
Modeling Individual Animal Histories
with Multistate Capture–Recapture

Models

JEAN‐DOMINIQUE LEBRETON, JAMES D. NICHOLS,
RICHARD J. BARKER, ROGER PRADEL AND

JEFFREY A. SPENDELOW

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
II. A Historical Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
III. Conditional Multistate Models as a Generalization of

Survival Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A. Multistate Models and Data: Meadow Vole Example . . . . . . . . . 100
B. The Conditional Arnason–Schwarz (CAS) Model . . . . . . . . . . . . 103
C. The Jolly‐Movement (JMV) Model . . . . . . . . . . . . . . . . . . . . . . . 108
D. Assumptions and Fit Assessment of

the Jolly‐Movement (JMV) Model . . . . . . . . . . . . . . . . . . . . . . . . 109
IV. Constrained Models and Model Selection . . . . . . . . . . . . . . . . . . . . . . 113

A. The Vole Case Study: Some Predictions . . . . . . . . . . . . . . . . . . . . 113
B. Constrained Conditional Multistate Models . . . . . . . . . . . . . . . . 114
C. Constrained Models for the Vole Case Study . . . . . . . . . . . . . . . 116

V. Random Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A. Fixed and Random Effects in Capture–Recapture Models . . . . . 121
B. Mixed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
C. Treatment Effect and Time Variation in Survival in Voles . . . . . 125

VI. Recruitment Models as an Example of General Multistate Models . . 126
A. The Rapid Development of MSMR . . . . . . . . . . . . . . . . . . . . . . . 126
B. The Roseate Tern Case Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
C. General Umbrella Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
D. Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

VII. Multistate Models for Mixtures of Information. . . . . . . . . . . . . . . . . . 140
A. Recoveries and Recaptures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
B. Modeling Live Resightings Between Capture Occasions . . . . . . . 142
C. Other Mixtures of Information. . . . . . . . . . . . . . . . . . . . . . . . . . . 146

VIII. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A. Multistate Models as a General Framework . . . . . . . . . . . . . . . . 146
B. Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
C. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

ADVANCES IN ECOLOGICAL RESEARCH VOL. 41 0065-2504/09 $35.00

# 2009 Elsevier Ltd. All rights reserved DOI: 10.1016/S0065-2504(09)00403-6



SUMMARY

Many fields of science begin with a phase of exploration and description,

followed by investigations of the processes that account for observed pat-

terns. The science of ecology is no exception, and recent decades have seen a

focus on understanding key processes underlying the dynamics of ecological

systems. In population ecology, emphasis has shifted from the state variable

of population size to the demographic processes responsible for changes in

this state variable: birth, death, immigration, and emigration. In evolutionary

ecology, some of these same demographic processes, rates of birth and death,

are also the determinants of fitness. In animal population ecology, the esti-

mation of state variables and their associated vital rates is especially prob-

lematic because of the difficulties in sampling such populations and detecting

individual animals. Indeed, early capture–recapture models were developed

for the purpose of estimating population size, given the reality that all animals

are not caught or detected at any sampling occasion. More recently, capture–

recapture models for open populations were developed to draw inferences

about survival in the face of these same sampling problems. The focus of this

paper is onmulti‐statemark–recapturemodels (MSMR),which first appeared

in the 1970s but have undergone substantial development in the last 15 years.

These models were developed to deal explicitly with biological variation, in

that animals in different ‘‘states’’ (classes defined by location, physiology,

behavior, reproductive status, etc.) may have different probabilities of sur-

vival and detection. Animal transitions between states are also stochastic and

themselves of interest. These general models have proven to be extremely

useful and provide a way of thinking about a remarkably wide range of

important ecological processes. These methods are now at a stage of refine-

ment and sophistication where they can readily be used by biologists to tackle

a wide range of important issues in ecology. In this paper, we draw together

information on the state of the art in multistate mark–recapture methods,

explaining the models and illustrating their use. We provide a modeling

philosophy and a series of general principles on how to conduct analyses.

We cover key issues and features, and we anticipate the ways in which we

expect the models to develop in the years ahead. In particular:

– MSMR can now be used in a straightforward fashion by population

biologists, thanks to the development of sound goodness‐of‐fit procedures,
reliable parameter identifiability diagnostics, and robust user‐friendly com-

puter software.Constrained models and model selection procedures can be

used in the ANOVA‐like philosophy commonly used over the last 15 years

for survival models, to answer a variety of biological questions. We devel-

op as an example a treatment of meadow vole Microtus pennsylvanicus

data.
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– As in survival models, random effects should be an integral part of this

philosophy. Some simple approaches to random effects are illustrated.

– States can be defined in a very general way, for example, by combining

several criteria, such as sites and reproductive states, and can include

nonobservable states. We develop as an example a multisite recruitment

model of roseate terns Sterna dougallii.

– MSMR models appear as a natural framework for combining different

sources of information, viewed as different events that can be organized

into mutually exclusive alternatives.

– With the available developments, MSMRmodels are becoming a standard

tool in population biology, as shown by a rapid growth of their use in the

literature. In particular, given the ease with which a variety of constrained

models can now be developed, MSMR models appear as less data hungry

than was often feared.

– MSMRmodels make it also possible to unify a large array of methodology,

and, as such, are both a step towards further unification in a ‘‘mother of

all’’ model, and a sound basis for further generalizations.

– Future developments concern a variety of generalizations such as the

reverse time approach and population size estimation. ‘‘Multievent’’ models,

accounting for uncertainty in state determination, and integrated state–space

models are key generalizations already in full development.

I. INTRODUCTION

Studies of animal and plant population dynamics aim at improving our

understanding of changes in numbers in populations, whether for fundamen-

tal studies of population ecology and regulation (Murdoch 1994; Newton

1998; Turchin 1995) or for applied purposes such as the management and

conservation of populations (Beissinger andMcCullough, 2002; Lande et al.,

2003; Williams et al., 2002). While changes in numbers can be directly

addressed using successive surveys, at least in principle, it is the mechanisms

behind these changes that are of interest. Over the last century, demographic

modeling (Caswell, 2001; Leslie, 1945; Sharpe and Lotka, 1911) has focused

attention on demographic flows of individuals (i.e., on the numbers of

individuals entering the population by birth and immigration and leaving

the population by death and emigration). This focus on flows is the basis of

birth–immigration–death–emigration (bide) models (Bartlett, 1960; Bailey,

1964; Pulliam, 1988) and of similar stratified models with animals grouped by

age (Caswell, 2001; Goodman, 1967; Leslie, 1945) and then more generally

by stage (Caswell, 2001; Lebreton, 1996; Lefkovitch, 1965). Even in the
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context of functional ecology, as already stressed decades ago by Goodall

(1972), a large part of ecosystem flows are realized through the birth and

death of individuals in populations. The interest in flows, rather than just in

their result, changes in population size, is the counterpart in population

dynamics of a general move in ecology from pattern to process (Mackenzie

et al., 2006; Swihart et al., 2002). Indeed, similar changes in numbers can

result from very different flows of individuals, and only a study of flows can

lead to a deep understanding of population mechanisms and provide some

predictive ability. As a consequence, this interest in demographic flows is

now central to population ecology and to applied studies induced by the

growing concerns on the impact of human activities on the biosphere. Exam-

ples of human impact on animal populations requiring an assessment of

demographic flows are the mortality in seabird populations induced by

longline fisheries, as a consequence of the ingestion of hooks by birds

attracted by the baits (Weimerskirch et al., 1997), and the sport harvest of

waterfowl populations (Anderson, 1975; Anderson and Burnham, 1976;

Williams et al., 2002).

In evolutionary ecology, interest shifts from rates and flows to the

corresponding probabilities (e.g., of surviving, reproducing) for individual

animals, or to rates and flows for animals of the same genotype (Fisher,

1930). This shift of focus raises a number of questions about individual

quality, plasticity of traits and demographic performance, and trade‐offs
between demographic processes. Studies of individual quality include efforts

to identify measurable covariates associated with quality, where quality

reflects fitness. Variation among individuals in quality is an important deter-

minant of such demographic performance measures as extinction probability

(e.g., Conner andWhite, 1999). To the extent that such variation is heritable,

it is a determinant of the rate of natural selection (Fisher, 1930). Questions

about plasticity include the degree to which its selection depends on the per-

turbation regime to which individuals are subjected. The study of trade‐offs
includes such topics as the existence of a cost of reproduction (Roff, 1992;

Stearns, 1989, 1992). For example, will reproduction early in life induce a

cost in survival or future reproduction? If so, how is an evolutionary balance

between different ‘‘strategies’’ achieved? The central point is that the same

underlying probabilities or latent parameters govern the processes of survival

and reproduction regardless of whether interest is in evolution or population

dynamics. This correspondence between fitness components and demographic

rate parameters is intimately linked to the per‐capita assumption that arises in

population biology from the basic biological fact that organisms come only

from other organisms. Thus, approaches to estimation of survival, reproduc-

tion and, in some cases, movement are of interest to a variety of disciplines,

ranging from evolutionary ecology, to population ecology and management,

to community ecology.
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This increasing interest in demographic flows has induced the development

of empirical approaches to measure them, initially for the purpose of

providing parameter estimates for demographic models. It appeared very

early (Fisher and Ford, 1947; Jackson, 1933, 1939; Lincoln, 1930) that using

marked individuals was a key approach, providing insight into population

mechanisms in the same way as the tracer method does in chemical kinetics

(Welch et al., 1972). Severe limits appeared in the application of methods

derived from human demography, such as life tables (Chiang, 1984; Dublin

and Lotka, 1936; Pearl, 1940), to populations in the wild (Anderson et al.,

1985; Burnham and Anderson, 1979). Statistical methods for analyzing

sampling of marked individuals have to account in a statistically sound

way for the practical impossibility of following individuals exhaustively

through time and space in animal populations, a rule with few exceptions

(e.g., Bérubé et al., 1999, Bighorn sheep Ovis canadensis; Coulson, 1968,

Kittiwake gull Rissa tridactyla). This rule often applies also to plant popula-

tions, not only in the case of dormancy (the absence of an aboveground part),

but also when individuals are aboveground (Alexander et al., 1997; Kéry,

2004; Kéry and Gregg, 2004). As a consequence of a sustained pace of

development since the 1960s (Lebreton, 1995), such statistical methods to

estimate demographic rates and flows when not all marked individuals are

detected now constitute a wide and diverse framework, broadly called

capture–mark–recapture methods, or, in a more general fashion, mark–

reencounter methods. These methods are reviewed by Schwarz and Seber

(2000) and Seber and Schwarz (2002).

In parallel to the development of mark–reencounter methodology, many

long‐term field programs, notably on vertebrates, were developed and pro-

duced high quality data sets based on marked individuals (see e.g., Clutton‐
Brock, 1988; Newton, 1989; Perrins et al., 1991). The initial questions

addressed with these data sets involved survival and reproductive rates for

static groups of animals in particular locations. Subsequent biological ques-

tions, however, involved variation in survival and reproduction over time as

animals moved from one location to another (e.g., Clobert et al., 2001;

Hanski, 1999) or as they changed from one physiological or behavioral

state to another (e.g., McNamara and Houston, 1996). Such questions

required focus not only on state‐specific survival and reproduction, but

also on transition probabilities between different states.

For example, Spendelow and his collaborators (Lebreton et al., 2003;

Spendelow, 1991; Spendelow and Nichols, 1989; Spendelow et al., 1995), in

the course of a long term study of roseate terns S. dougalli, gathered data on

individuals in three breeding sites over 11 years. A typical individual history

over these 11 years is ‘‘00000a00A0C’’, indicating that this particular indi-

vidual was marked as a chick in year 6 at colony A, later seen as a breeder in

year 9 in colony A and in year 11 in colony C (lower case being for
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nonbreeders, capitals for breeders). How can one estimate dispersal rates and

rates of accession to reproduction from such data? Do these rates vary among

years relative to environmental factors? In such empirical approaches, an

individual is not only alive or not, but can be in one of several states

(nonbreeder, breeder in locations A, B, or C). At the same time, an individual

still alive can be missed in a given year (in years 7, 8, and 10 in the individual

history above). The key biological questions require us to be able to account

simultaneously for the several states and for the incomplete detection. It is

thus particularly fortunate, as recalled in a historical account below, that

the development of capture–reencounter methods presently culminates in

multistate models (Brownie et al., 1993; Hestbeck et al., 1991; Lebreton and

Pradel, 2002; Schwarz et al., 1993), in which transition of individuals between

sites or states is considered in a capture–reencounter context.

However, despite their strong biological relevance, MultiState

Mark–Recapture (MSMR, Kendall et al., 2006) models are difficult to use,

and indeed not yet widely used. This is particularly unfortunate, as a multi-

state point of view is critical for the development of demographic models

(Caswell, 2001 Chapter 3) and MSMR models are a natural tool for estimat-

ing the parameters of demographic models (Lebreton, 1996; Nichols et al.,

1992, p. 310, Caswell and Fujiwara, 2002). Pradel (2009) noted that, in the

years 2003–2006, hardly more than 5% of papers dealing with capture–

recapture used, or were devoted to, multistate models. The two main reasons

are that no synthesis is available despite, or perhaps because of, rapid

advances (Lebreton and Pradel, 2002), and MSMR models have often been

considered as data hungry (Seber and Schwarz, 2002, p. 8; Anderson et al.,

1993, p. 378) although reduced parameter models were proposed early in the

development of these models (Hestbeck et al., 1991). Given this strong

potential (Nichols and Kendall, 1995) and the diverse and recent develop-

ments dispersed in the literature, a new synthesis is clearly needed to organize

these developments, to propose some further ones, and to stimulate the use of

multistate models by population biologists to address a variety of biological

questions related to individual variability in the broad sense.

Thus, the purpose of this paper is to provide a unified theory for multistate

models, including illustrative case studies, with the hope of opening the way

to broader use and further developments, in the spirit of Lebreton et al.

(1992), who provided a unified view of single‐state survival models. For the

sake of clarity, we will rely heavily on the material in Lebreton et al. (1992)

and restrict our attention to models conditional on first release, or, for short,

conditional models, with the following steps:

� Recall briefly the history of capture–recapture methodology, in particular

the progressive move to an emphasis on rates and the early development of

multistate models (II);
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� Present the structure of conditional models (parameterizations, likelihood,

Maximum Likelihood estimation, goodness‐of‐fit) based on a simple two‐
site example and show how ‘‘single state’’ survival models can be viewed as

special cases of these (III);
� Develop constrained models and address model selection, using fixed (IV)

and random (V) effects;
� Show how complex situations can be addressed by combining states, with

models and examples for dispersal and recruitment (VI) first, and then

with mixtures of information (VII);
� Discuss the state of the art and perspectives, including speculations about

future developments (VIII).

II. A HISTORICAL ACCOUNT

Following the standard historical path from pattern to process, capture–

recapture methods were first developed to estimate population size (e.g.,

Lincoln, 1930). Flows of individuals, such as mortality and recruitment

were later introduced as nuisance parameters to permit estimation of the

size of a population changing over time (e.g., Darroch, 1959). Mortality and

recruitment were considered in a comprehensive probabilistic approach by

Jolly (1965) and Seber (1965). Cormack (1964) anticipated the survival part

of their model, that considers only marked individuals, that is, conditional on

releases. The resulting Cormack–Jolly–Seber (CJS) models consider time‐
dependent survival and recapture probabilities. When population size esti-

mation is considered (i.e., in the Jolly–Seber approach in the strict sense),

survival probabilities, recruitment and population size can be estimated over

time from successive samples of individually marked animals (for a modern

technical presentation, see Burnham, 1991). The rapid development of inter-

est in flows of individuals, described in the introduction, and the potential of

the Jolly–Seber framework led to a progressive shift of emphasis in the use

of the Jolly–Seber and related models, from the estimation of population size

to the estimation of survival and recruitment (Brownie, 1987; Burnham et al.,

1987; Clobert and Lebreton, 1987). This shift induced a move to models

conditional on the numbers of marked individuals released, the CJS models.

In parallel, it was realized that time‐dependence in the parameters was

restrictive, ‘‘the Jolly–Seber model being accused of being either too restric-

tive’’ or ‘‘too general’’ (Cormack, 1979). Generalizations of various kinds,

such as age‐dependent models (Pollock, 1975, 1981) appeared. Several

authors independently developed constant parameter models (Brownie

et al., 1986; Clobert et al., 1985; Jolly, 1982). These developments and

their associated parameterizations required iterative calculations to obtain
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estimates, for which specialized software has been available for more than 15

years (Brownie et al., 1986; Choquet et al., 2004; Clobert and Lebreton, 1987;

Hines, 1994; Pradel and Lebreton, 1991; White, 1983; White and Burnham,

1999).

Authors began to model the time‐dependence in survival probability,

conveniently transformed, as a linear relationship with an environmental

covariate, built into the model (Clobert and Lebreton, 1985; North and

Morgan, 1979; for a recent and comprehensive review, see Grosbois et al.,

2008). Indeed, the development of generalized linear models (McCullagh and

Nelder, 1989; Nelder and Wedderburn, 1972) during the 1970s had provided

a framework for a systematic development of such constraints on para-

meters. Generalized linear model ideas rapidly influenced the development

of capture–recapture models in the 1980s (Clobert et al., 1987; Cormack,

1989). Simultaneously, sound goodness‐of‐fit tests of basic models became

available (Burnham et al., 1987; Pollock et al., 1985). A comprehensive

framework was developed with models considering several groups of indivi-

duals, variation over age and time in probabilities of survival and recapture,

and many different types of constraints in parameters based on quantitative

and/or categorical covariates, that is, covering regression and analysis of

variance ideas. Key papers include those by Buckland (1980), Pollock

(1981), Sandland and Kirkwood (1981), Brownie and Robson (1983),

Clobert et al. (1987) and Pradel et al. (1990). The comprehensive framework

resulting from this progress is reviewed by Lebreton et al. (1992). The exam-

ples in Lebreton et al. (1992) show that, as in contingency table analysis by

log‐linear models (Fienberg, 1977; Morgan, 1992) or dose–response models

by logit or probit analysis (Morgan, 1992), the user is often faced with a wide

array of biologically reasonable models. Model selection procedures

(Akaike, 1973; Burnham and Anderson, 1992, 1998, 2002) appeared then

as a more reliable approach than a series of hypothesis tests, as the latter are

unavoidably plagued by difficulties in controlling the level and power of the

tests. The overall approach proposed by Lebreton et al. (1992) consisted of

the following steps:

� Start from a general ‘‘umbrella’’ model, for which the fit to the data could

be tested.
� Proceed in a step‐down approach among competing models with various

combinations of effects covering the key questions in relation to the

biology and the design of the study (e.g., is probability of capture best

considered as related to a measure of field effort, is survival related to

rainfall, does survival differ between sexes?).
� Obtain parameter estimates from a final model based on general model

selection procedures. The Akaike information criterion (AIC; Akaike,

1973) appeared as a simple overall criterion with many practical and
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theoretical advantages (Burnham and Anderson, 1998, 2002), although its

blind and exclusive use has been duly criticized (Guthery et al., 2005;

Stephens et al., 2005), and alternative model selection criteria are being

considered (Link and Barker, 2006; Taper, 2004).

This modern framework to estimate and model survival has been widely

used (Schwarz and Seber, 2000) for at least two reasons:

� It shifted the biologist’s attention from specific models and technical

statistical questions to model structure and biological questions.
� It provided tools (including user‐friendly software, Choquet et al., 2004;

Pradel and Lebreton, 1991; White and Burnham, 1999) to efficiently

exploit the huge amount of high quality data produced by many long

term field programs directed at obtaining repeated observations through

time on marked individuals.

