance among experimental units to be expected in the
absence of treatment differences (i.e., the variance associated with all factors
except the different treatments). Randomization refers to random assignment
of treatments to experimental units. Randomization protects against system-
atic differences among experimental units receiving different treatments and
represents an effort to insure that any systematic post-treatment differences
among experimental units treated differently can be attributed to the treat-

Strength of 

Inference 

Strong 
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Manipulative Experiments 

Constrained Design Studies

Observational Studies
– a priori hypotheses 

– a posteriori hypotheses 

FIGURE 1.2 Strength of inference of different sampling designs that could be used to generate

system dynamics.



ments themselves. One treatment type is typically designated as a control 
and is used to provide a baseline against which other treatments can be com-
pared. The use of a control group is especially useful in attributing causation
to different treatments and permitting estimation of treatment effects on
response variables. Manipulative experiments thus seek to reduce potential
sources of ambiguity to the extent possible, yielding strong inferences about
causation.

True manipulative experiments are frequently difficult to perform on free-
ranging animal populations and communities due to cost and practical field
constraints. In many instances, we may be able to manipulate systems but 
may be required to do so using study designs that lack replication, random-
ization, or both of these features (see Green 1979; Skalski and Robson 1992;
Williams et al. 2002). Inferences resulting from such constrained, or quasi-
experimental, designs will typically not be as strong as those based on manip-
ulative experimentation (see examples in Nichols and Johnson 1989).

Finally, the investigator may be unable to manipulate the system at all and
may be forced to rely on natural variation to generate system dynamics. For
example, large-scale animal monitoring programs may provide time series 
of estimated state variables, and retrospective analyses can be used to try to
distinguish among competing hypotheses about system dynamics (Nichols
1991a). Two general approaches to observational studies are used, and they
are distinguished by the existence of a priori hypotheses. The observational
studies that tend to be most useful to science are those for which conditional
a priori hypotheses are specified and used to guide monitoring program design
(Nichols 2001; Williams et al. 2002). The hypotheses are conditional in the
sense that changes in purported causal factors are not known a priori, as they
are when the investigator imposes a manipulation. Instead, the different
hypotheses predict different relationships between suspected causal factors and
system state variables, and specific predictions then emerge as changes in the
causal factors occur naturally and are observed. The initial specification of the
hypotheses facilitates monitoring program design, as efforts can be devoted to
monitoring changes in hypothesized causal factors as well.

The other approach to observational studies involves the development of a
posteriori hypotheses to explain observed system dynamics. Monitoring pro-
grams may yield annual estimates of quantities such as population size over
relatively long time periods (e.g., 20 years), and it is commonly thought that
such trajectories lead directly to an understanding of underlying population
dynamics. It is a common practice to use such data with correlation and regres-
sion analyses to investigate possible relationships between population size and
various environmental and management variables. The problem with this
approach is that it is unlikely to yield “reliable knowledge” (Romesburg 1981),
because there will typically be multiple a posteriori hypotheses that provide
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reasonable explanations for any observed time series (Nichols 1991a). Indeed,
we tend to agree with Pirsig’s (1974:107) assertion that The number of rational
hypotheses that can explain any given phenomenon is infinite.

The potential for being misled by retrospective analysis of data exists for all
kinds of observations (Platt 1964; Romesburg 1981) but is probably especially
large for time series of estimates of population size and related variables. One
reason for this is that population size is not observed but is estimated, often
with large sampling variances and sometimes with bias. Temporal variation in
point estimates of population size is thus not equivalent to temporal variation
in the underlying population (Link and Nichols 1994). Another difficulty in
drawing inferences from retrospective analyses of population trajectory data
involves the stochastic nature of population processes. Death, for example, is
typically viewed as a simple stochastic process. If a population has 100 animals
at time t and if each of these animals has a probability of 0.2 of dying during
the interval (t, t + 1), then we do not expect exactly 80 animals to be alive at
time t + 1. Instead, the number of survivors will be a binomial random vari-
able with expected value 80, but with likely realized values of 78, 83, 75, etc.
Reproductive processes and movement are also stochastic in nature, leading
to the view of a population trajectory as a single realization of a (likely com-
plicated) stochastic process. There is little reason for us to expect to be able
to infer much about the nature of an unknown stochastic process based on a
single realization of that process (Nichols 1991a). This is analogous to being
handed a loaded coin, being permitted to flip it once, and then being asked to
specify the probability of obtaining heads.

