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magmas originated in relatively warm basaltic crust at lower
pressures than at present’. Simple scaling shows that, at the
same potential mantle temperature, the subducting oceanic crust
would have been a few hundred degrees warmer if the Archaean
plate scale was of the order of the upper-mantle thickness. A
low potential temperature of the early to mid-Archaean upper
mantle is consistent with the results of thermobarometry®.
MgO-rich Archaean komatiites’*® may have originated in the
relatively hot boundary layer between the mantle layers. This
boundary layer is significantly cooler or even non-existent after

the transition, thereby explaining the absence of these komatiites
in the post-Archaean. The increase in the volume of the sedi-
ments and the decrease in atmospheric temperature at the transi-
tion may be related to the growth of the continents: an increase
in continental surface area increases the weathering rate and the
rate of removal of the greenhouse-gas CO, from the
atmosphere®’. The formation of the shelves may indicate a dra-
matic drop in continental freeboard which may, at least partly,
be attributed to a substantial increase in ocean water mass
through increased degassing of the mantle. O
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BecAUSE water has a higher heat capacity than air, large bodies
of water fluctuate in temperature more slowly than does the
atmosphere'. Marine temperature time series are ‘redder’ than
atmospheric temperature time series by analogy to light: in red
light, low-frequency variability has greater amplitude than high-
frequency variability, whereas in white light all frequencies have
the same amplitude’. Differences in the relative importance of high-
and low-frequency variability in different habitats affect the popu-
lation dynamics of individual species and the structure of ecological
communities*”. Population dynamics of individual species are
thought to be dominated by low-frequency fluctuations, that is, to
display reddened fluctuations'®. Here I report, however, that in
eight nonlinear, iterative, deterministic, autonomous, discrete-time
population models, some of which have been used to model real
biological populations, the power spectral densities of chaotic tra-
jectories are neither white nor reddened but are notably blue, with
increasing power at higher frequencies.

The simplest discrete-time population model capable of rep-
resenting the influence of environmental variability assumes that
P,.\=rP,, P,>0 (ref. 11). Here P, denotes the population size
(assumed to vary continuously) at time ¢, and r, is a positive-
valued random variable that describes the effect of environ-
mental variation on survival and reproduction from time ¢ to
time 7+ 1. In this idealized model, the population transforms a
white-noise environmental input to a random-walk population
trajectory, which has a reddened spectrum. To see this, suppose
that r, is identically and independently distributed for all #; r, is
thus a discrete-time white noise. Its spectrum is flat, as is shown
approximately in the numerical simulations in Fig. la. The loga-
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rithm of population size log (P,)=log (Po)+zj:(') log (r,) 1s a
random walk or a discrete-time brownian motion (sometimes
called brown noise), which is known to be highly reddened. The
spectrum of a discrete-time random walk is illustrated in the
numerical simulations in Fig. 15. It would hardly be surprising
if, in more realistic models or in reality, white or reddened
environmental variability resulted in still redder population
fluctuations.

I examined the spectra of chaotic trajectories in eight deter-
ministic, autonomous, nonlinear population models (Table 1).
In these models, P, uniquely determines P, ,, hence population
fluctuations are generated by internal dynamics rather than by
environmental variability. The first six models are well known
and have been widely used for non-human biological popula-
tions with discrete generations'>'>. The last two models'*'?,
developed to describe human populations, have not previously
been shown to behave chaotically for some parameter values. It
appears not to have been noticed previously that chaotic behav-
iour in all eight of these models has a blue spectrum for many
parameter values.

For each model, I generated 100 sample paths of 1,024 time
steps, starting from an initial population size P, which was
randomly and uniformly distributed between 0 and 1. (The Aus-
tin-Brewer model'* was exceptional in that P, was uniformly
distributed between 0 and 20.) I then truncated P, through Ps;,
to eliminate any transient effects of initial conditions and
checked that no population sizes were zero or negative. The
remaining sequence of 512 population sizes was then tested
against a sufficient condition for the existence of chaos'®. For
the parameter values shown in Table 1, all simulations satisfied
the sufficient condition and were therefore shown to be chaotic.
Next I calculated the fast Fourier transform (FFT) of the 512
population sizes, using the FFT function provided by Matlab
version 3.5g. Because of the mirror symmetry in the spectrum
with respect to its middle, I retained only the first 256 elements
returned by the FFT function, dropped the first of these because
it was artefactually distorted by the finite length of the time
series, and multiplied each of the remaining 255 complex num-
bers by its complex conjugate to obtain the squared amplitude
or power of the spectrum at the corresponding frequency. At
each of the 255 frequencies, I computed the minimum, the maxi-
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FIG. 1 Power spectral densities (spectra) of
discrete-time random sequences: a, white noise