A number of interesting biological inferences have resulted from the

application of these methods. For bird populations, Clobert and Lebreton

(1991) provided strong evidence that annual survival rates were generally

higher than indicated by previous studies that did not adequately deal with

detection probabilities. Studies provided evidence for age specificity in sur-

vival (Loery et al., 1987; Pollock, 1981), including inferences about senes-

cence (Pugesek et al., 1995; Nichols et al., 1997). Covariate modeling has

provided evidence for the importance of various environmental variables

(e.g., Barbraud and Weimerskirch, 2001, 2003; Loison et al., 2002; Sillett

et al., 2000) to avian survival rates. Departure of birds from migration

stopover sites is analogous to mortality, and capture–recapture analyses

thus have been used to understand departure patterns and to investigate

avian ecology at stopover sites. Stopover duration has been estimated

(Kaiser, 1995; Schaub et al., 2001), and strong evidence of the influence of

environmental factors on departure probabilities has been provided (Schaub

et al., 2004a). The relationship between breeding probability and detection

probability at a breeding colony has permitted inferences about breeding

probabilities (Pugesek et al., 1995), including costs of early reproduction

(Viallefont et al., 1995). Reverse‐time modeling introduced robust inference

methods to the study of accession to reproduction (Pradel et al., 1997b).

Mark‐recapture studies of mammals have provided strong evidence of

both sex‐specificity and senescent decline in ungulate survival probabilities

(Loison et al., 1999). Covariate modeling has provided inferences about the

relative effects of density‐dependent and independent factors on survival of

small mammals (Julliard et al., 1999; Leirs et al., 1997; Lima et al., 1999) and

ungulates (Gaillard et al., 1997). The typical high elasticity (Caswell, 2001;

Caswell et al., 1984) of adult survival relative to that of young survival in
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large mammals led to the prediction that temporal variation in adult survival

should be small relative to that of young survival. Indeed, reviews of mam-

malian studies employing mark–recapture methods provided evidence in

favor of this prediction, providing evidence of canalization of the fitness

components that have the largest effects on fitness (Gaillard and Yoccoz,

2003). CJS modeling has also led to inferences about declining survival

rates in endangered cetacean species (Caswell et al., 1999; Fujiwara and

Caswell, 2001).

The CJS models evolved in many other different directions that cannot be

fully reviewed here (but see general reviews in Seber, 1982; Williams et al.,

2002), notably to handle heterogeneity in parameters among individuals,

recognized long ago as a key problem (Carothers 1973, 1979) for which

design (Kendall et al., 1995; Pollock, 1982) and modeling approaches

(Brownie and Robson, 1983; Pradel, 1993; Sandland and Kirkwood, 1981)

have been proposed. Fortunately, this is still an active field of research (Clark

et al., 2005; Link, 2003; Pledger and Efford, 1998; Pledger and Schwarz,

2002; Pledger et al., 2003; Pradel, 2005).

In the same fashion, generalized linear models have been developed to

include not just fixed effects but also random effects, so too in the field of

capture–reencounter, models have been developed in which effects are as-

sumed to be drawn randomly from a distribution (Burnham et al., 1987). In a

random effect, the categories of the effect are viewed as having been obtained

by random sampling from a population of categories (Searle et al., 1992).

This can be the case with variation over time if each year is supposed to result

from a random environmental process. The variation in, for instance, the

survival probability, is then measured by a variance over time rather than by

a collection of time‐dependent estimates (Burnham et al., 1987, 260 ff).

Random effects in linear constraints are very appealing for a variety of

questions, from modeling individual heterogeneity in survival (Pledger and

Schwarz, 2002) and detection probabilities (Clark et al., 2005; Link, 2003), to

detecting density‐dependence (Barker et al., 2002) and modeling treatment

effects on survival (Clark et al., 2005). Surprisingly, they have been little used

to investigate consequences of environment variability on population

growth, although adequate dynamical models exist (Tuljapurkar, 1990).

Capture–reencounter models with random effects present specific technical

difficulties, in particular computational ones (Brooks et al., 2000, 2002;

Burnham and White, 2002). For this reason they have been moderately

used in practice. This state of affairs may change rapidly with the spread of

Bayesian algorithms (Brooks et al., 2000, 2002; Clark et al., 2005; Link and

Barker, 2005).

The basicmodeling approachoutlined above, basedon constrainedCJS‐type
models, is implicitly strongly reductionist, as it focuses nearly exclusively

on survival, and reduces the information at the time of capture–recapture
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to just the record of presence, with at most the categorization of individuals

in groups according to permanent attributes. However, in parallel to these

developments and their transfer to population biologists, a wide diversification

of capture–recapture models was initiated in several different directions:

� Arnason and Schwarz (Arnason, 1972, 1973; Schwarz et al., 1993) consid-

ered multisite models in which individuals could be captured over several

sites. There were a few forerunners of multisite models for closed popula-

tions (Chapman and Junge, 1956; Darroch, 1961).
� Several authors considered models in which the local survival from birth to

first reproduction (recruitment) (Nichols et al., 1990; Rothery, 1983) and

the rate of recruitment (Clobert et al., 1994) could be estimated. The latter

authors based their approach on the transfer of individuals from a group

of individuals not yet detected as recruited, to known as recruited at the

time of first observation as a reproducer.
� Burnham (1993), Barker (1997), and Catchpole et al. (1998) considered

models for mixtures of information, namely recaptures of live individuals

and both records of dead individuals (‘‘recoveries’’) and live resightings

reported by members of the public.
� Skalski et al. (1993) and Hoffman and Skalski (1995) developed models in

which survival is related to continuous covariates defined at the individual

level. These covariates are assumed to be constant over time. Bonner and

Schwarz (2005) extended these models to cover continuous individual

covariates changing over time.
� Burnham (1993) considered the problem of temporary emigration (move-

ment to an unobservable state) in open capture–recapture models, and

Kendall and Nichols (1995) and Kendall et al. (1997) showed how to

estimate the probability of temporary emigration by sampling at two

different temporal scales (using Pollock’s (1982) robust design).
� Pollock et al. (1974) considered the possibility of time‐reversal in capture–

recapture models, and Nichols et al. (1986) and Pradel (1996) used reverse‐
timeCJSmodelstoestimateseniorityparameters thatreflectedtheprobability

that a randomly selected individual captured at a specific sampling occasion

was an ‘‘old’’ individual, in the sense of having been alive in the sampled

population theprevioussamplingoccasion.Pradel (1996)extendedthis think-

ing to simultaneous forward and reverse timemodeling of a single data set in

order to directly estimate the realized population growth rate.

The Arnason–Schwarz model opened the way for subsequent work on

multistate models in the same way that the CJS model did for survival

models. Constancy constraints analogous to those used in survival models

(i.e., the CJS family reviewed above) were incorporated in the multisite
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models by Hestbeck et al. (1991), who studied annual survival and movement

of Canada Geese Branta canadensis among three large wintering zones on the

Eastern coast of North America. Hestbeck et al. (1991), using software MS‐
SURVIV developed specifically for multistate models (see also Brownie

et al., 1993; Hines, 1994), were able to consider a variety of models with

different constraints on survival, movement, and capture parameters. Nichols

et al. (1992, 1994) considered these multisite models asmultistate models, that

is, considered that individuals could move within a finite set of states poten-

tially much more general than just geographical states and including dynamic

individual state variables such as reproductive status (reproductive and

nonreproductive individuals), body mass (large and small individuals), and

even mortality status (dead and alive). This point of view had three key

advantages:

� On the biological side, it coincided with the development of ideas and

questions about individual variability, individual quality, fitness compo-

nents, and life history strategies in evolutionary biology;
� On the statistical side, it opened the way to a systematic use of multistate

models as a comprehensive framework for the analysis of individual data

(Lebreton and Pradel, 2002), including the recruitment (Pradel and

Lebreton, 1999) and information mixture (Lebreton et al., 1999) models

mentioned above.
� On the modeling side, it also corresponded closely to that underlying stage‐

classified matrix population models and provided a natural approach to

inference for the parameters of these models (Fujiwara and Caswell,

2002a; Leirs et al., 1997; Nichols et al., 1992).

With comprehensive software now available (MARK, White and

Burnham, 1999; M‐SURGE, Choquet et al., 2004), multistate models can

now be used as ‘‘canonical models for analyzing individual covariates that

change over time’’ (Lebreton and Pradel, 2002). The most straightforward

models can be viewed as Markov chains (e.g., Iosifescu and Tautu, 1973)

with nonexhaustive detection of individuals. The insertion of a dead ‘‘state’’

among the states clearly shows the Markov chain structure by making the

stochastic matrix of the chain explicit (Caswell, 2001, Section 6.1.2; Lebreton

et al., 1999). From this point of view multistate models are closely related to

models with continuous individual covariates changing over time (Bonner

and Schwarz, 2005) in which the change in the covariate has to be modeled as

a Markovian process. The relationship between multistate models and

hidden Markov chains was emphasized by Dupuis (1995) and became per-

fectly clear with recent generalizations (Newman et al., 2006; Pradel, 2005).

The terms ‘‘states’’ and ‘‘multistate’’ (Nichols and Kendall, 1995) implicitly
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emphasize that the individuals’ state can change over time. They appear, as a

consequence, preferable (Pollock, personal communication reported in

Lebreton and Pradel, 2002) to the terms ‘‘strata’’ (Brownie et al., 1993)

and ‘‘multistrata’’ (Lebreton et al., 1999), which are commonly viewed as

referring to permanent groups, as in ‘‘stratified sampling’’.

We tend to view state variables very generally as key characteristics asso-

ciated with, and used to distinguish among, individuals. One way of classify-

ing state variables is to focus on whether they are static or dynamic. For

example, in many vertebrates, sex is a state variable that is static in the sense

that it characterizes an animal throughout its lifespan. Static state variables

are easily modeled by focusing on groups of animals categorized by the

variable of interest (e.g., Lebreton et al., 1992). Age and body mass are two

state variables that change over time and can be characterized as dynamic.

Dynamic state variables can be further characterized as resulting from deter-

ministic or stochastic processes. Age is a deterministic state variable, in that

changes in age are entirely predictable. Consider a species sampled once each

year, in which a captured animal is categorized as either young or adult, and

in which young become adults within 1 year. If an animal is young at the

sample period in year i, then it will be an adult at the sample period for year

i þ 1, if it happens to survive until then. Such dynamic state variables can

be handled via models that specifically incorporate the deterministic transi-

tions that characterize the process (e.g., the age‐specific models of Brownie

et al., 1986; Pollock, 1981; Lebreton et al., 1992). Body mass, however, is a

stochastic state variable, in that knowledge of an animal’s body mass this

spring does not permit unambiguous inference about an animal’s mass the

next spring. In this case, transitions are stochastic, and must be modeled

using general multistate models (e.g., Arnason, 1972; Brownie et al., 1993;

Schwarz et al., 1993). This classification system for state variables emphasizes

the point that multistate models are generalizations of earlier models that

were developed to deal with specific classes of state variables with con-

strained transitions. Multistate models can be particularized to models that

deal with static variables (e.g., sex groups) or deterministic, dynamic state

variables (e.g., age), via appropriate constraints on the general multistate

structure.

In the material that follows, we develop the idea of multistate models as

providing a canonical framework for a large class of capture–recapture

models. We describe general models and then develop specific structures

to address specific classes of biological questions. We assume a basic knowl-

edge of single state models and of general statistical concepts such as para-

metric models, likelihood and associated techniques (Maximum Likelihood

Estimation, Likelihood Ratio Tests, etc.; see for example, Mood et al., 1974),

and model selection ideas as popularized by AIC (Burnham and Anderson,

1998, 2002).
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III. CONDITIONAL MULTISTATE MODELS AS
A GENERALIZATION OF SURVIVAL MODELS

A. Multistate Models and Data: Meadow Vole Example

In multistate capture–recapture models, individuals move among a finite

number of states, s, or die, according to a finite Markov chain, between

discrete time occasions. Survivors are detected (‘‘recaptured’’) in each

state, not exhaustively at each occasion. The individuals are sampled over

K occasions. When they are detected (‘‘captured’’), their state at this occasion

is known. The individuals are considered as released with a mark at the time

of their first capture, and in what follows, everything is considered condi-

tional on this release. When the individuals are not detected, even if alive,

their state is unknown.

We take here as a first example of application of MSMR an experimental

study of meadow voles, M. pennsylvanicus, at Patuxent Wildlife Research

Center, Laurel, Maryland (Coffman et al., 2001). The capture–recapture

data were collected on two grids, A and B, from September, 1991, through

May, 1993. Each grid consisted of a 7 � 15 rectangle of trapping stations

7.6 m apart. We considered each rectangular grid to be comprised of two

square grids representing the two location states (Figure 1). State 1 was

defined by trapping rows 1–7, and state 2 by trapping rows 9–15. Both

location states were squares with 7 � 7 trapping stations. Grid A received a

‘‘fragmentation’’ treatment. During primary sampling periods 1–4, the grid

was continuous, and between periods 4 and 5 it was plowed and disced

(Figure 1, see also Coffman et al., 2001). This fragmentation treatment was

imposed by plowing a 7.6 m strip of bare ground between the two grid halves

and around the periphery of the grids. Sampling periods 5–12 were thus

viewed as post‐treatment. The other grid (B) served as a paired control grid.

It was never plowed and remained continuous for the duration of the study

(Figure 2).

Within each grid, the two grid halves or location states were the patches of

interest, and movement occurred when an animal present on one half in one

sampling period was present on the other half in the next sampling period.

Sampling was conducted at two temporal scales following the robust design

of Pollock (1982). The example reported here uses only information at the

scale of the primary sampling periods, every 8 weeks, with K ¼ 11 occasions.

Animal movements were expected to be symmetric between the two halves of

each grid. With respect to this remark, an unusual feature of this example is

that the numbering of states is arbitrary, in the sense that state 1 in grid A

bears no more relationship to state 1 in grid B than to state 2 in grid B.
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Further questions and predictions, related in particular to the treatment in

grid A after occasion 4 will be examined later.

The data were organized in four groups, based on sex (males and females)

and grid (A and B). In each of these four groups, an individual that is alive

and on the grid is in either state 1 or 2, the two halves of the concerned grid.

The two states are thus geographical sites, as in the earliest examples of

MSMR models. A few typical capture–recapture histories are given in

Table 1. When an animal is seen before and after an occasion at which it

remained undetected, it is known to be alive, as in a single state survival

model. However, it may have been in either of the two sites (e.g., individual

#1 sampling occasion 7 in Table 1). The calculation of the probabilities of the

capture histories has to account for this uncertainty, which is a key feature of

MSMR models.

State 1

State 2

State 1

State 2

A B
1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
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7

8

9
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13

14
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2 3 4 5 6 7
1 2 3 4 5 6 7

Figure 1 (A) Configuration of grid A during sampling periods 1–4 and grid B for the
entire study. Dots represent trap stations. The 7 columns and 15 rows yield 105 trap
stations on each grid. The 2 ‘‘location states’’ of each grid are identified as the
2 squares defined by rows 1–7 and rows 9–15. An animal was identified as having
moved if it was caught in 1 location state in 1 period and in a different state in another
period. The habitat on each grid during the specified periods was continuous
(no fragmentation) and similar for the 2 location states. (B) Configuration of grid A
during sampling periods 5–12 following fragmentation. Plowing yielded a strip of
bare ground 7.6 m in width around the periphery of the entire grid and between the
2 location states (grid halves). The bare ground strips were maintained for all periods
following their creation (5–12).

MODELING INDIVIDUAL ANIMAL HISTORIES 101



The data in this example can be summarized as a multistate m‐array, M,

(Brownie et al., 1993) in which the capture histories are split into several

segments, and the segments arranged by rows according to the occasion of

release and by columns according to the occasion of next recapture (with a

Time intervals 

Plowing

Grid A

Grid B

1 2 3 4 5 6 7 8 9 10

Figure 2 Temporal sampling design of the vole M. pennsylvanicus experiment. Each
grid, A and B, consists of 2 states (grid ‘‘halves’’) between which individuals can
move. Grid A was submitted to a fragmentation treatment by plowing during interval
4, that is, between capture occasions 4 and 5.

Table 1 Example individual capture histories of voles M. pensylvannicus, over 11
occasions and 2 sites

Individual

Occasion

Comments1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 0 2 2 0 2 2 0 0 Seen in 2 only, in 1 or 2
at occ.7

2 0 0 0 0 2 2 2 2 2 2 0 Seen in 2 only, in 1, 2 or
dead at occ.11

3 0 0 0 1 0 0 0 0 0 0 0 Seen in 1, never seen
again

4 0 0 0 1 0 1 1 1 1 1 1 Seen in 1 only, in 1 or 2
at occasion 5

5 0 0 0 1 1 1 1 1 1 0 0 Seen only in 1, in 1, 2 or
dead at occ.10, 11

6 2 1 0 1 0 0 0 0 0 0 0 Seen in 2 and 1, in 1 or 2
at occ. 3

7 2 2 1 1 0 0 0 0 0 0 0 Seen in 1 and 2, in 1, 2 or
dead after occ.4

8 1 1 2 0 1 1 1 1 1 0 0 Seen in 1 and 2, in 1 or 2
at occ.4

9 2 0 0 0 0 0 0 0 0 0 0 Seen in 2, never seen
again
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‘‘never recaptured column’’). The m‐array M for female voles on grid B is

presented in Table 2. Since each release and recapture took place in a

particular state, each cell of the multistate m‐array contains an s � s matrix

mij, where i is the occasion of release and j the occasion of next recapture.

The off‐diagonal numbers in these matrices are relatively small, because

movement tended to be the exception rather than the rule.

The individuals released in a given state at a given occasion are distributed

according to their occasion and state of next recapture, or in the category

never recaptured, in a mutually exclusive fashion. Assuming independence

among individuals, conditional on the number released on this occasion in

this state, the terms in each row of the m‐array (including the never seen

again) follow a multinomial distribution. The multinomial distribution is the

natural generalization of the binomial to more than two outcomes (e.g.,

Mood et al., 1974, p. 137). A MSMR model will thus be based on a set of

parameters and a set of assumptions making it possible to calculate the cell

probabilities of these multinomial probabilities. MSMR models thus repre-

sent attempts to approximate the dynamical process that gave rise to the

data, using parameters that correspond to quantities of biological interest, as

well as parameters needed to model the underlying sampling process.

B. The Conditional Arnason–Schwarz (CAS) Model

The first MSMR model for open populations was a time‐dependent model

proposed by Arnason (1972, 1973) and developed by Schwarz et al. (1993).

Since it is considered here as conditional on first releases, we will refer to it as

the CAS model.

The equivalent of the time‐dependent survival probabilities of the CJSmodel

are time dependent s � s transition matrices �k (k ¼ 1,. . ., K�1). The capture

probabilities are considered as dependent on the state at the time/occasion of

sampling and on time. They are grouped in s � 1 matrices (‘‘vectors’’) of

recapture probabilities pk (k ¼ 2, . . ., K ). The diagonal matrices built from

these vectors are denoted as D(pk). The probabilities of not recapturing an

individual, defined as the vector qk ¼ 1s�pk, where 1s is a s� 1 matrix of ones,

are grouped in the diagonal matrices D(qk). Indices for states will be noted in

parentheses, for example, asf3ð1; 2Þ for the probability of transition from state

1 at time 3 to state 2 at time 4. Generic indices i, j, and k will be used for

occasions, u and v for states. There are (K�1) s2 þ (K�1) s parameters

fkðu; vÞ and pkðuÞ. We denote as � the vector of these parameters.