Another difficulty associated with inferences from retrospective studies of
population monitoring data involves using correlation analysis to draw infer-
ences about the functional relationship between variables represented by time
series. A clear example of such problems involves the existence of trends and
monotonicity in many environmental covariates that potentially influence
animal populations. Metrics of human-related environmental variables such as
habitat fragmentation, habitat degradation, and pollutant levels will frequently
tend to show an increasing trend over time. Correlation analyses involving two
variables, each of which shows a time trend, will tend to indicate association,
although this may have nothing to do with any functional relationship between
the variables. In fact, the problem of conducting association analyses of two
time series extends well beyond the case of monotonic trends, and such analy-
ses frequently lead to inappropriate inferences (Yule 1926; Barker and Sauer
1992).

These various considerations lead us to conclude that development of a pos-
teriori hypotheses based on retrospective analyses of monitoring data is an
approach that necessarily results in weak inferences. Certainly we do not claim
that such retrospective analyses are without value, as they can sometimes



provide useful insights and ideas about system behavior. Instead, our recom-
mendation is that such analyses be viewed primarily as an approach to hypoth-
esis generation rather than as an inferential assessment of the hypothesis as an
explanation for system dynamics. We thus recommend that observational
studies be guided by a priori hypotheses, with exploratory retrospective analy-
ses possibly used as a means of hypothesis generation.

As noted above, distinguishing among competing hypotheses about system
response to management is an important component of an informed decision
process. The term adaptive management (e.g., Holling 1978; Walters 1986;
Hilborn and Walters 1992; Williams et al. 2002) typically applies to manage-
ment that is state dependent and that incorporates learning about system
response to management actions. It is this learning component that distin-
guishes adaptive management from other decision processes (Kendall 2001;
Williams et al. 2002). Estimates of system state are used not only for the
purpose of making state-dependent decisions but also as a means of con-
fronting the predictions of competing models about system response for the
purpose of discriminating among their associated hypotheses. Based on objec-
tives, potential actions, an estimate of system state, and models (with associ-
ated probabilities reflecting relative degrees of faith), managers make the
decision to take a particular action at time t. This action drives the system to
a new state at time t + 1, and this state is identified via a monitoring program.
Probabilities associated with degrees of faith in the various system models are
then updated based on the distance between estimated system state and the
predictions of the competing models (Kendall 2001; Nichols 2001; Williams
et al. 2002). Although this approach to multimodel inference is used in 
the current applications of adaptive management with which we are most
familiar (Nichols et al. 1995; Johnson et al. 1997; Williams et al. 2002),
hypothesis-testing approaches are also possible and are also based on the 
distance between estimated system state and model-based predictions.

In the context of the previous discussion of approaches for generating
system dynamics, the learning component of adaptive management will vir-
tually always be manipulative, in that management actions will be imposed
and system response then observed. However, attainment of management
objectives is of primary importance in adaptive management, and learning is
valued only to the extent that it is useful in better meeting objectives. Thus,
in most applications with which we are familiar, the learning components of
adaptive management exhibit the features of constrained designs. However, if
management is of a spatially extended system and if different actions are to be
taken on different spatial units of the system, then a manipulative experimental
approach might be taken as well.

In summary, the conduct of science requires some means of generating
system dynamics for comparison with predictions of competing hypotheses.

16 Occupancy Estimation and Modeling
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True manipulative experiments represent a study design that permits strong
inferences about causation. Constrained or quasi-experimental designs involve
manipulations, but the absence of either randomization or replication, or both
features, does not permit the strength of inference of a true experiment. Finally,
observational studies based on retrospective analyses of monitoring data
involve no manipulation as part of study design and rely on natural variation
in purported causal factors. These analyses tend to yield weaker inferences
than manipulative studies. Within observational studies using retrospective
analyses, those that test predictions of a priori hypotheses tend to yield
stronger inferences than analyses used to generate a posteriori hypotheses.
Adaptive management represents an informed decision process incorporating
explicit efforts to learn about system responses to management actions.
Because learning is not the sole objective of adaptive management, manage-
ment manipulations typically follow some form of constrained design.