X.= &, and b, red noise (or random walk or brown
noise) X¢+1=Xc+&. In both cases, ¢ is a a 4 " - b 6
sequence of independent and identically distri- 3 - 5
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FIG. 2 Power spectral densities of eight discrete-
time nonlinear population models: a, Moran-
Ricker*2?°28; b Verhulst'?; ¢, Pennycuick**?7; d,
Hassell'**%; e, Maynard Smith'22%; £, Varley'32; “0 04 02 03 04 05 0 01 02 03 04 05
: 14,
g,.ligstm—Brewe.r ; and h, Malthus—Condorcet— Frequency Frequency
Mill™>. Table 1 gives the equations and parameter
values. Symbols and units are as in Fig. 1. By con-
trast with the white or reddened spectra commonly € 5 f
observed in environmental and ecological time '@
series, these spectra are blue, with greater power
at higher frequencies. = —
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TABLE 1 Eight nonlinear population models, with parameter values that give chaotic behaviour

Model Parameter values™ Model name
P..1=P.exp [r(1—P)] r=3.7 Moran-Ricker22°2¢
Piia=P{l+r(1—P)] r=27 Verhulst*?
Pioy=rP/{1+exp[—a(l—P,/b)} r =50,a=0.1, b=0.1 Pennycuick>?’
Pii1=rP/(1+aP)° r=55, a=0.0001, b=100 Hassell***®

P 1=rPy/[1+(aP)’] r=5,a=0.5b=4 Maynard Smith*%2°
P .1=rP if P,.<C, P 1=rP{ °if P.>C r=4,b=3,C=1 Varley'>*°

Pii1=P{1+r[1—exp(—sP)K—P.)}
P a=Pir[K+Llog (P)—P]

r=0.06, s=0.13, K=45
r=0.006, K=600, L=4

Austin-Brewer**
Malthus—Condorcet—Mill*®

* Initial conditions are taken uniformly from O to 1, except for the Austin-Brewer model, where they are uniform between 0 and 20.

mum and the average over all 100 simulations for each model.
Because the power varied widely across frequencies, the log;, of
the power is displayed as a function of frequency in Fig. 2.

For each model, the power of fluctuations at high frequencies
was at least two orders of magnitude higher, on average, than
the power at low frequencies. The maximum power at the lowest
frequencies often fell below the minimum power at the highest
frequencies. This observation provides assurance that the appar-
ent increase is not due to statistical fluctuations in the spectrum.
Although the detailed shape of the average spectrum varied from
model to model, and was not always strictly monotonically
increasing, all displayed an upward trend in power with increas-
ing frequency. Had a logarithmic scale been used for frequency,
as is sometimes the case, the increase in power with increasing
frequency would have been still more visually obvious. The
greater apparent scatter in the minimum values compared to the
maximum values results from the logarithmic transformation of
the power.

These results are limited in several respects. A blue spectrum
is demonstrated here only for a single point in the parameter
space of each model. For most of the models, the parameter
values shown are the first values tried that produced chaotic
trajectories, suggesting that, within the region of parameter
space that produces chaos, many points yield blue spectra.
Exploratory numerical calculations suggest that the spectra of
chaotic trajectories of these models are blue for many parameter
values. However, in the Verhulst model, for example, for a few
parameter values the spectrum has a single isolated peak (corre-
sponding to period-3 oscillations) superimposed on a generally
blue background (V. Jansen, personal communication), whereas
for other parameter values the spectrum is nearly white (G.
Sugihara, personal communication). In chaotic trajectories from
models other than those considered here, the spectrum may simi-
larly display isolated spikes, depending on parameter values'’.
These results do not cover all nonlinear, iterative, autonomous,
deterministic discrete-generation population models that have
been or could be considered. However, no models in this class
that have been tested so far have had chaotic trajectories with
a reddened spectrum, and, for most parameter values, chaotic
trajectories that lack discrete peaks are distinctly blue. An ana-
lytical understanding of why this is so remains for the future.

The results presented here create a tension between the claims
that reddened time series of natural and experimental population
sizes are common or ubiquitous, and that chaotic trajectories of
nonlinear population (those analysed here and similar) models
are accurate descriptions of these time series'®'®. It is not yet
known whether this dilemma can be resolved by expanding the
models to take account of environmental fluctuations, the inter-
actions of single species with other species™, or the age
structure®"* and spatial distribution®® of populations. Periodic
and stochastic fluctuations in the parameter r of the first two
models in Table 1 have already been shown to induce complex
and counter-intuitive changes in the dynamics of these models™,
but the spectral effects of such fluctuations in these and addi-
tional models have not been investigated. O
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EARLY intracellular studies of cerebral cortical neurons indicated
that synaptic input evokes dendritic action potentials that convey
information towards the soma'. Subsequent work in vitro estab-
lished that neocortical neurons produce dendritic Ca®>' action
potentials’>. To determine whether natural stimuli elicit Ca*"
spikes, we combined the techniques of whole-cell recording®’,
pharmacology® and quantitative receptive field mapping®. Our
findings show that visual stimulation routinely evoked Ca>" spikes
in distinct functional'® and anatomical'' classes of cells in different
layers of the cat striate cortex'>. Hence regenerative Ca®*
potentials appear to play a role in both the initial and later stages
of cortical sensory processing.
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