The probability corresponding to a piece of a capture history such as

‘‘102’’ must account for the fact that the individual could have been either

in state 1 or in state 2 at occasion 2, when missed at time 2. Thus, the

probabilities consist of sums of products, in the example above, ðf1ð1; 1Þ
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Table 2 An example of a multistate m‐array, an efficient summary of multistate capture–recapture data for time‐dependent models: female
voles M. pensylvannicus, grid B (see text)

Released Recaptured

Occasion State Number Occasion. 2 3 4 5 6 7 8 9 10 11

Neveri u Riu State 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 1 7 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
1 2 11 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
2 1 8 2 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
2 2 11 0 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
3 1 10 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2
3 2 19 0 11 0 2 0 0 0 0 0 0 0 0 0 0 0 0 6
4 1 23 11 1 0 0 1 0 0 0 0 0 0 0 0 0 10
4 2 23 1 1 0 0 0 0 0 0 0 0 0 0 0 0 11
5 1 33 20 0 3 1 0 1 0 0 0 0 0 0 8
5 2 42 3 16 1 5 0 2 0 0 0 0 0 0 15
6 1 29 20 0 1 0 0 0 0 0 0 0 8
6 2 28 1 19 0 1 0 1 0 0 0 0 6
7 1 31 17 0 0 0 0 0 0 0 14
7 2 38 1 11 0 0 0 1 0 0 25
8 1 34 15 0 0 0 0 0 19
8 2 28 0 13 1 1 0 0 13
9 1 21 130 0 2 0 6
9 2 19 0 9 2 1 7
10 1 19 6 0 13
10 2 13 0 1 12



q2ð1Þf2ð1; 2Þ þ f1ð1; 2Þq2ð2Þf2ð2; 2ÞÞp2ð2Þ. This is a key feature by which

multistate CR models differ from single state models, in which the

corresponding probabilities are simply products.

We denote as puvij ðyÞ the cell probability corresponding to mi,j(u, v), that is,

the number seen again for the first time at occasion j in state v among the

Ri(u) released at occasion i in state u. The s2 cell probabilities, puvij ðyÞ; for u ¼
1, . . ., s and v ¼ 1, . . ., s, can be obtained simultaneously, as the s � s matrix

pi;jðyÞ; using matrix formulas (Brownie et al., 1993). These formulas are given

for K¼ 4 occasions of capture in Table 3 (after Choquet et al., 2002). For the

last interval, fK�1and DðpKÞ appear only as the matrix product bK ¼ �K�1

D( pK), with s2 scalar parameters instead of s2þs in �K�1 and D( pK). As a

consequence, in the CAS model, only (K � 1) s2 þ (K�2) parameters at most

are separately identifiable (Brownie et al., 1993). The identifiability problem

here is intrinsic to the model. The actual number of estimable parameters for

a particular data set can be much lower because of further ‘‘confounding’’

between parameters caused by sparse data. For instance, if the estimates of

the probabilities of recapture in D( pk) are 0 because there are no recaptures

at occasion k (k < K�1), only the elements of the matrix fk�1fk will be

estimable. Such instances are common with real data, and, because they will

vary from one data set to another, they are usually referred to as extrinsic

identifiability problems.

The likelihood, expressing the information in the data relative to the

parameters, can be written as the product of the multinomial probabilities,

conditional on the number released Rk(i). Like most CR models, MSMR

models belong thus to the wide class of product‐multinomial models. The

product of conditional probabilities is a partial likelihood (Cox, 1975), for

which the properties of usual likelihoods hold. The logarithm of the partial

likelihood for the CAS model is then (writing puvij ðyÞ as puvij for the sake of

brevity):

Table 3 Matrix formula for the multinomial probabilities of the Conditional
Arnason–Schwarz model, for K ¼ 4 occasions of capture

Occasion of release

Occasion of recapture

2 3 4

1 f1Dðp2Þ f1Dðq2Þf2Dðp3Þ f1Dðq2Þf2Dðq3Þf3Dðp4Þ

2 f2Dðp3Þ f2Dðq3Þf3Dðp4Þ

3 f3Dðp4Þ
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logðLðyÞÞ ¼ C þ
X
i;j;u;n

mi;jðu; vÞlogðpu;ni;j Þ þ
X
i;u

ðRiðuÞ � riðuÞÞlogð1�
X
j;v

pu;ni;j Þ

ð1Þ

C is formed of log factorial terms and does not depend on �, ri(u) is the

number of the Ri(u) ever recaptured ðriðuÞ ¼
P

mi;jÞ; and the last term thus

accounts for the individuals never seen again.

If there is a single site or state, the matrices �K�1 and D(pK) are 1 � 1

matrices, that is, scalar and the indices u and v disappear: the CAS model

then reduces to the CJS model. As usual, Maximum Likelihood Estimates

(MLEs) ŷ are obtained by maximizing the (partial) likelihood or log‐
likelihood above. In contrast to the CJS model for which explicit formulas

exist for all K, this is the case for the CAS model only for K ¼ 2 or 3 (Pradel

et al., 2003). The MLEs have to be obtained by numerical iterative maximi-

zation of the likelihood, or, equivalently, minimization of the deviance

defined as �2 logðLðyÞÞ; for K > 3. They benefit from the usual asymptotic

properties: absence of bias, minimum variance (among asymptotically unbi-

ased estimators), and normal distribution. The deviance �2 logðLðŷÞÞ or

more commonly, the relative deviance dev ¼ �2 logðLðŷÞÞ þ 2C will be

used in model comparison and selection.

Alternatively, the likelihood can be obtained by calculating the probabilities

of all observed capture histories using theMarkov chain formulation (Caswell,

2001, Section 6.1.2 ), and, based again on the independence of individuals,

acknowledging the fact that the distribution of the numbers of individuals in the

various capture histories ismultinomial. Even if the probabilities of unobserved

capture histories are not needed, this approach will be computationally cum-

bersome and slow for large data sets and complex models.

Several alternative parameterizations exist. The MLEs will be in

one‐to‐one correspondence with those above, and the deviance will be the

same. For an easier biological interpretation, the transition matrices are

frequently decomposed as the product of a column‐stochastic movement

matrix ck and a diagonal survival matrix �k: �k ¼ ck �k (Hestbeck et al.,

1991). Grosbois and Tavecchia (2003) propose another parameterization of

the survival‐transition probabilities in probabilities of fidelity and proba-

bilities of relative movement. These decompositions assume that survival

probability depends only on the state at the beginning of the interval of

interest (on state at occasion k) and not also on the transition (state at

occasion k þ 1). If this assumption is not reasonable, then biased estimates

can result (Hestbeck, 1995). Joe and Pollock (2002) and Ergon et al. (2009)

have developed models that permit survival during an interval to depend on

the states at occasions k and k þ 1 (states u and v), by assuming different

distributions of transition times during an interval.
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Results of the CAS model by grid for the vole data, males only for the sake

of clarity, are presented in Figure 3. The adequacy of this general model can

be questioned in two different ways:

� First, as is well known for single state survival models (Begon, 1983), a

time‐dependent model such as the CAS model brings few direct answers to

biological questions, here for instance about the symmetry of dispersal or

the effect of the fragmentation treatment. Exactly as for the CJS model for

survival, the CAS model can be either too restrictive (e.g., no age depen-

dence) or too general (e.g., time variation included even though not

needed). The CAS model will thus be viewed as a starting point for more

general or particular models. A model that is adequately generalized will

remove bias, both in the point estimates of parameters and in the estimates

of the standard errors of these estimates. A model with as few parameters

as possible will help the investigator focus on the biological questions and

also tends to increase precision.
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Figure 3 Estimated transition probabilities for the male voleM. pennsylvanicus data,
based on the Conditional Arnason–Schwarz (CAS) model. The transition probabil-
ities are given for intervals 1–9, and are not separately estimable from probabilities of
recapture for the last interval, 10. Movements between the two states (grid halves) are
low (from 1 to 2 and from 2 to 1), and, as expected from the design, fairly symmetrical.
However, as explained in the text, biological inferences from such a general model are
limited and constrained models derived from this starting point are more useful.
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� Second, like for all product‐multinomial models and, more generally, all

models, goodness‐of‐fit is a key issue (McCullagh and Nelder, 1989, 24ff).

The rationale of likelihood ratio tests between a first modelM1 and a second

model M2 nested in M1 assumes that model M1 fits the data, that is, the

residual variability is compatible with that predicted from the multinomial

distributions inherent in the model. If the more general model does not fit

the data adequately, the difference in deviance will tend to be inflated,

leading too often to significant tests, and thus to incorrect biological con-

clusions. For the same reasons, model selection based on the AIC will be

biased if the set of models considered does not include a model that fits the

data. A model is declared to fit the data simply if the data we have are

indistinguishable from data simulated from that model, with the goodness‐
of‐fit diagnostic tools we have. It does not imply it is a ‘‘true model’’, first

because there might be many different models fitting the data, and, second,

because the processes that produced the data are reduced to simple proba-

bilistic mechanisms just for the sake of analysis. Another important point is

that the estimates of precision of the final estimates will also be biased if

some lack‐of‐fit or overdispersion is ignored. The consequences of lack‐of‐fit
are thus too deleterious to be ignored. At this stage, we cannot decide if the

estimates of parameters in Figure 3 are valid or not.

C. The Jolly‐Movement (JMV) Model

An alternative model, The JMV model, introduced by Brownie et al. (1993),

is in this context a useful generalization of the CAS model since efficient

Goodness‐of‐fit (GOF) procedures have recently been developed for this

model (Pradel et al., 2003, 2005). This more general multistate model is

obtained by considering that the probabilities of recapture depend both on

the state of arrival and the state of departure, still retaining time‐dependence
both for transition and recapture probabilities.

There seems at first glance to be little biological interest in considering a

dependency of the recapture probability on the departure site. However, in

the vole example, one could imagine that the probability of capture of a vole

in half 2 of grid A can depend on whether it was in half 1 or 2 at the previous

occasion in relation, for instance, with differences in behavior depending on

whether the animal was a resident or recent immigrant.

In the JMV model (Brownie et al., 1993), the survival‐transition para-

meters are, as in the CAS model, grouped in time dependent s � s transition

matrices �k (k ¼ 1,. . .,K�1). The recapture probabilities, depending on the

states at the beginning and end of the interval and on time, are grouped also

in s � s matrices pk (k ¼ 2, . . ., K), while they were grouped in the diagonal
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matrixD( pk) in the CASmodel. For an individual having moved from state u

to v between occasions k � 1 and k, terms such as fk�1ðu; vÞpkðu; vÞ
and fk�1ðu; vÞð1� pkðu; vÞÞ appear in the probability of the capture history.

The capture history probabilities are obtained by the same formulas as for

CAS (Table 3), with matrix pk as defined above replacing the diagonal matrix

D( pk), and element‐wise matrix product, denoted as a dot, replacing

the matrix product in matrix terms such as fk�1 � pk and fk�1 � ðI � pkÞ.
For the last occasion only the s2 products fK�1ðu; vÞpKðu; vÞ; that is, the

element‐wise matrix product fK�1 � pK can be estimated. Thus, out of the

2(K � 1)s2 ¼ (2K � 2)s2 parameters of the JMV model, only (2K�3)s2 at

most are separately identifiable, and often fewer, depending on the data. The

parameter estimates can be obtained by the maximum likelihood method

based on iterative algorithms, and suboptimal closed‐form estimators exist as

well (Brownie et al., 1993). The formulas are strikingly similar to those of the

CJS model, obtained for s ¼ 1. We will see that the fit of the JMV model can

be tested by generalizing in an appropriate fashion (Pradel et al., 2003) the

approach used for the GOF test of the CJS model proposed by (Pollock et al.,

1985). Indeed, the JMV model, even if it seems too complex and typically

irrelevant biologically, appears as a more natural generalization of the CJS

model than the CAS model (Brownie et al., 1993; Pradel et al., 2003).

D. Assumptions and Fit Assessment of
the Jolly‐Movement (JMV) Model

Difficulties with goodness‐of‐fit issues have been recurrent in the application

of capture–recapture methodology (Begon, 1983). On the one hand, good-

ness of fit procedures are often obscurely technical, on the other hand,

neglecting to check the fit of models to data can grossly bias model selection

and lead to spurious results. In product‐multinomial models, the deviance

can in principle be used in a straightforward fashion to get an omnibus test of

goodness‐of‐fit, since, under the assumptions of a given model, the deviance

for that model asymptotically follows a w2 distribution. The rationale behind
this approach is that the deviance can be viewed as a G‐test statistic between
the observed and expected numbers of individuals in the recapture histories,

as it is the case for multinomial models in general (e.g., McCullagh and

Nelder, 1989). Unfortunately, with multistate capture–recapture models,

the sparseness of the data typically precludes, even more strongly than for

single state models, the use of asymptotic w2 distributions for the deviance.

For instance, with 5 states and 10 occasions there are nearly 10 million

different capture histories (see however, for 3 states and 3 occasions,

Hestbeck et al., 1991). Although distributional results specific to asymptotic

sparseness (number of cells tending to infinity with expected number in each
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cell tending to 0) exist (e.g., Zelterman, 1987), their adaptation to the

capture–recapture context has never been investigated. Moreover, the variety

of departures from assumptions resulting from the larger complexity of the

model causes an omnibus statistic like the deviance generally to be weak in

power and poorly informative (Burnham et al., 1987; Pollock et al., 1985;

Pradel et al., 2003, 2005). Specific goodness‐of‐fit procedures are thus

needed.

The basic assumptions inherent in both the JMV and CAS model are as

follows:

– The rate parameters for individuals within a state are homogeneous;

– The capture sessions are instantaneous, or at least short compared to the

time between sessions;

– The fate of an individual depends on its present state but not on its past;

– Fates and captures of individuals are independent.

The first and second assumptions imply that the same time dependent

parameters apply to all individuals and the third assumption implies that

this is the case whatever the previous history and the histories of other

individuals. A straightforward consequence is that all the information

in the data X for estimating the parameters � is contained in the multistate

m‐array M, a statement summarized in:

PrðX jyÞ ¼ PrðX jMÞPrðMjyÞ ð2Þ
M is thus a set of sufficient statistics. Even for the JMV model, however, the

number of sufficient statistics m ¼ (K � 1)2 s2 is greater than the number of

identifiable parameters q¼ (K� 1) s2þ (K� 2) s as soon as K> 2: the model

is said to be nonsaturated. There is no set of sufficient statistics of lower

dimensionality (Pradel et al., 2003): the expected values in the m‐array are

quite involved and there is no obvious proportionality between rows as in the

single state case.

In the single state case (CJS model), the assumptions could be tested in an

efficient way in two main steps (Pollock et al., 1985). The first step consists of

checking that all animals captured on the same occasion do not differ

whatever their past capture history, that is, there is no heterogeneity within

a row of the m‐array; the second step tests the assumption that the different

rows of the m‐array are homogeneous, that is, that the expected numbers are

proportional. Both steps lead in practice to classical tests of homogeneity in

appropriate contingency tables (Everitt, 1977). Their optimality relies on the

fact that the model is saturated, because under the proportionality assump-

tion inherent in the second component, the m‐array is further collapsed in a

set of minimal sufficient statistics S equal in number to the number of

separately identifiable parameters.
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Pradel et al. (2003) developed generalizations of this approach to the

multistate case that take into account the difficulties mentioned above (see

also Pradel et al., 2005) and follow closely the logic of the single state tests.

The account that follows is largely based on these papers. In the multistate

case, the first step is retrieved essentially unchanged (there is just a greater

variety of past capture histories); this is Test3G of Pradel et al. (2003).

However, the second step—comparing the rows of the m‐array—becomes

more involved. The expected numbers in the different rows are no longer

proportional but some are linear combinations of others (TestM of Pradel

et al., 2003). To exemplify, let us consider the part of the vole m‐array
corresponding to females in grid B released at occasions 2 and 3 and recap-

tured at occasions 4 and 5 (Table 4). A striking feature is that of the 11

individuals recaptured at occasion 4 and site 1, the 7 most recently released

all come from site 1 itself (i.e., they did not move between occasions 3 and 4).

However, of the 4 released two time steps earlier (occasion 2), 1 had been

released at site 2. This individual must have moved. It may have moved to site

1 between occasions 2 and 3 (and remained there during the last interval just

like the seven individuals that we know were at site 1 at this same occasion) or

may have moved from site 2 to site 1 during the last interval in which case its

behavior is atypical. Indeed, none of the 11 individuals captured in site 2 at

the last occasion did move during the last interval. For individuals released

more than one time step earlier, we must consider the possibility that they

have moved in the interval. This is why, in probability terms, we must check

whether any one of the first two rows of Table 4 is compatible with being a

mixture of the last two rows of the same table, hence of individuals from the

different sites (Pradel et al., 2003).

Test3G and test M, taken together, constitute a near optimal goodness‐of‐
fit test of the JMVmodel, although they do not fully benefit from the optimal

properties of the single site goodness‐of‐fit procedure since the JMVmodel is

not saturated. These tests can be further decomposed, using the classical

Table 4 Extract of the m‐array corresponding to female voles M. pennsylvanicus on
Grid B released at occasions 2 and 3 and recaptured at occasions 4 and 5

Released Recaptured

Occasion State Occasion 4 5

i j State 1 2 1 2

2 1 3 0 0 0
2 2 1 0 0 0
3 1 7 0 1 0
3 2 0 11 0 2
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techniques of partitioning of contingency tables, to highlight some specific

alternatives. One partitioning is named with reference to spatial state, that is,

sites, but seems relevant biologically in a general fashion. It looks at the role

of memory of past locations as a determinant of movements (test WBWA of

Pradel et al., 2003). It compares the site of the previous (‘‘Where Before’’ ¼
WB) and of the next (‘‘Where After’’ ¼ WA) observations of the animals

currently observed at the same site. For instance (Table 5), of 10 individuals

from group 4 captured at site 2 on occasion 8 which had been captured at

least once previously and were also later captured, 9 were last captured at this

same site 2 and were again recaptured at site 2. However, the only individual

from this group that was previously captured at site 1 was later recaptured at

site 1. It could thus be that this last individual was making a scouting

expedition to site 2 when it was captured there, but then returned to its site

of residence, site 1. There are actually very few data available for this test

with the voles. Overall, perhaps due to a lack of power, there is no evidence of

a tradition or, stated differently, of relevance of previous locations to current

survival and transition probabilities (test WBWA over all occasions and all

groups: w2(9) ¼ 8.27, P ¼ 0.51).

Overall, the fit of the JMVmodel to the vole data is excellent for all groups

(Table 6), and the JMV model is thus an appropriate starting point without

correction for the analysis, although one may suspect the particularly high

P‐level results from a shrinkage of the test statistic towards zero by sparse-

ness (w2(204)¼ 164.92, P¼ 0.98). With no specific suspicion of a dependence

of capture probability on the state at the previous sampling occasion, the

next step is to check the fit of the CAS model. We first compute a likelihood

ratio statistic (Table 7) comparing the JMV and CAS models, according to

which the CAS model is quite acceptable (w2(26) ¼ 32.11, P ¼ 0.22). An

overall goodness‐of‐fit test of the CASmodel is obtained by summing the two

Table 5 An example of tradition (component
of test WBWA relative to occasion 8, site 2)

1 0
0 9

Among the 28 voles M. pennsylvanicus observed at

occasion 8 and site 2, only 15 had already been en-

countered and only 10 of them will be captured again.