STATICS AND PROCESS VS. PATTERN

Inferences about causation emerge most naturally from studies of system
dynamics. Scientists and managers estimate the state variable at time t, apply
or observe purported causal factors operating between times t and t + 1, and
then estimate the state variable again at time t + 1. However, because of the
difficulties in applying manipulations to animal populations and communities
and in properly estimating relevant state variables over time, animal ecologists
have also tried to draw inferences about dynamics based on observations of
spatial pattern at a single time, t. Brown (1995:10) describes “macroecology”
as a research program in ecology with “emphasis on statistical pattern analy-
sis rather than experimental manipulation.” Inferences based on such efforts
have been applied to each of the state variables described above—abundance,
species richness, and occupancy.

Ecologists frequently use spatial variation in abundance of animals to draw
inferences about habitat “quality,” based on the commonsense idea that if
animals are found in higher density in one habitat than others, then that
habitat is likely of high quality. For such a statement to have meaning,
“quality” must be defined. In their influential work on habitat selection,
Fretwell and Lucas (1969; Fretwell 1972) defined habitat quality in terms of
the fitness of organisms in that habitat. The two fundamental fitness compo-
nents, survival probability and reproductive rate, are also primary determi-
nants of population dynamics, so this definition is relevant to population
ecologists and managers as well. Observations of spatial variation in animal
density associated with habitat variation do not yield reliable inferences about
individual fitness or dynamics of populations inhabiting such areas (e.g., van



Horne 1983; Pulliam 1988). Instead, such inferences require studies of system
dynamics, in this case habitat-specific demography (e.g., Franklin et al. 2000),
preferably in conjunction with habitat manipulations.

The relationship between species richness and area is one of the oldest and
most-cited static relationships in ecology (e.g., Arrhenius 1921; Preston 1948).
Hypotheses about the dynamic processes responsible for this relationship
include habitat selection coupled with habitat heterogeneity (e.g., Williams
1964) and increased probabilities of local extinction in small areas (e.g.,
MacArthur and Wilson 1967). However, these two hypotheses yield similar
species-area relationships, providing no basis for distinguishing between these
or other mechanistic explanations (Connor and McCoy 1979).

Occupancy appears to be used more frequently in static analyses than either
of the other discussed state variables, abundance and species richness. Static
analyses of occupancy data in animal ecology can be illustrated with two
common applications, single-species incidence functions and multiple-species
co-occurrence patterns. Incidence functions involve efforts to model dichoto-
mous spatial occupancy pattern (presence or absence) as a function of char-
acteristics of the sampled locations or patches. Diamond (1975a) first
described incidence functions in his studies of distributional ecology of birds
inhabiting islands in the area of New Guinea. He grouped islands by such char-
acteristics as land area and total avian species richness and then plotted the
proportion of islands in each category (e.g., area, richness) that was occupied
by a particular species. Diamond noted that some species tended to occur only
on large, species-rich islands, whereas others were found only on remote,
species-poor islands. Diamond (1975a:353) viewed the incidence function as
a “ ‘fingerprint’ of the distributional strategy of a species” and used these func-
tions to draw inferences about such processes as dispersal, habitat selection,
and competition (see below and Chapter 2). These inferences have been chal-
lenged based on the consistency of observed patterns with other processes
(e.g., Connor and Simberloff 1979).

Hanski (1992) adapted the incidence function for use in describing and
modeling metapopulation dynamics. He noted that in an equilibrium system
of many patches of similar size, the fraction of occupied patches at any point
in time can be written as an explicit function of patch probabilities of extinc-
tion and colonization. He then postulated functional forms for the relation-
ships between extinction probability and patch area and between colonization
probability and patch isolation. If metapopulation dynamics can be described
as a stationary Markov process, then parameters of the extinction and colo-
nization relationships can be estimated using occupancy data from a single
point in time (e.g., Hanski 1992, 1994a,b, 1998, 1999). However, the diffi-
culties of inferring process from pattern have been noted. For example, based
on analyses of year-to-year changes in occupancy of pikas (Ochotona princeps),
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Clinchy et al. (2002:351) recommended that “simple patch occupancy surveys
should not be considered as substitutes for detailed experimental tests of
hypothesized population processes.”