Of these 10, all but one had last been encountered on

this same site 2 (row 2) and they will be captured

again at site 2 (column 2). The only one to have last

been encountered at site 1 (row 1) is also the only one

that will next be captured at site 1 (column 1).
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w2 statistics above, which shows the CAS model is quite acceptable for the

vole data (w2(230) ¼ 197.03, P ¼ 0.94).

Even if these goodness‐of‐fit procedures are presented as formal statistical

tests, they are better viewed as a set of goodness‐of‐fit diagnostics, as the

components are interpretable and can suggest alternative models as starting

points in cases where the JMV model is rejected.

IV. CONSTRAINEDMODELS ANDMODEL SELECTION

A. The Vole Case Study: Some Predictions

Regarding predictions and expectations, we expected no differences between

grid halves (states) within either grid. Grids were placed in homogeneous

grassland habitat and grid halves were of equal size, so we expected state, s, to

be irrelevant in all of themodeling. The studywas carried out over a 20‐month

period and thus included seasonal variation, but we did not make detailed

Table 7 Comparison between the CAS and the JMV model for the meadow vole
M. pennsylvanicus data (s ¼ 2 states, K ¼ 11 occasions, g ¼ 4 groups)

Model Deviance
Number of
parameters

Number of identifiable
parameters

AICIntrinsic Numerical

CAS 2925.1445 g((K�1)
s2 þ (K�1)
s) ¼ 240

g((K�1)
s2 þ (K�2)
s) ¼ 232

225 3375.1445

JMV 2889.0376 2 g(K�1)
s2 ¼ 320

g(2K�3)
s2 ¼ 304

251 3391.0376

Difference 36.1069 80 72 26

Under the assumption that both models are valid, 36.107 is asymptotically a realization of a

w2 distribution with 26 df. The corresponding P‐level is 0.0897.

Table 6 Goodness‐of‐fit tests of the JMV models for the
meadow vole M. pennsylvanicus data (see text)

Group w2 value df P‐value

1 16.939 42 1
2 43.018 40 0.34
3 51.139 66 0.91
4 53.826 56 0.56
Total 164.922 204 0.98
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predictions about time‐specific variation in parameters. The primary predic-

tions about time involved possible changes in parameters following treatment

on grid A.We predicted a decrease in movement probabilities (from one state

[grid half] to the other) following the fragmentation treatment.We recognized

that a decrease might occur by chance alone (seasonal effects and treatment

effects were confounded in this test), so we also predicted that any reduction

in movement following treatment on grid Awould be larger than any possible

seasonal reduction on grid B. Because the complement of our survival esti-

mates includes both death and permanent emigration, we expect increases

in local survival to follow the fragmentation treatment on grid A. As with

movement, we expect the difference between survival in the pre‐ and

post‐treatment periods to be larger for the treatment grid, A.

Although the above predictions are the primary predictions involving

temporal variation associated with the treatment effect, we also have some

predictions about sex effects. The microtine literature contains abundant

evidence that males tend to move more than females (e.g., Aars and Ims,

1999; Aars et al., 1999; Ims and Andreassen, 1999; Krebs, 1966; La Polla and

Barrett, 1993; Myers and Krebs, 1971; Wolff et al., 1997), and we predicted

higher rates of movement for males.

B. Constrained Conditional Multistate Models

All parameters in the JMV model and most of the parameters in the CAS

model with s states appear in s� smatrices with s2 elements. Moreover, these

models in their basic versions are time‐dependent. As a result the overall

number of parameters increases rapidly with the number of states s and the

number of occasionsK. In this context, the results will often be unstable, with

boundary estimates and wide confidence intervals being very likely. This is a

first reason to look for parsimonious models, based, for example, on assump-

tions of constancy over time of some parameters.

Secondly, the most general multistate models permit individuals to move

from every state to every other state and are thus potentially much richer in

biological terms than the usual survival models. This aspect is clear in the

vole example with the emphasis on dispersal. The number of parameters in

unconstrained models such as the JMV and CAS models grows rapidly with

the number of states and occasions: the precision then deteriorates, while

these models do not focus on specific biological questions. To retain reason-

able parsimony and to address efficiently the many different biological

questions that can be investigated using multistate models, the use of con-

strained models, as developed for single state models (Lebreton et al., 1992),

is even more important. The predictions above concerning the voles provide

a clear basis for the development of appropriately constrained models.
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In parallel with this double need for imposing constraints on the basic

models, there is a need for generalizations, exactly as was the case for CJS

models, for instance by considering variation in the parameters with the age

of individuals. Age is sometimes viewed as time elapsed since initial capture,

and this meaning of age will coincide with true age of the animal only for

individuals marked at birth. Obviously, ages could be modeled as states, with

deterministic transitions over time. However, in terms of computational

efficiency, age is better treated as a separate attribute, and this is what is

done in available software.

We show below with the vole example that the exact same strategy devel-

oped for single state models (Lebreton et al., 1992) can be applied efficiently,

namely:

– Check the fit of the CAS model, and possibly use an overdispersion factor;

– Build biologically plausible models as constrained models, and fit these

models;

– Proceed to model selection based on AIC.

This state‐of‐the‐art, exemplified with the vole data below, can now be

implemented nearly routinely using programs MARK (White and Burnham,

1999) and M‐SURGE (Choquet et al., 2004). M‐SURGE is specifically

designed for multistate models, with refined algorithms (analytic gradient,

improved rank calculations to determine the number and nature of identifi-

able parameters following Gimenez et al. (2003), fast calculations) and a

model definition language that makes it possible to set up complex models

easily and reliably. We use this language as an abbreviation for models in the

examples below.

Based on our experience, the warning by Lebreton and Pradel (2002) on

frequent convergence of iterative algorithms to local minima of the deviance

can be emphasized and sharpened: local minima are common, in particular if

the survival (JMV, CAS) and recapture (JMV) matrices are ill‐conditioned
(e.g., far from a diagonal structure), and if the model has many parameters.

This is illustrated in Figure 4, concerning the CAS model for the vole data.

Besides a detailed examination by profile likelihood (Gimenez et al., 2005),

we strongly recommend multiple runs of the same model with random initial

values, as routinely proposed in M‐SURGE, as currently the best protection

against convergence to local minima.

With reliable determination of the deviance, D, of an estimated overdis-

persion factor, ĉ; if needed, and of the number of identifiable parameters n,

model selection can be based on the QAIC ¼ D=ĉþ 2n, or on other techni-

ques such as likelihood ratio tests and analyses of deviance when preferable

(Grosbois et al., 2008).
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C. Constrained Models for the Vole Case Study

Model selection is summarized in Table 8, using the M‐SURGE model

definition language. From bottom to top, the AIC decreases, while a variety

of plausible model structures are investigated by looking first at recapture

probabilities, then survival, then transition. When investigating recapture

probabilities, for example, we used relatively general parameterizations for

the other two types of parameters, probabilities of survival and movement.

Then when we settled on a model (in other cases it might be 2 or 3 models) for

recapture probability, we focused on the modeling of survival while leaving

movement probabilities relatively general, etc. This strategy does not cover

all biologically reasonable models, because it does not cross all plausible

structures over the three types of parameters, and we make no claims about

the optimality of this strategy. However, it is a pragmatic approach for

achieving parsimony, while keeping the overall number of models reasonably

small (Lebreton et al., 1992).

In the first step, as could be expected, there was some variation in capture

probabilities over grids and occasions. The difference in capture probability

between sexes could be reduced to an additive effect on a logit scale. A model

with no sex‐specific variation, but only temporal variation, in recapture
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Figure 4 An example of convergence to local minima: histogram of the final devi-
ance over 20 runs of the Conditional Arnason–Schwarz (CAS) model for the vole
M. pennsylvanicus data, using random initial values.
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probabilities was close in terms of AIC, but the slightly more complex

structure sex þ pop.t (Table 8) was retained in order to protect from any

further bias when modeling the two other types of parameters. The sex þ
pop.t notation refers to a model in which capture probability varied fully

(full interaction) by grid (‘‘pop’’ notation) and sampling occasion (t), with an

additive or parallel effect of sex. Thus, capture probability varied over time

for each grid, but it varied in parallel over time for the two sexes within

each grid.

After the structure for recapture probability was reduced to sex þ pop.t,

the survival and transition probabilities were modeled with specific attention

to the factor ‘‘period’’, contrasting intervals 1–4 (before treatment) with

periods 5–10 (after treatment). This order in considering the three types of

parameters corresponded to the order of biological interest and specificity of

a priori hypotheses. Specifically, the biological thinking followed a gradient

going from no predictions for recapture probabilities, to fairly detailed

predictions for movement probabilities. Because grid and time effects were

Table 8 Results of model selection for the voleM. pennsylvanicus data

Survival Transition Recapture Deviance np AIC

sex þ pop.t sex þ pop.period sex þ pop.t 3108.958 47 3202.958
sex þ pop.t sex þ pop þ period sex þ pop.t 3111.364 46 3203.364
sex þ pop.t (sex þ pop).period sex þ pop.t 3107.864 48 3203.864
sex þ pop.t sex.pop.period sex þ pop.t 3106.809 50 3206.809
sex þ pop.t Pop(2) þ sex(2) þ

pop(1).period
sex þ pop.t 3111.951 48 3207.951

sex þ pop.t pop.period sex þ pop.t 3116.726 46 3208.726
sex þ pop.t sex.period sex þ pop.t 3123.630 46 3215.630
sex þ pop.t sex.pop.t sex þ pop.t 3075.488 79 3233.488
sex þ pop.t sex.pop.from.to.t sex þ pop.t 3044.272 121 3286.272
pop.t sex.pop.from.to.t sex þ pop.t 3046.732 120 3286.732
(sex þ pop).t sex.pop.from.to.t sex þ pop.t 3035.690 130 3295.690
sex.pop.t sex.pop.from.to.t sex þ pop.t 3023.822 140 3303.822
sex.pop.period sex.pop.from.to.t sex þ pop.t 3131.118 107 3345.118
sex þ pop.period sex.pop.from.to.t sex þ pop.t 3133.991 106 3345.991
sex.pop.from.t sex.pop.from.to.t sex þ pop.t 2990.464 179 3348.464
sex.pop.from.t sex.pop.from.to.t t 3010.873 169 3348.873
sex.pop.from.t sex.pop.from.to.t pop þ t 3010.418 170 3350.418
sex.pop.from.t sex.pop.from.to.t sex.pop.to.t 2925.145 225 3375.145
sex.pop.from.t sex.pop.from.to.t I 3096.331 161 3418.331
sex.pop.from.t sex.pop.from.to.t Sex 3094.462 162 3418.462
sex.pop.from.t sex.pop.from.to.t pop 3095.388 162 3419.388
sex.pop.from.t sex.pop.from.to.t Sex þ pop 3093.442 163 3419.442

Bold print model structure indicates the parameters of primary interest with that set of models.

‘‘Period’’ is a factor contrasting intervals 1–4 (before treatment) with periods 5–10. (after

treatment); ‘‘pop’’, for population, is a factor with two categories (Grid A and Grid B).

MODELING INDIVIDUAL ANIMAL HISTORIES 117



present in the recapture probability structure, we considered it unlikely that

structure on recapture probabilities could produce spurious inferences about

grid and time effects on transition probabilities.

In the final model, the estimated recapture probabilities that were identifi-

able varied from 0.5979 to 0.8552, 0.5496 to 0.9800, 0.4986 to 0.9697, and

0.5599 to 0.9762, for males in A, females in A, males in B, females in B,

respectively, over occasions 2–10.

Concerning survival, the effect of time on survival could not be reduced to

the period effect (models not shown). Model selection provided evidence of

more complex variation over time than just variation before/after treatment

(Figure 5). In other words a simple model with fixed effects of grid, sex and

period appropriately combined is rejected in favor of a more complex varia-

tion over time. The variation over time is sufficiently erratic that we are

tempted to consider it as random, as if all the multiple causes of variation

were sufficiently randomized. This line of thought has led over the last several

years to the use of random effects in capture–recapture models. We will, thus,

defer tests of survival predictions to Section V, dealing with random effects.

As expected, the transition (movement) probabilities could be modeled

symmetrically between the two halves of each grid (removal of the M‐Surge
model language term ‘‘from.to’’; in terms of parameter constraints,

c12
k ¼ c21

k ). Then, the effect of time on the transition probabilities could be

reduced to the period effect, that is, to two levels, in interaction with sex and

population (grid). Model selection results thus supported models with sex‐
specific movement parameters (Table 8), and point estimates were consistent

with the predictions of greater movement by males (Table 9).

The estimated probabilities of transition in the final model, with a single

parameter for movement from one state (grid half) to the other irrespective of

the state considered, are given in Table 9. In accordance with general recom-

mendations for the treatment of experiments, we lookedneither at the change in

parameter estimates on the treatment grid over time, nor at the absolute

difference in estimates between gridsA andB during the post‐treatment period,

with grid B seen as a baseline level. Rather, in order not to confound seasonal

changes in movement with treatment effects, we compared the change in

movement probability before and after the date of treatment on grids A and

B. The estimated difference in the probability of movement before/after treat-

ment was �1.67 on a logit scale in grid A, irrespective of sex (treated as an

additive effect in this model). This drop in the natural logarithm of the odds of

movement, or log‐odds‐ratio, of 1.67 corresponded in turn to a drop in the

probability ofmovement from0.1010 to 0.0206 inmales and 0.0502 to 0.0098 in

females.However, there was also a drop in the probability ofmovement on grid

B, estimated on a logit scale as�0.68. The difference (�1.00) indicates that the

estimated decrease in movement was indeed stronger on grid A than on grid B.

Was it stronger to a significant extent?
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Figure 5 Estimated probabilities of apparent survival by sex, for the two grids, with
an emphasis on the fragmentation treatment by plowing that took place in grid A.
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There are several ways to answer this question. The model‐oriented answer

is based on the fact that this difference is an estimated interaction term. One

may then compare the selected model (Table 8, first row), with structure

‘‘sex þ grid.period’’ for transition probabilities with the same model without

the grid.period interaction (‘‘sex þ grid þ period’’, Table 8, second row).

This latter model assumes there was no difference between grids in the

change in movement between the two periods. The difference of deviance

between these two models (2.4088 on a single df) can be used in a one‐sided
test, which is close to significance (z ¼ �1.5520, P ¼ 0.0603). Equivalently, a

Wald test could be done, after having obtained an estimated standard error

of the estimated difference, as a linear combination of the original parameters

in the model. Lastly, the model with interaction is marginally preferable in

terms of AIC, the fully additive structure corresponding to a difference in

AIC of 0.406. One should realize that this difference is relevant to address the

effect of treatment because the difference above is negative; were it not, the

model with interaction would have to be discarded, as an ad hoc way of

making the AIC ‘‘one‐sided’’. For the sake of clarity we preferred in this

case to base inference on a few tests of some effects, in combination with

AIC‐based model selection.

Table 9 Estimated probabilities of transition in the final model for the meadow vole
M. pennsylvanicus data, with a single parameter for movement from one half to the
other, irrespective of the half considered

Transition probability

Maximum
likelihood
estimate

Bounds
of 95% CI

Estimated
standard
error

A males Before 0.1010 0.0512 0.0339
0.1895

A males After 0.0206 0.0084 0.0093
0.0494

A females Before 0.0502 0.0241 0.0184
0.1013

A females After 0.0098 0.0038 0.0047
0.0250

B males Before 0.1739 0.1135 0.0364
0.2570

B males After 0.0966 0.0622 0.0213
0.1472

B females Before 0.0901 0.0526 0.0242
0.1502

B females After 0.0479 0.0291 0.0121
0.0780

Before and after refer to the two periods before and after treatment, that is, intervals 1–4 and

5–10, respectively.

120 JEAN-DOMINIQUE LEBRETON ET AL.



The vole example thus provides some evidence of a decrease in movement

probabilities associated with the fragmentation treatment.While this example

hopefully provides a good illustration of the strategy of model building and

selection, it does not lead to strong inferences, primarily because of the

absence of replication (the example is based on a subset of the available

data). A comprehensive treatment is provided by Nichols et al. (in

preparation).

V. RANDOM EFFECTS

A. Fixed and Random Effects in Capture–Recapture Models

The use of linear constraints on transformed parameters that we just used for

the vole data is not at all restricted to multistate models, and indeed just

expands on a now classical approach for single state survival models

(Lebreton et al., 1992). This approach can be summarized for the typical

situation in which, among the parameters, there are n time‐dependent para-
meters y1; y2; . . . ; yn; in vector notation y ¼ ðy1; y2; . . . ; ynÞ; in general already

transformed by a link function such as the logit transform. We will focus on

variation in y1; y2; . . . ; yn; and we denote as x the vector of the m other

parameters. The overall vector of the n þ m parameters is denoted thus as

ðy; xÞ. In MSMR and other capture–reencounter models, the parameters are

estimated through a likelihood denoted as LðCR data; y; xÞ. The MLEs,

possibly not unique in case of identifiability problems, are denoted as

ŷ ¼ ðŷ1; ŷ2; . . . ŷnÞ and x̂. Devðy; xÞ ¼ �2LðCR data; y; xÞ is the deviance of

the model, as a function of the n parameters of specific interest, y; and the m

other ones, x. As mentioned earlier, the deviance will often be relative, that is,

be defined up to an additive constant, as only differences in deviance will be

used.

The simplest model forces the parameters of interest to be constant over

time:

yi ¼ a ð3Þ
The time‐dependent model considers a particular fixed value at each date,

and is, as such, a ‘‘fixed effect’’ model:

yi ¼ aþ bi ð4Þ
Time‐dependence is usually investigated by a likelihood ratio test or by

comparing AIC between these two models, since the only variability consid-

ered is that induced by the capture–recapture sampling scheme.

As an alternative way to treat temporal variation, each yi can be treated as a

realization of a random variable inducing a variation around the mean
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(as mentioned above, possibly logit transformed) survival a ðwith varðeiÞ ¼ s2;
EðeiÞ ¼ 0 and the ei identically and independently distributed):

yi ¼ aþ ei ð5Þ
With respect to temporal variation, the main parameter of interest is now s2;
the variance over time in the generic parameter of interest y. The categories of
the time factor (in the ANOVAmeaning) are not considered associated with a

particular year, but as random realizations arising from an underlying distri-

bution of year effects. Thus, the time factor has been treated as a random

effect: ‘‘Conceptualizing mark–recapture parameters as random variables is a

natural and logical step inmark–recapturemodels’’ (Barker et al., 2002). There

is a huge literature on random effects in linear models (Searle et al., 1992), and

we will concentrate here only on the application to capture–recapture models,

in particular MSMR.

1. Estimation Procedures

To produce a likelihood as a function of a, s2, and x which are now the only

parameters, one has to integrate the probability of the data with respect to

the probability density of the ei; f ðei; s2Þ; which in general will be assumed

to be a normal distribution probability density. With subscripts F and R

denoting the fixed and random effect model likelihoods, respectively:

log LRðCr data; a; s2; xÞ ¼

log

ð
e1

. . .

ð
en

f ðe1; s2Þ; . . . ; f ðen; s2ÞLF ðCr data; yða; e1; . . . ; enÞ; xÞde1; . . . ; den
0
@

1
A

ð6Þ
Estimation using this likelihood is totally impractical by standard

approaches with capture–recapture models because of its complexity. Two

main approaches have been used in the literature to approximate this

likelihood.

The first one uses a normal approximation to the likelihood of the time

dependent fixed effect model (already used in the context of capture–

recapture methods by Lebreton et al., 1995), based on asymptotic results of

ML theory (e.g., Mood et al., 1974). In a first approximation, one replaces in

ðŷ; x̂Þ �asymp
Nððy; xÞ;SÞ the unknown covariance matrix S by its estimate Ŝ;

obtained as a by‐product of fitting the fixed effect time‐dependent model, to

obtain ðŷ; x̂Þ �asymp
Nððy; xÞ; ŜÞ. Geometrically speaking, in this first step, one

approximates the deviance, viewed as a function of the parameters of the

fixed model, by the paraboloid tangent to the deviance in ŷ. Under the
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random effect model y ¼ Nðða; . . . ; aÞ; s2In�nÞ, the previous distribution is

conditional on �. Integrating over the distribution of � produces

ðŷ; x̂Þ � N ðða; . . . ; aÞ; xÞ; Ŝ þ s2
In�n 0n�m

0m�n 0m�m

� �� �

The probability density of this distribution, viewed as a function of the

parameters, is an explicit and simple approximation of the likelihood of the

random effect model, from which MLEs of a; s2; andx can be obtained. One

thus applies a ML procedure to ML estimates. This two‐stage procedure

initially appears to be ad hoc, but, as just explained, it does provide an

approximation of the integral for the likelihood of the random effect model.

It is inherent in the approximate calculations proposed by Burnham et al.

(1987), Link and Nichols (1994), and Gould and Nichols (1998). The two‐
stage approach to inference under a random effect model was proposed by

Krementz et al. (1997) in a case where Ŝ is diagonal, and by Barker et al.

(2002) and Schaub and Lebreton (2004).

The second approach uses stochastic integration, by algorithms derived

from Bayesian statistical theory, a subject of intense recent development. The

two main methods are Markov Chain Monte‐Carlo (MCMC) methods

(Brooks et al., 2002; Clark et al., 2005; Link et al., 2002a) and recursive

filtering (Buckland et al., 2004). MCMC methods, in particular, have seen

use in estimation using multistate models (Dupuis, 1995, 2002; King and

Brooks, 2002, 2003a,b, 2004).

B. Mixed Models

Although useful and interesting, a model with just a single effect fails to

consider a more general and biologically interesting situation where para-

meters of interest, such as survival probabilities, vary as a function of both a

fixed factor or covariate that can be identified (such as ‘‘period’’ in the vole

example) and other unidentified factors or sources of variation. Part of the

variation in survival (that not explained by the identified factor) can thus

remain unexplained. A straightforward model to cover this situation con-

siders simultaneously the fixed factor and a random source of variation; that

is, a random effect, which adds its effects to that of the fixed factor. Such a

model is referred to as a mixed model. A relevant model when survival varies

over time in relation with an environmental covariate would be logitðfiÞ ¼
aþ bxi þ ei. The usual fixed effect model logitðfiÞ ¼ aþ bxi is certainly a

reasonable first approach, and the only approach technically within reach in

the past (Clobert and Lebreton, 1985; North and Morgan, 1979), but should

be considered at best as a first approximation. The fixed model seems to
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provide a useful approximation to the processes that generated the data

only when sampling uncertainty is high because of small sample size.

Such uncertainty tends to mask the process variation represented in the

mixed model by ei. Mixed models are also relevant when the fixed effect is a

categorical variable, a factor in the ANOVA sense, rather than a continuous

covariate. For the vole data, for instance, one can consider, for grid A, a fixed

period effect (intervals 1–4 vs. 5–10) and a random time effect: yi ¼ bperiod þ ei
Because of the random effect, the overall variation in survival is that of

the time‐dependent model (i.e., the time‐dependent model includes all of the

temporal variation).The approaches presented above for models with a single

random effect also apply to mixed models with multiple fixed and random

effects.

A further simple and efficient approach can be presented in this context.

Lebreton and Gimenez (in preparation) show that the fixed effect cannot be

tested by a standard likelihood ratio test when there is unexplained variation

over time, that is, s2 > 0. They show further (see also simulations by Grosbois

et al., 2008), that the analysis of deviance (Skalski et al., 1993) is an adequate

test procedure. As an example, for the vole data, we consider three models.

Denoting again as n the number of parameters of direct interest that will be

modeled and asm the number of remaining parameters, these three models are:

– The constant parameter model, Mc : yi ¼ awithmþ 1 parameters

– The model with a fixed period effect, Mp : yi ¼ bperiod; withmþ 2 para-

meters for the case with two periods.

– The time dependent model, Mt. In terms of overall variation, it can be

expressed equivalently with a fixed or random time effect added to the period

effect of an overall fixed time effect: yi ¼ bperiod þ ci ¼ bperiodþ ei ¼ di.

Under the fixed effect form it has m þ n parameters, leaving aside potential

identifiability problems.

We denote asDevðMCÞ;DevðMF Þ; andDevðMtÞ, respectively, the deviance
for each of these three models. Since the constant parameter model is nested

within the fixed effect model, itself nested within the time dependent model,

one has: DevC > DevF > Devt. The likelihood ratio test statistic is

B ¼ DevC �DevF . Variation over time not explained by the fixed effect is

reflected inW ¼ DevF �Devt. B andW are the counterparts of Between and

Within ANOVA Sum of Squares, with 1 and n�2 degrees of freedom,

respectively, obtained as differences between the number of identifiable

parameters of the respective models. The analogs of the ANOVAMean Square

Errors are thus B andW=ðn� 2Þ. The analysis of deviance statistic is then the

counterpart of the ANOVA F‐statistic and is defined as F ¼ B=½W=ðn� 2Þ�.
This approach provides an approximate test for a period effect in the mixed

model yi ¼ bperiod þ ei in the presence of the random effect.
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C. Treatment Effect and Time Variation in Survival in Voles

The models needed to test for a period effect on grid A, in the presence of a

random time effect, are the first three models in Table 10. The time effect

itself was highly significant based on a likelihood ratio test between the model

with only a period effect and the full time model w217 ¼ 91:876; P ¼ 0:0000
� �

.

It would thus be totally inadequate to test for a period effect without account-

ing for the additional time variation. The analysis of deviance for a period

effect on grid A leads to F ¼ 26:292=ð91:876=17Þ ¼ 4:8648 ffi Fð1; 17Þ,
best expressed as t17 ¼ 2.206 once account is taken of the positive sign of the

variation in mean survival in grid A after treatment (Figure 5). An increase

in survival was expected to result from a decrease in permanent emigration

(a component of the complement of capture–recapture survival estimates; also

see Coffman et al., 2001). Based on a one‐sided test, this statistic is certainly

significant, providing strong evidence in favor of the prediction.

Similar results were obtained by the two‐stage ML procedure (Table 11),

although there is some instability caused by the near singularity of the

covariance matrix and by boundary estimates. In particular, this instability

affects the estimated standard errors.

A Wald test on period effect in grid A leads to z ¼ 1.714, to be compared

with t¼ 2.206 by analysis of deviance. Similarly, aWald test of the hypothesis

Table 10 Models for survival of meadow voles M. pennsylvanicus used for an
analysis of deviance on survival, with reference to the final model with 47 parameters

Survival Deviance np AIC

Sex þ pop.t 3108.958 47 3202.958
Sex þ pop(1).periodþpop(2) 3200.834 30 3260.834
Sex þ pop 3227.125 29 3285.125
Sex þ pop.period 3198.856 31 3260.856
Sex þ popþperiod 3221.635 30 3281.635

The model structure for Transitions is sex þ pop.period and for Recapture sex þ pop.t.

Table 11 Mixed models for survival of meadow volesM. pennsylvanicus used in the
two‐stage ML procedure to test for a period effect on survival in grid A

Survival DEV np AIC

Sex þ pop(1).period þ pop(2) þ TIME 69.426 31 131.426
Sex þ pop þ TIME 78.323 30 138.323

Effects in lower case are fixed effects. ‘‘TIME’’ in capitals is a random effect. The model structure

for Transitions is sexþpop.period and for Recapture sex þ pop.t.
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of a temporal process variance equal to zero (z ¼ 2.2240, P ¼ 0.053) is not as

strongly significant as the LRT (w2(1) ¼ 78.823‐69.426 ¼ 8.497, P ¼ 0.036).

The change in survival on grid A is significant (P¼ 0.0433) if considered as

a one‐sided test, again indicating a significant increase in survival. Once

again, the relevant issue is whether or not the change differed between the

two grids. A treatment effect in the expected direction would translate as a

larger increase in survival on grid A than on grid B. This amounts to a test for

a period by grid interaction in the presence of a time effect. The analysis of

deviance statistic for this test, based on rows 1, 3, and 4 in Table 10 is F(1,16)

¼ 4.0542. The estimated probability of survival increased after treatment

from 0.5227 to 0.7475 on grid A, while it decreased from 0.6574 to 0.5950 on

Grid B after period 4.

In conclusion, survival varied over time as expected because of the experi-

mental treatment. The results support the prediction that fragmentation

resulted in a decrease in animal movement and permanent emigration, and

thus in an increase in apparent survival.

Even if this example is only illustrative, it is clear that addressing different

levels of variation such as the time and period within time variation is a key

feature offered by mixed models. One may thus expect strong development of

these approaches, at a pace thatwill largely depend on the development of user‐
friendly software, in particular for implementation of Bayesian approaches.

The ability of mixed models to take into account subtle design features links

naturally with the potential of multistate models to address detailed biological

questions. We note that this set of analyses was directed at a priori hypotheses

and their associated predictions. Although such an approach is natural for

experimental work directed at treatment effects, we also believe it to be appro-

priate for observational studies. In particular, it would be very unusual to study

a system so unique that no ecological theory or empirical generalization or

studies of similar systems provided any basis for prediction.

VI. RECRUITMENT MODELS AS AN EXAMPLE OF
GENERAL MULTISTATE MODELS

A. The Rapid Development of MSMR

Based on the development above, it seems clear that multistate capture–

recapture models (MSMR) can be used to draw inferences about state‐
specific survival and state transitions in the same way that CJS models

have been used to provide inferences about survival over the last 20 years.

The general strategy of model selection, starting from a general umbrella

model that fits the data and then considering biologically plausible models
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focusing on the biological questions, works in a similar fashion. Adequate

constraints make MSMR models less data hungry that one may guess based

on an initial look at the most general models. This general approach simply

underlines, in a reassuring fashion, the similarity of MSMR models and CJS

models focused on survival.

In addition to this similarity, we believe that because MSMR models

accommodate movement of individuals between states, the potential utility

of MSMR to population biology is much greater than that of survival

models. Taken strictly as multisite models, MSMR models provide an ideal

tool to study breeding dispersal (Greenwood and Harvey, 1982) as shown,

for example, by Spendelow et al. (1995), Lindberg et al. (1998), Blums et al.

(2003a), Brown et al. (2003), Cam et al. (2004), Drake and Alisauskas (2002)

and Skvarla et al. (2004). MSMR models have also proved useful for testing

ideas from metapopulation ecology (Hanski, 1999), for example, about pre-

dicted relationships between the probability of dispersing from one location

to another and the distance between the two locations (Martin et al., 2006;

Spendelow et al., 1995; Skvarla et al., 2004).

Expanding on the initial idea of using these models for state variables

characterizing individual animals rather than just for geographical sites

(Nichols et al., 1992, 1994), a variety of states has been considered in the

literature. Consideration of ‘‘dead’’ as a state made it possible to recast the

analysis of dead recoveries (e.g., Brownie et al., 1985) and of mixtures of dead

recoveries and live recaptures (Barker, 1997; Burnham, 1993) as specific

MSMR models (Lebreton et al., 1999; see also Fujiwara and Caswell,

2002a). Initial efforts to deal with temporary emigration in capture–recapture

modeling (Kendall and Nichols, 1995; Kendall et al., 1997; Schwarz and

Stobo, 1997) used the robust design (Pollock, 1982). Although not labeled

as such, these models were multistate models in which an organism within the

studied population could be in either of 2 states, observable (with nonzero

probability of capture) or unobservable (zero probability of capture). More

recently, it was recognized that standard open‐model data can be used with

MSMR models that include ‘‘unobservable’’ states to deal effectively with

temporary emigration (Hunter and Caswell, 2009; Fujiwara and Caswell,

2002b; Kendall and Nichols, 2002; Schaub et al., 2004b). In studies of plant

populations, dormancy represents a specific form of temporary emigration

that can be investigated using MSMR models (Kéry et al., 2005).

Breeding propensity, or the probability that an individual of reproductive

age breeds in a given year, is one of the least studied demographic para-

meters. In cases where animals are sampled on breeding grounds and non-

breeders are not present at these areas, MSMR models with unobservable

states can be used for inference about breeding propensity (Bailey et al., 2004;

Fujiwara and Caswell, 2002b; Kendall and Nichols, 2002; Schaub et al.,

2004b). In situations where both breeding and nonbreeding individuals can
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be observed and classified as to reproductive state, MSMR models provide a

direct means of estimating breeding propensity and investigating mechan-

isms (Cam et al., 1998; Nichols et al., 1994).

An inference problem related to that of breeding propensity involves age at

first reproduction and accession to reproduction. In many species, all indivi-

duals do not begin reproduction at the same age, leading to an interest in the

probability that an individual of a particular age that has not yet reproduced

will be recruited into the breeding population and breed for the first time. For

some species, both breeders and nonbreeders are observable, so that addition of

age‐specificity to standardMSMRmodels permits inference about age‐specific
probabilities of recruitment to the breeding population (Hadley et al., 2006).

In many other species, such as colonial birds, the estimation problem is made

more difficult by the fact that prebreeders are not observable. Pradel and

Lebreton (1999) showed that the recruitment models proposed by Clobert

et al. (1994) for analyzing resightings or recaptures of breeding individuals,

without being able to see or recapture nonbreeders, could be written as a

partially age‐dependent MSMR model with an unobservable state for non-

breeders. For such situations involving multiple state variables (e.g., age and

breeding status), Lebreton (1995) recommended combining multiple types of

states in the same model structure. Following this suggestion, Spendelow et al.

(2002) combined age and breeding status (observable¼ breeding, unobservable

¼ prebreeding) to estimate age‐specific breeding probabilities for individuals at
a single breeding location. Lebreton et al. (2003) further extended such models

by considering a model that combined age, geographical sites, and breeding/

nonbreeding status (observable/unobservable states).

Here, we revisit the multisite recruitment model presented by Lebreton

et al. (2003) to study dispersal and recruitment in the roseate tern, based on

the long term study by Spendelow and collaborators (Nichols et al., 2004;

Spendelow, 1982, 1991; Spendelow and Nichols, 1989; Spendelow et al.,

1994, 1995, 2002). This example will emphasize the rapid progress over the

last few years on topics such as goodness‐of‐fit, detection of identifiability

problems, and flexibility in modeling, as well as the influence of this progress

on our ability to address biological questions efficiently.

B. The Roseate Tern Case Study

The data used in Lebreton et al. (2003) and here concern three breeding

sites of the roseate tern from Long Island Sound between New York and

Connecticut, extending east to Buzzards Bay, Massachusetts. The three

colony sites are Falkner Island, Connecticut (denoted as site A), Bird Island,

Massachusetts (B), and Great Gull Island, New York (C). Capture–

recapture–resighting data used here are from a coordinated study across
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the three sites and cover the years 1988–1998, K ¼ 11. Estimated numbers of

breeding adult terns at these sites over the period of study varied from 240–

380 (A), 2140–3560 (B), and 2200–3700 (C) (Spendelow et al., 1995; Spende-

low et al., unpublished). Descriptions of the study sites and the techniques

used to mark, recapture, and resight terns are provided by Spendelow et al.

(1995, 2002). Data were restricted to individuals identified at nests by

trapping at all three colony sites and also by resighting at site A. Breeding

status could not be confirmed at sites B or C for resighted birds, so these data

were not used. Many birds were marked as chicks, such that exact age was

known at any subsequent year of resighting or recapture. When unmarked

breeding adults were encountered, they were marked as well. The models

developed below consider age of prebreeders (unobservable state for ages>1)

and first‐time breeders (new recruits to the breeding population), but do not

otherwise distinguish ages of adult breeders.

Hypotheses and predictions about results of these analyses followed those

presented by Lebreton et al. (2003). Natal dispersal is thought to be more

prevalent than breeding dispersal in many bird species (Greenwood and

Harvey, 1982), including seabirds (Bradley and Wooller, 1991). Despite this

widely held belief, avian studies of natal dispersal that adequately deal with

variation in detection probabilities over time and space are rare (but see

Blums et al., 2003b; Hénaux et al., 2007; Lindberg et al., 1998). Our basic

prediction was that for any pair of colony sites, u and v, the probability of

young birds dispersing from natal site u to recruitment site vwould be greater

than the probability of a breeder at u in year t moving to site v at year tþ1.

We also tested the prediction that the relative attractiveness of colony sites

would be similar for young and adult birds. Our knowledge of the behavior

of the terns led to several hypotheses. The simplest prediction was that natal

and breeding dispersal probabilities varied in parallel between the different

pairs of colony sites. However, fledglings and adults from one site may visit

other colony sites before true fall migration takes place, and both surviving

prebreeders and experienced adults have the opportunity to assess several

potential sites before choosing where to nest each year. Thus, for birds that

do move, differences in their experience and level of knowledge of local

conditions at these sites could lead to differences in the relative rates of

movements to destination sites between first‐time breeders and more experi-

enced adults. For example, natal‐dispersing first‐time breeders might be more

likely simply to move to a nearby colony site, whereas more experienced birds

that disperse might be more likely to move to a higher‐quality site even

though it may be farther away.

Based on the sizes and histories of the colony sites, colony A is believed to

have been the least successful colony. Thus, we predicted that the probability

of returning to (not dispersing from) a colony should be greater for sites B

and C than for A, for both young birds and adult breeders. A hurricane in
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August of 1991 (Hatch et al., 1997) passed over important premigratory

staging areas for this population (Trull et al., 1999), and we considered the

possibility that rates of dispersal increased following this event. The hurri-

cane effect was modeled as a single‐year effect for breeding dispersal, and as a

two‐year effect for natal dispersal given breeding starts at age 2 and two

cohorts could be affected.

Because of the importance of age at first reproduction to fitness (Cole,

1954; Charnov and Schaffer, 1973), we expected probabilities of recruitment

to the breeding population to increase with age. If substantial variation in

individual ‘‘quality’’ exists (see Cam et al., 2002; Cooch et al., 2002; Link

et al., 2002b), then this prediction would still be expected to hold within

individuals, but not necessarily at the population level (the level of our

modeling).

The suspected loss/degradation of breeding habitat and the relative satu-

ration at the Bird Island colony site (B) led to the prediction that recruitment

probabilities at this site might be lower than those at the other two sites

because of intraspecific competition and interspecific competition with com-

mon terns (S. hirundo) for suitable nesting sites. More specifically, we pre-

dicted that there would be higher recruitment of natal‐dispersers from site A

to the closer and presumably less‐saturated site C than from site A to the

more distant site B.

We expected both death and permanent emigration to be greater for very

young birds and thus predicted that annual apparent survival rates for the

first two years of age would be lower than apparent survival at later ages

(e.g., Loery et al., 1987; Ricklefs, 1973). The hurricane in 1991 led to the

prediction that survival would be lower in 1991 than other years for both

young and adult birds.