Use of occupancy data from multiple species to draw inferences about
species interactions also has a long history in ecology. Some of the first statis-
tical analyses adapted by ecologists were used to test the null hypothesis of
independence of species occurrence using occupancy data for two species
(Forbes 1907; Dice 1945; Cole 1949). Non-independent occupancy patterns
of multiple species on islands have been interpreted as evidence of competi-
tion (e.g., MacArthur 1972; Diamond 1975a). For example, the “assembly
rules” of Diamond (1975a) include specification of species combinations that
cannot exist for reasons of interspecific competition and are based on empir-
ical observations of species distributions on different islands. However, such
inferences about process based on observed patterns have been sharply criti-
cized. Critics argued that rejection of predictions of neutral models developed
from distributional null hypotheses should precede any attempt to develop
more complicated explanatory hypotheses for static species distribution pat-
terns (e.g., Connor and Simberloff 1979, 1986; Simberloff and Connor 1981).
Neutral models themselves were then criticized by proponents of the original
competitive hypotheses (Diamond and Gilpin 1982; Gilpin and Diamond
1984), neutral model proponents responded (Connor and Simberloff 1984;
1986), and the entire issue of inference based on species distribution patterns
was hotly debated (Strong et al. 1984). Such debate is not surprising, as strong
disagreement is a natural consequence of weak inference, which brings us back
to Pirsig’s (1974) assertion about the ability to develop large numbers of plau-
sible hypotheses to explain any given pattern.

Each of the three quantities listed as state variables of potential interest in
population ecology and management (abundance, occupancy, and species rich-
ness) has been investigated with respect to its distribution over space at one
point in time. Identification of spatial patterns has then led to inferences about
the dynamic processes that produced these patterns. However, these inferences
are always very weak, as many alternative hypotheses can be invoked to
explain most ecological patterns (Fig. 1.3). Our conclusions about drawing
inferences about process based on snapshots of spatial pattern are simple and
straightforward. First, inferences about system dynamics should be based on
estimates and observations of those dynamics, and of the vital rates that
produce them, whenever possible. Second, when ecologists do try to draw
inferences about dynamics based on observations of static pattern, we believe
that such inferences are much more likely to be useful if the specification of
model-based predictions from competing or single hypotheses precedes the
investigation of pattern (e.g., see Karanth et al. 2004). Brown (1995:18) stated,
“Macroecology seeks to discover, describe, and explain the patterns of varia-



tion.” We recognize that such efforts can be useful, but we recommend that
they be viewed as mechanisms for hypothesis generation rather than for infer-
ence and testing.

1.4. DISCUSSION

We began this chapter by asserting that many animal sampling programs,
including many large-scale monitoring programs, have deficiencies resulting
from failure to adequately consider three basic questions: Why do we want to
sample animal populations and communities? What quantities do we want to
estimate? How should we estimate the quantities of interest? In answer to the
“why” question, we suggested that animal sampling and monitoring programs
should not be viewed as stand-alone activities but as components of the larger
processes of science or management. This recognition forces consideration of
exactly how resulting data are to be used in these processes, and this consid-
eration leads to program designs that maximize utility of data. The answer to
the “what” question will depend heavily on the answer to the “why” question,
and we noted that abundance, occupancy, and species richness are reasonable
state variables for a variety of objectives. Of these potential state variables,
occupancy has received the least methodological attention. Indeed, our objec-
tive in this book is to provide a set of inference methods useful for investi-
gating this state variable.
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FIGURE 1.3 Illustration of how a pattern observed at time t may result from very different

processes. Darkened circles represent occupied patches, and white circles represent unoccupied

patches. The level of turnover between times t - 1 and t is much greater in scenario B.



Introduction 21

The answer to the “how” question depends on the answers to the previous
two questions, but also requires attention to two basic issues. When the entire
area of interest cannot be surveyed, space must be sampled in a manner that
is maximally useful to study objectives and that permits inference about the
entire areas of interest. Because this problem of spatial sampling characterizes
a wide variety of applications in statistical inference, it has been addressed well
elsewhere. Spatial sampling will be touched on throughout the other chapters
but will not be emphasized in this book. The second issue involves imperfect
detection, the likelihood that surveys of animal populations and communities
will not result in complete counts of all individuals or species present in sur-
veyed locations. We present a general conceptual framework that relates the
various count statistics obtained in studies of animal populations and com-
munities to the true state variables of interest. Until very recently, uses of occu-
pancy as a state variable in animal ecology have simply not dealt with the issue
that failure to find evidence of a species at a location does not necessarily mean
that the species does not occupy the area. The suite of models, methods, and
estimators that we develop in this book is basically designed to remedy this
situation and permit inferences about occupancy that deal adequately with
detection probabilities less than 1.