C. General Umbrella Model

The initial states of chicks at banding, that is, as age‐0 prebreeders, in the

three sites were coded as a, b, c. Recaptures of these birds as breeding adults

and initial captures of breeding adults were coded as A, B, C. Typical capture

histories are a0AB0A000 for a bird marked as a chick, 00CC0ACC0 for a

bird marked as an adult. Since the models are conditional on first capture,

initial ringing as a prebreeder (in state a) is quite compatible with the

impossibility of recapturing prebreeders: there will never be a reobservation

in states a, b, or c. The general structure of the model is based on a directional

move from the set of states (a, b, c) to (A, B, C), that is, recruitment. The data

set can thus be summarized as two m‐arrays (Tables 12 and 13): one from

banding as chick to the first observation as breeder, the second starting

from the first observation as a breeder for birds banded as chicks and from
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Table 12 m‐Array for the roseate terns S. dougalli, from ringing as chick to the first recapture as breeder, by site of banding as a chick and site of
first recapture

Time Site

Time 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11

Site 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 1 206 0 0 0 17 1 1 9 0 0 3 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 2 983 0 0 0 0 28 1 0 6 0 1 8 1 0 7 1 0 3 3 0 3 1 0 0 0 0 1 0
1 3 355 0 0 0 1 1 3 1 0 1 2 0 3 0 1 2 0 0 1 0 0 1 0 0 4 0 0 3
2 1 136 0 0 0 9 0 0 6 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1158 0 5 0 0 2 0 1 13 0 0 21 0 0 6 0 0 10 0 0 6 0 0 1 2
2 3 508 0 0 0 1 1 4 1 1 9 0 3 11 0 0 4 0 0 4 0 0 2 0 0 1
3 1 142 0 0 0 9 0 2 7 0 1 3 0 1 2 0 1 0 0 0 0 0 2
3 2 1128 1 2 0 4 8 2 1 20 1 0 15 5 1 13 1 0 6 1 0 5 2
3 3 560 0 0 1 0 1 10 3 3 13 1 0 5 0 1 3 0 0 8 0 0 5
4 1 158 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 0 0 0
4 2 538 0 0 0 0 2 0 1 5 0 0 4 0 0 2 1 0 0 1
4 3 918 0 0 0 1 0 2 1 0 1 1 0 2 0 0 1 0 0 0
5 1 103 0 0 0 17 0 0 4 0 0 4 0 0 1 0 1
5 2 657 0 0 0 0 23 1 0 18 0 0 13 2 0 5 1
5 3 772 1 0 1 2 0 6 10 3 2 3 2 7 0 0 9
6 1 189 0 0 0 26 1 1 13 0 0 7 0 1
6 2 911 0 0 0 0 8 0 0 11 0 1 7 2
6 3 1139 0 0 0 7 0 4 3 4 15 0 4 23
7 1 186 0 0 0 15 0 1 8 0 1
7 2 1168 0 0 0 0 10 0 0 26 2
7 3 1116 1 0 1 2 1 4 1 2 29
8 1 122 0 0 0 10 0 2
8 2 1154 0 0 0 0 1 1
8 3 1116 0 0 0 2 0 13
9 1 82 0 0 0
9 2 829 0 0 0
9 3 797 0 0 0



Table 13 m‐Array for breeding roseate terns S. dougallii from the first recapture or from banding as a breeder to the next, by site and occasion

Time Site

Time 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10 11 11 11

TotalSite 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 1 160 57 1 2 20 0 1 3 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 89

1 2 254 0 6 0 0 6 0 0 3 0 0 4 0 0 7 1 0 8 0 0 1 0 0 4 0 0 0 0 0 1 0 41

1 3 200 2 1 3 2 1 2 2 0 9 0 0 3 0 0 5 1 1 3 0 0 1 1 0 1 0 0 4 0 0 1 43

2 1 193 115 0 0 13 0 2 2 2 2 0 0 2 1 0 2 1 0 1 0 0 1 0 0 2 0 0 1 147

2 2 213 0 4 0 1 2 1 0 3 1 0 6 0 0 8 0 0 4 0 0 1 0 0 3 0 0 0 0 34

2 3 153 1 0 6 0 0 4 0 0 2 1 0 3 0 0 2 0 0 3 0 0 2 0 0 2 0 0 1 27

3 1 243 173 0 0 10 1 0 0 0 1 4 0 0 0 0 1 1 0 0 0 0 0 1 0 0 192

3 2 247 0 14 0 0 6 0 0 8 0 0 14 0 0 2 0 0 3 0 0 3 0 0 1 0 51

3 3 138 0 0 9 0 2 4 0 0 5 0 1 9 2 0 5 0 0 3 0 0 0 0 0 1 41

4 1 278 152 0 0 11 0 2 3 0 0 2 0 0 1 0 0 0 0 0 1 0 0 172

4 2 315 0 6 0 0 12 0 0 8 0 0 3 1 0 4 0 0 2 1 0 0 0 37

4 3 253 1 0 7 2 0 9 0 0 8 1 0 9 0 0 3 0 0 5 0 0 2 47

5 1 213 174 0 0 7 0 1 2 0 0 0 0 1 0 0 0 0 0 1 186

5 2 201 0 31 1 0 13 0 0 1 0 0 1 0 0 1 0 0 1 0 31

5 3 179 3 0 10 3 1 7 2 0 9 0 0 0 1 0 3 0 0 5 44

6 1 277 205 4 0 6 0 1 1 1 0 0 0 2 0 0 0 220

6 2 225 0 18 0 0 8 1 0 11 0 0 7 0 0 2 0 47

6 3 278 2 3 20 0 0 12 0 2 5 0 0 3 1 0 1 49

7 1 262 193 0 1 7 0 0 2 0 0 0 0 1 204

7 2 447 0 16 0 0 19 0 0 8 2 0 7 0 52

7 3 280 0 0 10 3 1 7 0 0 7 0 0 2 30

8 1 245 182 2 0 16 0 0 2 0 0 202

8 2 200 0 13 0 2 21 1 0 4 1 42

8 3 193 0 0 7 1 0 5 0 0 3 16

9 1 265 182 0 3 8 0 3 196

9 2 237 3 26 0 1 13 0 43

9 3 110 0 0 5 0 0 1 6

10 1 257 181 1 0 182

10 2 247 0 12 0 12

10 3 188 0 0 5 5



banding for those first captured as breeders. These two m‐arrays are suffi-

cient statistics for the models that follow, that is, the models can be fit using

these data summaries alone: the first one contains information on immature

survival, natal dispersal and recruitment, the second on breeding dispersal

and adult survival. The delay in reproduction and the progressive accession

to reproduction are clearly visible in the first of these tables, the first diagonal

being empty and the next ones filling in progressively.

The transitions within (a, b, c) will model natal dispersal, those within

(A, B, C) breeding dispersal. Age dependence is present in the transitions

from a, b, c to all states. The transitions from A, B, C can only be to A, B, C

and are assumed to be independent of age. This absence of an age effect

makes it possible to consider simultaneously birds of unknown age marked

as breeders. We emphasize that the assumption of no movement fromA, B, C

to a, b, c (i.e., from breeder to prebreeder) does not imply that all recruited

individuals are assumed to breed every year. The absence of reproduction by

previously recruited birds in some years will be accounted for in the proba-

bility of recapture, and the recruitment probabilities will be relative to

breeding probabilities of adults. In accordance with the general assumption

of nonobservability of prebreeders, the probability of recapture in a, b, c is

fixed to 0. Further features of the model are that the survival of prebreeders

from age 2, that is, the age at first reproduction at the population level,

onwards is the same as that of breeders, and that natal dispersal takes place

between birth and age 1. The latter assumption is not restrictive: since no

further movement is considered within the three unobservable states a, b, c,

the resulting transition probabilities will indeed model the overall natal

dispersal, that is, dispersal between locations of birth and first breeding.

The model structure is given in further detail in Lebreton et al. (2003).

We summarize it in Table 19, based on the model definition language of

M‐SURGE briefly illustrated in Table 14.

In accordance with our general philosophy, it is natural to start from a

detailed umbrella model for which goodness‐of‐fit can be assessed. We will

thus consider that the various parameters, with all of their described sources

of variation (such as age‐dependence in the transitions from a, b, c to A, B, C),

also vary over time. Lebreton et al. (2003) used an ad hoc approach to

assessing model fit, assumed to be conservative and based on reduction of

the data to single state data. They obtained a lack‐of‐fit coefficient ĉ ¼ 4:011
that was used to protect model selection by QAIC (Burnham and Anderson,

2002). Since there is no age‐dependence from the first observation in A, B, C,

onwards, that part of the model is exactly like the CAS model. Its fit can be

tested in the two steps described earlier that are now available: goodness of fit

of JMV plus assessment of difference in quality of fit between JMV and CAS.

This will provide the first two components of our assessment of fit. Crespin

et al. (2006) describe for a single site model how the first part of the capture
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history (such as a0A. . .) brings no information on goodness of fit provided

the corresponding part of the model is sufficiently time and age dependent.

This reduces the assessment of fit of a recruitment model to a goodness‐of‐fit
test of the CAS model on the breeder portion of the capture histories. In the

multisite context, the situation is a bit more complex, since the model further

assumes the independence between the two parts of the capture history. We

obtain thus a third component in the form of a test ‘‘Where before—Where

after,’’ conditional on the state at the first observation as a breeder.

The results of this goodness‐of‐fit procedure are given in Table 15. While

the model clearly does not fit the data, the lack of fit is somewhat balanced

among test components, with the exception of the component concerning the

‘‘memory’’ of the birth site by breeders. The relatively large value of w2=df for
this component implies, for example, that birds born in site 2, after having

bred for the first time in site 1, have a greater tendency to come back to site 2

for further breeding than birds born elsewhere. Such dependence could only

Table 14 A few formulas illustrating the model definition language of M‐SURGE
for the recruitment models of roseate terns S. dougalli

Short name
Notation in M‐SURGE
model definition language Comments

Age(2, 	3) a(2,3:10) Second year, >Second year
Ads [a(1).f(1,2,3)&

a(2:10).f(1 4,2 5,3 6)]
Adult survival: Breeders in first year
after marking and Breeders and
non breeders aged at least 2

Ims a(1).f(4,5,6) First year survival, concerning non-
breeders only

ld(3).a(2,3,4).to(1,2,3) Recruitment at ages 2,3,4; ld(3) ¼
lower diagonal #3, that is, transi-
tions from nonbreeder states 1,2,3,
to breeder states 4,5,6, respectively

ld(3).a(5) Recruitment at age 5 (fixed at 1 for
full recruitment at age 5)

ld(3).[a(2,3:10) þ to(1,2,3)] Additive age (2 and>2 years) and site
effect on recruitment

ld(3).a(2,3:10).to(1,2,3) Constant recruitment from age 3 on-
wards, by site

to(1,2,3) Site effect for breeders
f(1,2,3).to(1,2,3) Breeding dispersal (between breeder

states 1, 2, and 3)
a(1).f(4,5,6).to(4,5,6) Natal dispersal (as dispersal before

recruitment, i.e., among non breeder
states 4, 5, 6)

Hurricane(3) t(1:3;5:10,4) Hurricane effect (before, after, year of
hurricane)

The short names in first column are used in Tables 16–19 presenting model selection.
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be taken into account using an age‐dependent generalization of the memory

model proposed by Brownie et al. (1993; see also Pradel, 2005). While further

modeling could consider such structural features to remove part of this lack

of fit, we considered for the time being that it could be summarized as an

overdispersion coefficient, ĉ. Compared with the ad hoc measure of fit used

by Lebreton et al. (2003), this overdispersion coefficient drops from

ĉ ¼ 4:011 to ĉ ¼ 2:9163 showing indeed that multistate modeling did remove

a portion of the heterogeneity, as expected.

D. Model Selection

Starting from a full time dependent model, with an overdispersion coefficient

ĉ ¼ 2:9163; we examined potential variation over time in natal and breeding

dispersal. Constancy was preferred both to full time variation and to a

hurricane effect (Table 16). Starting from this new model, survival both

during the first year and after the first year was shown to be affected by the

hurricane (Table 17). One should note that survival probability is estimated

over the whole immature period, that is, from birth to age 2. Under the

reasonable assumption that survival of second year birds (age 1–2) is the

same as that of older birds, one can produce an estimate of survival for first

year birds.

We then modeled recruitment by looking at various alternatives. A con-

stant recruitment rate from age 3 onwards, with additive effects of site,

appeared as preferable (Table 18), and there was no indication that the

Table 15 Goodness of fit results of the recruitment model for the roseate tern
S. dougallii data

Component w2 df w2/df

W Before W After 41.367 9 4.5963
3G.SR 132.794 27 4.9183
3G.Sm 103.338 44 2.3486
M.ITEC 213.636 45 4.7475
M.LTEC 38.485 43 0.9450
JMV 529.620 168 3.1525
W Born–W After 66.206 8 8.2758
JMV/CAS 66.168 51 1.2974
Total 661.994 227 2.9163

The overall w2‐squared statistic (661.994, df ¼ 227) is highly significant (P ¼ 0.0000) as are all

components but M.LTEC if tested by themselves. The components being reasonably balanced,

the lack‐of‐fit will be accounted for by an overdispersion coefficient ĉ ¼ 2:9163;
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hurricane had a significant effect on the rate of accession to breeding.

As expected at that stage, the time and site dependence in capture probabil-

ities could not be removed. In our final round of model selection we found, as

shown previously by Spendelow et al. (2002), that the hurricane in 1991 had a

greater impact on the survival of young from that year than it had on the

survival of adults (Table 19). We also were able to reduce the ‘‘hurricane

effect’’ from 3 to 2 levels, that is, the average survival in all ‘‘before hurricane’’

years was not significantly different from the average survival in all

‘‘after hurricane’’ years (Table 20). Using data from just Falkner Island,

Table 17 Modeling survival in roseate terns S. dougallii under constant breeding
and natal dispersal

np Survival Model

Result

Dev np QAIC

60 ads.t þ ims.t 19 905.521 170 7 165.61
39 ads.hurricane þ ims.t 19 969.365 150 7 147.50
18 ads.hurricane þ ims.hurricane 19 999.741 132 7 121.92
12 ads þ ims.hurricane 20 047.812 126 7 126.40
12 ads.hurricane þ ims 20 108.705 126 7 147.28

Recruitment and recapture are fully time‐dependent. Notation of effects, detailed in Table 14, is

as follows: ads ¼ adult survival, ims ¼ immature survival, hurricane considers a variation with

three levels: years 1–3 (before hurricane), 4 (year of hurricane), 5–10 (after hurricane). Based on

Q‐AIC with ĉ ¼ 2:9163, the model with constant breeding and natal dispersal is by far preferable

to others.

Table 16 Modeling breeding and natal dispersal in roseate terns S. dougallii starting
from full time‐dependent model

Breeding dispersal Natal dispersal Dev np QAIC

time time 19754.832 266 7 305.94
constant time 19855.413 212 7 232.43
hurricane(3) time 19828.493 224 7 247.20
constant constant 19905.521 170 7 165.61
constant hurricane(3) 19892.401 182 7 185.11

The notation of effects is detailed in Table 14. Hurricane(3) considers a variation with three

levels: years 1–3 (before hurricane), 4 (year of hurricane), 5–10 (after hurricane). Based on

Q‐AIC with ĉ ¼ 2:9163; the model with constant breeding and natal dispersal is strongly

preferable to others.
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Spendelow et al. (2002) found that young from the two cohorts (1992 and

1993) immediately following the hurricane had above‐average survival esti-

mates, but we did not examine this particular model in our analysis. The

estimates of the dispersal parameters in Table 22 are similar to those given by

Lebreton et al. (2003; Tables 7 and 8).

Compared to the analysis in Lebreton et al. (2003), this analysis takes full

advantage of the recent availability of goodness‐of‐fit procedures, since,

relying on a lower overdispersion coefficient, it is less conservative

(Tables 19–23). It also takes advantage of the flexibility and numerical

reliability of M‐SURGE: all models were run from several initial values to

avoid problems with local minima, and the QAIC calculations use reliable

estimates of the number of estimable parameters. Finally, the analysis bene-

fited from the flexibility and user friendliness of the model definition lan-

guage in M‐SURGE, illustrated by the simplicity of the model formulas

(Table 14). The refined definition of states and the progress in statistical

methodology and software clearly have great potential for population biolo-

gy. It is often advantageous in such a context to incorporate various sources

of information in the same analysis, not only to improve precision or power,

but also to estimate parameters and thus investigate mechanisms that would

otherwise be inaccessible. Several promising approaches exist. Hénaux et al.

(2007) incorporated a state ‘‘alive elsewhere’’ and a state ‘‘dead’’ to generalize

the type of recruitment model we used to incorporate information from dead

recoveries and estimate permanent emigration out of the set of sites studied.

More general approaches for combining information are developed in the

next section.

Table 18 Modeling recruitment in roseate terns S. dougallii under constant breeding
and natal dispersal

Transition model

Result

Dev np QAIC

age(2, 3, 4, 5).site.t 19999.741 132 7 121.92
age(2, 	3).site 20182.515 66 7 052.59
age(2, 	3).site.t 20039.005 111 7 093.38
age(2, 	3).site.hurricane(3) 20134.668 78 7 060.18
age(2, 	3) þ site 20204.844 65 7058.25

Recapture is site and time‐dependent. Notation of effects, detailed in Table 14 is as follows:

hurricane(3) considers a variation with three levels: years 1–3 (before hurricane), 4 (year of

hurricane), 5–10 (after hurricane); age is age in years. Based on Q‐AIC with ĉ ¼ 2:9163, the

model with a specific recruitment probability at age 2, constant recruitment probability from age

3 onwards, by site (with. 2 � 3 ¼ 6 recruitment parameters).
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Table 19 Final exploration of specific effects in roseate tern S. dougallii recruitment models

Survival model Recruitment model Recapture model

Results

Deviance np QAIC

ads.hurricane(3) þ ims.hurricane(3) age(2, 	3).site site.time 20182.515 66 7052.589
ads.hurricane(3) þ ims.hurricane(3) age(2, 	3).site site 20379.101 37 7061.999
ads þ ims þ hurricane(3) age(2, 	3).site site.time 20233.338 56 7050.017
ads þ ims þ hurricane(2) age(2, 	3).site site.time 20236.104 55 7048.965
adsþimsþhurricane(2) age(2, 	3).

site.hurricane(3)
site.time 20188.424 73 7068.616

ads.hurricane(2) þ ims.hurricane(2) age(2, 	3)þsite site.time 20225.896 59 7053.465
ads þ ims þ hurricane(2) age(2, 	3)þ.site site.time 20257.652 54 7054.354
ads.hurricane(2) þ ims.hurricane(2) age(2, 	3).site site.time 20203.307 60 7047.719

The notation of effects is detailed in Table 14. The main features of this final model selection were as follows:

The recapture probabilities did vary by site and occasion (i.e., the time variation could not be removed from the model).

The hurricane effect could be reduced from 3 to 2 levels (hurricane year against before after, without need to separate the last two categories).

The effects of hurricane on adult and immature survival were not identical on a logit scale (i.e.,. the hurricane effect could not be considered as additive

to age).

Recruitment was not affected by hurricane.



Table 20 Estimates of survival probabilities under the final model of Table 19 for
the roseate tern S. dougallii data

Age Site Period

Estimated
survival

probability

Lower
bound
95% CI

Upper
bound
95% CI S.E.

Adults A Before and after
hurricane

0.9115 0.8659 0.9427 0.0192

Adults B Before and after
hurricane

0.7777 0.7219 0.8250 0.0263

Adults C Before and after
hurricane

0.8363 0.7748 0.8835 0.0276

First year A Before and after
hurricane

0.4538 0.3538 0.5576 0.0527

First year B Before and after
hurricane

0.6091 0.4566 0.7428 0.0750

First year C Before and after
hurricane

0.5962 0.4449 0.7311 0.0750

Adults A Hurricane year 0.7126 0.6394 0.7762 0.0351
Adults B Hurricane year 0.6290 0.4750 0.7607 0.0748
Adults C Hurricane year ‐ Not

identifiable
First year A Hurricane year 0.0670 0.0271 0.1561 0.0302
First year B Hurricane year 0.2458 0.1375 0.3998 0.0676
First year C Hurricane year 0.0838 0.0412 0.1628 0.0296

The estimate of first year survival probability is obtained by dividing the estimate of survival

probability over the first two years of life by that of adults, that is, under the assumption that

second year birds have the same survival probability as adults.

Table 21 Estimates of recruitment probabilities under the final model of Table 19
for the roseate tern S. dougallii data

Site Age

Estimated
recruitment
probability

Lower bound
95% CI

Upper bound
95% CI S.E.

A 2 0.0098 0.0031 0.0302 0.0057
B 2 0.0236 0.0106 0.0517 0.0096
C 2 0.0181 0.0056 0.0573 0.0108
A > ¼ 3 0.5411 0.4598 0.6203 0.0413
B > ¼ 3 0.5117 0.3474 0.6734 0.0863
C > ¼ 3 0.5377 0.3322 0.7311 0.1077

The probability of recruitment is the transition probability from a nonbreeder state to a breeder

state.
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VII. MULTISTATE MODELS FOR MIXTURES OF
INFORMATION

A. Recoveries and Recaptures

Burnham (1993) developed a model for the joint analysis of live‐recapture
and ring‐recovery data when all animals in the study are exposed to both

types of sampling. This model was extended by Catchpole et al. (1998) to

allow age‐ and time‐dependent parameters. Szymczak and Rexstad (1991)

used Burnham’s model to estimate survival and site fidelity probabilities of a

gadwall (Anas strepera) population. Barker (1997) generalized Burnham’s

(1993) model to include information from resightings of live animals obtained

between marking occasions. This model extends the resighting models of

Cormack (1964) and Brownie and Robson (1983) to allow resighting to occur

any time between marking occasions and to also include live‐recapture
and dead‐recovery data. Interestingly, Jolly’s (1965) earlier suggestion for

Table 22 Estimates of dispersal probabilities under the final model of Table 19 for
the roseate tern S. dougallii data

From To
Estimated dispersal

probability
Lower bound

95% CI
Upper bound

95% CI S.E.

(A) Breeding dispersal
A A 0.8454 0.7838 0.8892 0.0189
B A 0.0012 0.0006 0.0027 0.0005
C A 0.0069 0.0049 0.0096 0.0012
A B 0.0273 0.0152 0.0486 0.0081
B B 0.9831 0.9691 0.9908 0.0048
C B 0.0110 0.0063 0.0192 0.0031
A C 0.1274 0.0957 0.1676 0.0183
B C 0.0156 0.0086 0.0282 0.0047
C C 0.9822 0.9713 0.9888 0.0034

(B) Natal dispersal
A A 0.5654 0.2792 0.7358 0.0666
B A 0.0027 0.0012 0.0064 0.0012
C A 0.0158 0.0097 0.0258 0.0039
A B 0.0645 0.0179 0.2072 0.0410
B B 0.9308 0.8827 0.9598 0.0179
C B 0.1035 0.0618 0.1684 0.0266
A C 0.3701 0.2464 0.5136 0.0697
B C 0.0664 0.0391 0.1109 0.0178
C C 0.8807 0.8059 0.9286 0.0275

(A) Breeding dispersal, that is, from a breeding site to next breeding site. (B) Natal dispersal, that

is, from the birth site to the first breeding site (all denoted here as capital letters A, B, C).
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augmenting live‐recapture data with resightings leads to the maximum likeli-

hood estimators for capture and survival probabilities, but only under the

assumption of no, or random, emigration (Barker, 1997).

Lebreton et al. (1999) demonstrated that Burnham’s (1993) model could be

expressed as a special case of a multistate mark–recapture model. They

developed a multistate representation of the CJS model in which two states

‘‘Alive’’ and ‘‘Dead’’ are defined. In the CJS model, animals can only be

observed in the ‘‘Live’’ state but in Burnham’s model, information is also

obtained from recoveries of marked individuals that have died (dead recov-

eries). To develop the multistate representation of Burnham’s (1993) model,

Lebreton et al. (1999) defined a new state ‘‘Newly dead’’; animals can be

Table 23 Estimates of recapture probabilities under the final model of Table 19 for
the roseate tern S. dougallii data

Site Occasion
Estimated recapture

probability
Lower bound

95% CI
Upper bound

95% CI S.E.

A 2 0.5621 0.4543 0.6643 0.0544
B 2 0.0391 0.0195 0.0766 0.0137
C 2 0.0258 0.0107 0.0608 0.0115
A 3 0.8147 0.7324 0.8760 0.0365
B 3 0.0327 0.0180 0.0588 0.0100
C 3 0.0275 0.0142 0.0525 0.0092
A 4 0.8878 0.8192 0.9326 0.0283
B 4 0.0829 0.0615 0.1108 0.0124
C 4 0.0625 0.0430 0.0900 0.0118
A 5 0.8832 0.8146 0.9288 0.0287
B 5 0.0433 0.0296 0.0630 0.0084
C 5 0.0267 0.0172 0.0412 0.0060
A 6 0.9254 0.8705 0.9582 0.0216
B 6 0.0768 0.0586 0.1001 0.0105
C 6 0.0577 0.0430 0.0769 0.0085
A 7 0.9529 0.9074 0.9766 0.0166
B 7 0.1304 0.1052 0.1605 0.0141
C 7 0.0656 0.0507 0.0845 0.0085
A 8 0.9408 0.8908 0.9687 0.0190
B 8 0.0694 0.0540 0.0888 0.0088
C 8 0.0551 0.0421 0.0718 0.0075
A 9 0.9000 0.8499 0.9346 0.0213
B 9 0.0940 0.0732 0.1200 0.0119
C 9 0.0302 0.0216 0.0422 0.0052
A 10 0.9295 0.8740 0.9616 0.0215
B 10 0.0873 0.0662 0.1142 0.0121
C 10 0.0490 0.0360 0.0664 0.0077
A 11 0.8861 0.7848 0.9431 0.0390
B 11 0.0600 0.0438 0.0817 0.0095
C 11 0.0627 0.0460 0.0851 0.0099
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observed in the states ‘‘Alive’’ and ‘‘Newly dead’’ but not in the state

‘‘Dead’’. An animal alive at i may remain alive at i þ 1 or it may move into

the state ‘‘Newly dead’’. An animal in the state ‘‘Newly dead’’ at i makes the

transition to the absorbing state ‘‘Dead’’ at iþ 1. Because the state ‘‘Dead’’ is

not observable, it can be suppressed; the likelihood requires only that the two

states ‘‘Alive’’ and ‘‘Newly dead’’ be explicitly expressed.

Burnham (1993) also considered the case of two forms of emigration:

permanent emigration where animals may move away from the region

where they are at risk of capture, but not return, and a second form ‘‘random

temporary emigration’’ where animals may leave and return. For random

temporary emigration the probability of being at risk of capture at i is the

same regardless of whether the animal was at risk of capture at i�1. In this

case of random temporary emigration, the probability that an animal is at

risk of capture in sample i, is confounded with the recapture parameter pi.

Thus, the model as described above is valid for situations in which either no

emigration or random temporary emigration occurs. On the basis of stan-

dard open model encounter history data we cannot distinguish between these

two models, although discrimination is possible under the robust design

(Kendall et al., 1997).

Permanent emigration (with probability denoted as 1�Fi, the complement

of fidelity) can be accommodated in the multistate framework by including a

second unobservable ‘‘Alive’’ state. Animals in the state ‘‘Unobservable

alive’’ are alive but not at risk of capture. If the state ‘‘Observable Alive’’ is

state 1, the state ‘‘Unobservable alive’’ is state 2 and the state ‘‘Newly dead’’ is

state 3, then the multistate representation of Burnham’s (1993) model with

permanent emigration is obtained by constraining the CAS likelihood so that:

Fi ¼
SiFi Sið1� FiÞ 1� Si

0 Si 1� Si

0 0 0

2
4

3
5 and Pi ¼

pi 0 0

0 0 0

0 0 ri

2
4

3
5 ð7Þ

This development utilizes the MSMR framework with states corresponding

to animals that are alive and dead. The state space can also be extended to

incorporate multiple banding and recovery locations, bringing both sources of

information to bear on the estimation ofmovement probabilities.Kendall et al.

(2006) combine these information sources to estimate survival and movement

probabilities for Canada geese wintering in the Atlantic Flyway, US.

B. Modeling Live Resightings Between Capture Occasions

A dead recovery is not the only way that information can be obtained from

animals between captureoccasions.Animalsmayalsobe resightedalive.Barker

(1995) extended Burnham’s (1993) model in two ways: (1) to allowmodeling of

live resighting of animals between samples i and i þ 1 in addition to dead
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recoveries and (2) to allow temporary emigration to be described by aMarkov

chain, relaxing the assumption that temporary emigration is random (where

‘‘random’’ is definedas above; see alsoBurnham, 1993andKendall et al., 1997).

1. The First Model Considers No, or Random, Temporary

Emigration

In a dead recovery model, an animal found dead is no longer available for

recapture or recovery. Thus, at time i, the indicator can only take the value 1

if the animal was caught alive at i or 2 if it was found dead in (i, i þ 1). With

live resightings an animal can be both seen alive in (i, i þ 1) and caught at i,

and so coding is more complicated. To develop the multistate representation

of the model with resightings we modify the data format used by program

MARK (White and Burnham, 1999) in which events in the interval (i, i þ 1)

are recorded using pairs of indicator variables (LiDi). Here we adopt a

similar approach with the indicators defined as follows:

Li ¼ 0 (not captured in sample i)

Li ¼ 1 (captured in sample i)

Di ¼ 0 (not resighted alive nor found dead between samples i and i þ 1)

Di ¼ 2 (resighted alive in between samples i and i þ 1)

Di ¼ 3 (found dead between samples i and i þ 1).

For example, an animal with the history 00 10 02 13 was first released at

sample time 2, was not caught at time 3 but was resighted alive between

sample times 3 and 4, was caught at time 4 and then was found dead between

samples 4 and 5.

Assuming no or random temporary emigration, we define three pseudo‐
states: ‘‘Alive and not resighted’’, ‘‘Alive and resighted’’, and ‘‘Dead and

recovered’’. These are not states in the usual sense of the multistate model in

that they include resighting/recovery events. However, by expressing the

model in this way, the CAS model generates the correct likelihood. The

survival‐movement matrix that governs the transition from a Li sample to

a Di sample is given by:

Fi ¼
Sið1� RiÞ fivi fið1� viÞ

0 0 0

0 0 0

2
4

3
5with capture matrix Piþ1 ¼

0 0 0

0 1 0

0 0 1

2
4

3
5

ð8Þ
where

fi ¼ SiRi þ ð1� SiÞðri þ ð1� riÞR0
iÞ

vi ¼ 1� ð1� SiÞri
fi

:

and
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Ri is the probability that an animal that is alive at i and at i þ 1 is seen in

(i,i þ 1),

R0
i is the probability that an animal that dies between i and iþ 1 and is not

reported dead is seen in (i,i þ 1) before it died,

ri is the probability that an animal that dies between i and i þ 1 is reported

dead.

For transitions from aDi sample to a Li þ 1 sample, the survival‐movement

matrix is given by:

Fi ¼
1 0 0

SiRi

fivi
0 0

0 0 0

2
664

3
775with capture matrix Piþ1 ¼

piþ1 0 0

0 0 0

0 0 0

2
4

3
5 ð9Þ

Barker (1997) showed that under random emigration, the probability of

temporary emigration (i.e., the probability that an animal is at risk of capture

at i þ 1) is confounded with pi þ 1 as in Burnham’s (1993) model.

2. Permanent Emigration or Markovian Temporary Emigration

The CAS and JMV models are Markovian in the sense that events in the

interval between sample i and sample i þ 1 depend only on the state of the

animal at sample i. If emigration is random the multistate model as described

above is Markovian; that is, the encounter history can be regarded as an

observed realization of a Markov chain and the probability of transitions

from states occupied during L sample to states occupied during D samples

depends only on the state occupied for the L sample. Similarly, transitions

from D to L samples depend only on the state occupied for the D sample.

When the model is generalized to allow permanent or Markovian tempo-

rary emigration the fate of an individual depends on whether it is ‘‘at risk of

capture’’ or ‘‘not at risk of capture’’.

To model joint live‐recapture/live‐resighting data under permanent or

temporary Markovian emigration we thus have to split the ‘‘Alive and not

resighted’’ state into two states according to whether or not the animal is at

risk of capture. Thus, we now have four states:

1. Alive and available for capture

2. Alive but not at risk of capture (unobservable)

3. Resighted alive

4. Resighted dead

The survival‐movement matrix that governs the transition from an Li

sample to a Di sample is then given by:
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Fi ¼

Sið1� g000
i Þð1�RiÞ Siig

00
i ð1�RiÞ fivi fið1� viÞ

Sið1� g0
iÞð1�RiÞ Sig

0
ið1�RiÞ fivi fið1� viÞ

0 0 0 0

0 0 0 0

2
6664

3
7775with capture matrix

Piþ1 ¼

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775 ð10Þ

where g00i is the probability that an animal that is at risk of capture at i is not

at risk of capture at i þ 1 (i.e., it has temporarily emigrated) and g0i is the
probability that an animal that is not at risk of capture at i is not at risk of

capture at i þ 1 (i.e., it remains a temporary emigrant).

For transitions from aDi sample to an Liþ1 sample the survival‐movement

matrix depends on when the animal was last captured. If the last capture

occasion is indexed by h:

Fh
i ¼

1 0 0 0

0 1 0 0

ahiþ1SiRi

dhifivi

a0hiþ1SiRi

dhifiv
0 0

0 0 0 1

2
666664

3
777775with capture matrix

Piþ1 ¼

piþ1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775

ð11Þ

The functions a, a0, and d are functions of g00 and g0: ahj is the probability that
an animal last caught at h and alive at j is at risk of capture at j and has not

been caught after h, a0hj is the probability that an animal last caught at h and

alive at j, is not at risk of capture at j and has not been caught after h, and dhj
is the probability that an animal last caught at h and alive at j is not caught

between k and (including) j. Note the distinction between the function dkj and
the functions a hj and a0 hj is that with dhj animals can be either at risk of

capture or not at risk of capture at j. Computation of the likelihood is carried

out as for the CAS model except that the appropriate survival‐movement

matrix must be substituted according to when the animal was last caught.

In order to make the model identifiable additional constraints are required

on the parameters g00i and g0i. One option is permanent emigration (i.e., g01 ¼
g02 ¼ . . . ¼ g0t�1 ¼ 1); another is to have stationary Markovian temporary
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emigration by applying the constraints g001 ¼ g002 ¼ . . .¼ g00t�1 and g01 ¼ g02 ¼
. . . ¼ g0t�1 (Barker et al., 2004).

Note that constraining g00i ¼ 0 for all i will result in a random (or no)

emigrationmodel being fitted (Barker andWhite, 2001). Under this constraint,

g0i can be constrained to any value as it does not enter into the likelihood.

Because the JMV model is not adequate to describe permanent emigration

or Markovian temporary emigration, the goodness of fit tests described in

Section D are no longer appropriate. However, the JMV goodness of fit test

will be sensitive to permanent or Markovian emigration. Because permanent

or Markovian emigration describe a particular type of memory in the model

it might be feasible to construct a test specifically for the random (or no)

emigration assumption.

C. Other Mixtures of Information

The above two information mixtures are relatively general and well‐
developed, but additional MSMR models with multiple sources of informa-

tion have been developed for specific problems. Conn et al. (2004) combined

all of the above sources of information, capture–recapture data, resightings

and band recoveries into a single MSMRmodel designed to estimate tag loss.

Specifically, all neck‐banded lesser snow geese (Chen caerulescens caerules-

cens) were classified by whether they still retained their neck band. Tag loss

was modeled as a change of state, moving from with tag to without. Kendall

et al. (2006) considered the combination of capture–recapture data, inciden-

tal resightings and band recoveries from multiple locations into a single

MSMR model. Data from a subset of animals with radio tags have been

used with special MSMR models to estimate temporary emigration from the

central study location exposed to capture–recapture efforts (Powell et al.,

2000). Similarly, genotypic data can be used with genetic assignment tests

(e.g.,Manel et al., 2005; Waser and Strobeck, 1998) to jointly model multi‐
site capture–recapture and gene frequency data (Nichols, Pollock, and

Waser, unpublished) with MSMR models.

VIII. DISCUSSION

A. Multistate Models as a General Framework

As recalled in our historical account, multistate models first appeared as

multisite generalizations of single state models (Arnason, 1972, 1973). Their

full use started only with the progressive settling of statistical issues and the

development of computational algorithms (Brownie et al., 1993; Schwarz
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et al., 1993). Hestbeck et al. (1991) showed in a seminal paper the huge

interest of these models by providing the first real field application, together

with a number of new ideas such as the role of memory of sites occupied in

the past on dispersal. Our review shows that multistate models have consid-

erably enriched the set of biological processes that can be accommodated by

mark–recapture methodology, and are becoming a key tool for addressing

biological questions based on data from individually marked animals (Cam,

2009; Conroy, 2009).

Significant progress has been recently made (Gimenez et al., 2003; Pradel

et al., 2003, 2005) on resistant statistical issues, such as local minima in the

likelihood and goodness‐of‐fit issues (Lebreton and Pradel, 2002). This prog-

ress has thus brought multistate capture–recapture models to a level of utility

and flexibility comparable to that of survival models of the CJS family

(Lebreton et al.,1992), widely used by biologists (Schwarz and Seber, 2000).

Software is now available (M‐SURGE, Choquet et al., 2004; MARK, White

and Burnham, 1999) to apply in a flexible, reliable and quick way the same

general approach that has been recommended for the CJS model, that is,

starting from a general ‘‘umbrella’’ model that fits the data, and proceeding

to model selection among a set of biologically plausible models obtained by

constraining the general model. In the two examples we presented, this

approach could be applied efficiently. In particular, constraints make it

possible to greatly reduce the number of transition probabilities. As a conse-

quence, multistate models, provided they are adequately constrained, do not

appear as strongly data hungry. Given the number of excellent and rich data

sets obtained in long term programs of study on marked animal and plant

populations, and the tendency for biologists to focus on sources of variation

among individual organisms, it seems clear that multistate models will see the

same type of wide use as CJS models.

The key feature of multistate models is that any set of mutually exclusive

and identifiable events in the life cycle of the population under study can be

treated as states (Lebreton and Pradel, 2002). The recruitment model we

presented for the roseate tern data illustrates this point by using a combina-

tion of breeding status and geographical sites. Among these states, some can

be nonobservable. The price to pay concerns the identifiability of parameters.