Because most of this book focuses on parameter estimation, we returned to
the “why” question and the manner in which estimates of state variables are
to be used in the conduct of science and management. We briefly addressed
the general question of drawing inferences about system dynamics and causal
factors responsible for these dynamics. Approaches to the generation of system
dynamics for the purpose of conducting science include true manipulative
experimentation, constrained design manipulative studies, and observational
studies using retrospective analyses. Strength of inference is greatest for manip-
ulative experiments and weakest for retrospective analyses of time series data
from observational studies. Within the category of observational studies, those
used to provide confrontations with predictions of a priori hypotheses are
much more likely to be useful than those used solely to develop a posteriori
hypotheses.

Finally, we noted that investigators sometimes try to draw inferences about
system dynamics based on static looks at spatial patterns of state variables at
single points in time. Such efforts to draw inferences about process based on
observation of pattern have been used with all three state variables, abundance,
occupancy, and species richness. However, such efforts suffer from the ability
to develop many process-based hypotheses to explain the generation of any
particular pattern. Previous uses of occupancy in animal ecology have relied
heavily on inferences based on statics and pattern, and we note the short-
comings of this approach. In particular, we do not view the primary purpose
of this book to be provision of methods for obtaining better estimates of static



occupancy patterns for use in drawing inferences about dynamic processes.
Instead, we also provide methods for drawing inferences about occupancy
dynamics based on data covering multiple time periods.

In Chapter 2, we consider both historical and proposed uses of occupancy
as a state variable in studies of animal populations and communities. With
each use, we emphasize the need to deal adequately with detection probabili-
ties. Chapter 3 provides an elementary overview of the statistical concepts used
throughout the book. Chapters 4–6 then deal with single-species occupancy
studies in which multiple locations are surveyed during a single time period
or “season.” The parameter of interest is the probability of occupancy of a site,
given that occupancy cannot always be detected. Chapter 4 presents a basic
model and estimators, and includes discussion of issues such as missing data,
covariate modeling, goodness-of-fit tests, and consequences of violations of
model assumptions. Chapter 5 focuses on the common assumption violation
of heterogeneous detection probabilities. We present mixture models that
allow for variation in detection probabilities that cannot be attributed to 
measured covariates. Animal abundance at a site is identified as one important
source of heterogeneity in detection probability. The relationship between
abundance and detection probability provides a basis for estimating abundance
from occupancy survey data and for estimating occupancy itself in a manner
that deals with this heterogeneity. Chapter 6 deals with the important topic of
study design for single-season occupancy studies for a single species.

Chapter 7 then focuses on occupancy studies conducted over multiple years
or seasons for the purpose of drawing inference about occupancy dynamics
for a single species. Rate of change in occupancy over time is identified as a
parameter of interest, and the vital rates responsible for such change, local
probabilities of extinction and colonization, are also incorporated into esti-
mation models. Estimation, covariate modeling, assumption violations, and
study design are all considered. Chapter 8 shifts emphasis to multiple species
and begins with inference procedures for two species in a single year or season.
Methods permit inference about dependence in probabilities of occupancy
given detection probabilities that are less than 1 and that may themselves
exhibit dependence on presence or detection of the other species. These
methods are then extended to multiple seasons, where the emphasis shifts to
possible dependence of extinction and colonization probabilities of one species
on the presence of the other species.

Chapter 9 includes some suggestions about potential uses of occupancy
modeling in community-level studies. One approach exploits the analogy
between the different species in a local species pool and the “locations” of
typical occupancy studies in order to directly estimate the fraction of the pool
that is present. If multiple time periods are available, then local extinction
probability and turnover can be estimated directly using this basic approach
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as well. The other potential use in community-level investigations involves the
synthetic treatment of Dorazio and Royle (2005) in which species richness is
estimated, as is the equitability component of many diversity metrics (based
on relative occupancy). This work also provides a conceptual framework for
considering species-area relationships. The concluding Chapter 10 contains
several ideas for future work, as well as discussion linking spatial occupancy
and abundance in a common framework that facilitates consideration of the
relationship between range size and abundance.