However, adequate techniques now exist to determine minimal and biologi-

cally reasonable constraints that make the maximum number of parameters

estimable. It is still difficult to measure the potential utility of models based

on complex combinations of elementary states. For instance, Henaux et al.

(2007) combined states for multisite recruitment as in our tern example

together with a state ‘‘alive elsewhere’’ and a state ‘‘dead’’ to analyze simul-

taneously colony‐specific recruitment and large scale recoveries in the Cor-

morant. This model made it possible to estimate age‐dependent survival and
permanent emigration out of the set of colonies studied, and thus to draw
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inferences about many of the key biological processes important to the

understanding of recruitment mechanisms. Many different types of such

models are possible, using states based on the biological questions, the

sampling design and type of data available. Thus, it seems possible to

customize MSMR for analyzing CR data from any long term program,

losing as little information as possible and, at the same time, addressing as

precisely as possible the biological questions that motivated the study.

As mentioned above, such models are very appealing for studying a variety

of biological and practical questions:

� Dispersal (states ¼ geographical sites, Bechet et al., 2003; Blums et al.,

2003a,b; Coffman et al., 2001; Hestbeck et al., 1991; Martin et al., 2006;

Nichols and Coffman, 1999; Spendelow et al., 1995; Skvarla et al., 2004).
� Direct estimation of state transition probabilities for use in stage‐based

population projection matrices (Fujiwara and Caswell, 2002a; Leirs et al.,

1997; Nichols et al., 1992).
� Trade‐offs between reproductive status and survival (states ¼ reproducer/

nonreproducer, (Cam et al., 1998; Church et al., 2007; Hadley et al., 2007;

Nichols et al., 1994).
� Rate of accession to reproduction (states ¼ prebreeder/breeder: Hadley

et al., 2006; Lebreton et al., 2003; Pradel and Lebreton, 1999).
� Proportional contributions of different demographic components to pop-

ulation growth rate (Nichols and Hines, 2002; Nichols et al., 2000).
� Combination of different types of demographic information, such as live

recaptures and recoveries of dead individuals by the public, that can be

analyzed simultaneously using adequate multistate models (Hénaux et al.,

2007; Lebreton et al., 1999; Powell et al., 2000).
� Estimation in the face of temporary emigration (unobservable state) for

some open population models in the absence of robust design data

(Fujiwara and Caswell, 2002b; Hunter and Caswell, 2009; Kendall and

Nichols, 2002; Schaub et al., 2004b).
� Investigation of the relative roles and interplay of different sources of

mortality (Schaub and Pradel, 2004), even if parameters for MSMR mod-

els with several causes of mortality are often weakly identifiable.
� Reduction of heterogeneity in model parameters (e.g., capture and survival

probabilities) by using states in order to get less biased estimates of

demographic parameters and flows.

While the linear constraint approach derived from generalized linear models

is efficient, progress is expected in dealing with random effects. Although the

Bayesian techniques are strongly promising, their full benefit for customized

models of the type we just mentioned will require sufficiently user‐friendly
software for an efficient transfer of these approaches to biologists. Meanwhile
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we showed that simple techniques such as the analysis of deviance can be

extremely helpful and can be carried out using existing computationalmethods.

Multistate models appear thus as a synthetic class of models, in particular

because they generalize some existing powerful model families. They can be

viewed alternatively as generalizations of the CJS models to more than one

state, or as Markov chain models with incomplete detection of individuals.

Specific applications of MSMR models also cover a wide range of models,

notably all models for combinations of information, including the dead

recovery models and models for mixtures of recoveries and recaptures.

General states of any kind can indeed be considered and combined, provided

that the states considered are mutually exclusive alternatives for each indi-

vidual at each time step. As noted above, in a study of the Danish population

of the Cormorant, Phalacrocorax carbo, Hénaux et al. (2007) considered in a

multisite recruitment model a state ‘‘alive elsewhere’’ and a state ‘‘just dead’’.

This combination made it possible to separately estimate survival and fidelity

by taking into account dead recoveries that could occur even for individuals

that permanently emigrated out of the set of colonies studied. We expect such

combinations of information sources to be used increasingly in the future.

MSMR models require assignment of individuals to discrete states even

when there are continuous criteria (e.g., quantitative indices for body condi-

tion) by which individuals can be classified. Such discretization is often

viewed as a limitation. There is in fact no reason why continuous variables

such as body mass cannot be categorized into discrete states such as ‘‘under-

weight’’, ‘‘normal,’’ and ‘‘overweight’’. It seems to us that the reluctance to

discretize quantitative covariates, or to ‘‘group individuals’’ into discrete

states, can often be attributed to some hidden feeling that the model should

be as faithful a representation of reality as possible. Instead, we view models

as the result of deliberate efforts at simplification for the purpose of facil-

itating understanding of complicated processes. If one fully accepts this view

that models are tools, and if one checks the consequences of discretization for

some real world examples, it becomes apparent that little is lost, despite a

potential cost in number of parameters. Moreover, this cost is not always

present: for example, in the case of body mass one could use three survival

parameters for three mass categories instead of a quadratic continuous

relationship between mass and survival which also requires three parameters.

Discretization has the advantage of inducing within‐state variability. Even if

this variability is partly related to the systematic change of the discretized

covariate within each state, it can be at least partly considered as reasonably

randomized over individuals. It can then serve as a benchmark for assessing

the significance of ‘‘between‐state’’ variation, as is usual in Fisherian/fre-

quentist statistics. Such variability can be detected, as when goodness of fit

tests provide evidence of overdispersion, or it can be considered as hidden

within the residual multinomial variability of the model.
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An advantage of covariate discretization in some situations is the absence

of a need to specify, a priori, a parametric relationship between the covariate

and a parameter of interest (e.g., survival or transition probabilities). MSMR

permits separate estimation of parameters for each state (set of covariate

values), with no necessary relationship between parameters for different

states (Nichols et al., 1992; Pollock, 2002). If specific parametric forms are

of interest, then they can be investigated by imposing a structure on the state‐
specific parameters. The point of this discussion is not to claim that the

MSMR approach to time‐varying covariates is necessarily superior to

approaches based on continuous covariates (e.g., Bonner and Schwarz,

2005), but to emphasize that both approaches have advantages and disad-

vantages, and to suggest that these be considered when selecting an approach

for a particular question.

As noted by Lebreton and Pradel (2002), ‘‘MSMR models can thus be

viewed as canonical models for individual covariates changing over time’’.

They also provide a natural way of estimating parameters of stage‐classified
matrix models (Fujiwara and Caswell, 2002a; Nichols et al., 1992). Indeed, as

noted by Caswell (personal communication), by classifying individuals by

state in a fully statistical context, MSMR models incorporate into a statisti-

cal estimation framework the i‐state idea (Caswell, 2001; Metz and

Diekmann, 1986) which is fundamental to structured population modeling.

B. Perspectives

Given this degree of generality, MSMR models thus represent a major step

towards the general ‘‘mother‐of‐all’’ models envisaged by Barker and White

(2004). However, MSMRmodels do not represent an endpoint in generality,

as illustrated by the recent appearance of a further generalization, the uncer-

tain state models, or ‘‘multievent models’’ (Pradel, 2005), discussed below.

In Figure 6, we summarize the links of MSMR models with a variety of

statistical models, and their resulting role in providing a general framework.

When all marked individuals are detected, MSMR models reduce to models

for follow‐up or known‐fate data, namely Markov chains when there are

several states, and binomial chains used in survival models in the single state

case (upper right part of Figure 6). As discussed earlier, MSMR models

reduce directly to single‐state capture–recapture models when the number

of states, s, equals 1. There is thus a direct link (right part of Figure 6) with

the Jolly–Seber and CJS models, depending on whether interest is focused on

population size estimation or not, respectively. Among many specific devel-

opments, considering unobservable states (left part of Figure 6) opened the

way to a variety of possibilities. Multisite‐recruitment models for colonial

birds in which nonbreeders cannot be observed, as illustrated with the roseate
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tern, are a good example of such a possibility. We discuss below a further

promising generalization, multievent models, in which the states among

which the individuals move are not known with certainty, even when the

individuals are observed. These models cover as particular cases some exist-

ing models such as memory models and open population capture–recapture

models with heterogeneity (upper left part of Figure 6).

1. State‐Specific Abundance

Another advantage of the standardization of the framework we propose for

MSMR models is that they can be easily combined with a number of other

developments or generalized in several promising fashions. While we have

focused on models conditional on the first capture (and marking) of indivi-

duals, analogous to the CJS survival model (Lebreton et al., 1992), the

number of unmarked individuals captured in each state at every occasion

can also be modeled in a fashion analogous to the full JS model (Jolly, 1965;

Seber, 1965) and can be used to estimate population size (e.g., see Williams

et al., 2002). For example, let ni(u) be the total number of animals captured at

occasion i that are found to be in state u at that time; that is, ni(u) ¼ mi(u) þ
ui(u), the sum of marked and unmarked animals, respectively, captured in

Heterogeneity
Pledger et al. 2003 Uncertain states

Multievent
Pradel 2005

CAS and JMV
MSMR

(this paper)

Markov chains
longitudinal
models

Detection certain

Detection
uncertain

CJS
Lebreton et al.
1992

Forward
analysis
Conditional on
releases

Forward and
backward
Conditional on
population size

Absolute
numbers and
forward analysis

Lambda
Pradel 1996

Jolly-Seber
Jolly 1965,
Seber 1965

Binomial chains
Survival models

Multistate lambda
Lebreton et al. in prep.

s states 1 state

Memory model
Brownie et al. 1993

Recruitment
Clobert et al. 1994

Dead recoveries
Brownie et al. 1985

Recoveries and
recaptures
Burnham 1993
Catchpole et al. 1998
Lebreton et al. 1999

Information
mixtures
Barker 1993

Arnason 1972
Schwarz et al. 1993

AS model

Unobservable
states
Kendall and
Nichols 2002,
Lebreton et al.
1999

Figure 6 The Conditional Arnason–Schwarz (CAS) and Jolly‐Move (JMV) models
and their relationships with single state models, models with certain detection, and
generalizations based on unobservable states and multievent models, as discussed in
perspectives.
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state u at occasion i. If pi(u) is the time‐specific capture probability associated
with animals in state u, and if this probability is similar for marked and

unmarked animals, then we can estimate state‐specific abundance, based on

the usual Horwitz–Thompson type of estimator, as:

N̂iðuÞ ¼ niðuÞ
p̂iðuÞ

ð12Þ

Overall abundance for animals in all states is naturally estimated as the sum

of state‐specific abundances:

N̂i ¼
X
u

N̂iðuÞ ð13Þ

Finally, the probability that a member of Ni is a member of state u can be

estimated as N̂iðuÞ=N̂i. Such probabilities can also be viewed as the expected

proportions of animals in a particular state, u, and are of interest with respect

to breeding proportions (e.g., Nichols et al., 1994), proportion of animals

infected by a particular disease, etc. Nonparametric bootstrap (Efron and

Tishirani, 1993) appears then as a natural way to get confidence intervals for

population sizes and associated parameters (Marucco et al., in preparation),

as the distribution of MSMR estimates of abundance and related derived

parameters can be highly skewed, and classical explicit confidence interval

limits behave poorly.

2. Reverse‐Time MSMR Modeling

MSMR has also been useful in certain applications employing reverse‐time

modeling. Pradel (1996) noted that CJS estimation could be applied to stan-

dard single‐state capture–recapture data that are reversed in time, in order to

estimate parameters associated with the recruitment process (also see Pollock

et al., 1974; Pradel et al., 1997b; Williams et al., 2002). Two classes of applica-

tions for which reverse‐time MSMR has been found to be useful involves the

state variables of age and location.With respect to age, reverse‐timeMSMRat

a single location frequently focuses on an adult state that actually includes

many ages (e.g., all animals of age >1) and addresses the question, what

fraction of adults at time iwere young versus adults at time i� 1? For example,

consider a population consisting of young and adults in which an animal that

is young at the sample period in year i will be an adult at the sample period in

year i þ 1, if it happens to survive until then. As noted previously, age is a

dynamic state variable with deterministic transitions in forward‐time models.

However, in reverse time, the investigator is basically asking, what is the

probability that a randomly selected adult at time i was an adult versus

young animal at time i � 1? Reverse‐time models with age‐specificity thus
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entail stochastic transitions and require MSMR. Such modeling can address

ecological questions about the relative contributions of (1) surviving adults,

(2) surviving young animals produced on the area, and (3) immigrants to the

growth of the adult component of the population in a study area (Nichols

et al., 2000). Estimates of these relative contributions are relevant to assess-

ments of areas as sources or sinks (e.g., Pulliam, 1988).

When the capture–recapture study includes multiple locations, reverse‐time

MSMR permits inferences about the contributions of animals (adults only, or

both young and adults) from some subpopulation, A, to growth of animals in

a different subpopulation, B (Nichols et al., 2000). These estimated contribu-

tions can be used, in turn, to estimate the contributions of each subpopulation

of a metapopulation system to population growth of the entire metapopula-

tion (Runge et al., 2006). In cases of a metapopulation open to immigration

from locations outside the entire study system, this approach also permits

estimation of the contribution of such immigration from outside.

3. Temporal Symmetry Models and Multistate Lambda

As in single state models, the forward and backward modeling approaches

can be combined, with seniority probabilities and survival‐transition prob-

abilities as parameters (Lebreton and Pradel, 2002). A likelihood approach is

then possible (Lebreton et al., in preparation) as a full multistate generaliza-

tion of Pradel’s (1996) temporal symmetry approach. Pradel’s scalar growth

rate l is replaced by a matrix reflecting the growth rate and change in

population structure over the states. This approach may be particularly

useful in the presence of strong environmental variation over time, a situa-

tion in which the calculation of a scalar growth rate cannot avoid the

intricacies of the random variation over time in population structure

(Tuljapurkar, 1990).

4. Robust Design

Pollock’s (1982) robust design involves sampling at two different temporal

scales, providing capture–recapture data over a relatively short interval in

order to provide information on the estimation of detection probability and

abundance, and over a longer interval in order to estimate survival. The

robust design can be viewed as a combination of information from these two

different temporal scales. At a minimum, the approach permits robust esti-

mation of abundance and increased precision of all estimates (Pollock, 1982;

Kendall et al., 1995). In addition, the approach can permit estimation of

quantities that cannot be estimated with standard open or closed model
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analyses (e.g.,Kendall and Bjorkland, 2001; Kendall et al., 1997; Nichols and

Pollock, 1990; Schwarz and Stobo, 1997).

Use of the robust design in conjunction with multistate models has been

relatively recent. Nichols and Coffman (1999) and Coffman et al. (2001)

studied the influence of habitat fragmentation and corridors on population

dynamics of meadow voles. Multistate models permitted estimates of move-

ment among habitat patches within the study system. The robust design

provided estimates of capture probability for young meadow voles, permit-

ting decomposition of recruitment into components associated with (1) sur-

viving young from the same patch, (2) movement of young and adults from

the other patch within the study system, and (3) immigration from outside the

study system. Similarly, Nichols et al. (2000) used reverse‐time modeling with

MSMR models to directly estimate the contributions of (1) surviving adults,

(2) surviving young produced via in situ reproduction, and (3) immigration to

the adult population growth rate of a study area. As noted above, the robust

design was needed in order to estimate capture probability of young, and

MSMR models were needed because age‐specific models require stochastic

transitions in reverse time.More recently, Skvarla et al. (2004) used the robust

design with MSMR to model banner‐tailed kangaroo rat Dipodomys spect-

abilis dispersal probabilities between colonies as functions of such covariates

as intercolony distance and intervening matrix habitat.

Bailey et al. (2004) developed a kind of open robust designMSMRmodel to

dealwith a special sampling situation commonly used in investigations of pond‐
breeding amphibians. Drift fences are placed around breeding ponds, with

pitfall traps located at intervals along both the pond side and the outside of

the fence. Amphibians are thus captured as they enter the pond to breed and

exit it following breeding. Animals captured along the fence are examined,

marked (if previously unmarked) and released on the side of the fence opposite

to the one at which they were captured. States are observable (breeding) and

unobservable (nonbreeding), so that transitions between these states are bio-

logicallymeaningful. Survival probabilities of animals in the unobservable state

are modeled as functions of survival probabilities of observable state animals,

as the latter can be directly estimated. Interesting ecological findings based on

application of gateway robust designMSMRmodels include the inference that

breeding probability for adult‐age amphibians is much lower than previously

reported or expected (Church et al., 2007).

5. Multievent Models and State Uncertainty

Early development of MSMR models assumed that if an animal is captured,

then assignment to state occurs unambiguously and correctly. Recent work

has focused on MSMR models in which assignment of detected animals to
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state is itself the subject of uncertainty. Sex is a static state variable that can

be difficult to ascertain in certain groups of animals. To our knowledge the

first application of MSMR models to problems with uncertain state assign-

ment involved situations in which sex of young animals cannot be deter-

mined, but sex of adults can be assigned with certainty. In a study of pig frogs

(Rana gryllio) in Florida,Wood et al. (1998) marked young frogs of unknown

sex and adult males and females. Sex was eventually known for young

animals that were recaptured as adults. The transition probability from

unknown‐sex young to known‐sex adults reflected sex ratio of marked ani-

mals at the age transition from young to adult. Conroy et al. (1999) used a

similar approach with serins (Serinus serinus) in Spain. Again, sex of young

birds cannot be ascertained with certainty, but sex of adults is determined

unambiguously. Conroy et al. (1999) classified each young bird using a

discriminant function to predict sex probabilistically. Subsequent recaptures

of known‐sex adults informed this classification probability. In addition,

rather than modeling survival of young birds using a single parameter for

young of unknown sex, they used sex specific survival and capture para-

meters for young weighted by the sex‐specific classification probabilities.

Their model included the additional complexity of parameters reflecting the

probability that a new bird is a transient (e.g., Pradel et al., 1997a), and they

were able to obtain estimates.

Nichols et al. (2004) developed a 2‐state model for open populations of

roseate terns for which state assignment was not always possible. They

included a true sex ratio parameter for new releases and a correct assignment

parameter reflecting the probability that sex could be ascertained, given that

the animal was captured in period i. This parameter was applied only to

observations of bird behavior that were unambiguous with respect to state

assignment, although they could have used probabilistic assignments based

on other ambiguous behaviors as well. Capture histories of birds eventually

observed to be males or females were modeled with the appropriate sex‐
specific probabilities, whereas birds that never received an unambiguous sex

assignment were modeled as a mixture of probabilities associated with the

two states. The approach was shown to yield unbiased estimates and to be far

preferable to an ad hoc approach to analysis that is widely used.

Runge et al. (2007) developed an open population MSMR model for a

situation involving estimation of species‐specific parameters in the face of

uncertain species classification. They focused on a 2‐species system of micro-

tine rodents, and every captured animal was assigned to a species based on

pelage and other characteristics. Model parameters were required for the

age‐specific probabilities of correct assignment, conditional on true species

identity. Although these initial species assignments were made with error

(nonnegligible misclassification probability), a subset of animals died in

traps. Tooth patterns of these trap‐death animals were then used to identify
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species without error, and these data appeared in the likelihood and basically

informed the classification parameters associated with initial assignments.

The model also required parameters for the probabilities that newly caught

animals belonged to one or the other species. The study was conducted on

2‐patch study systems, so patch‐ and species‐specific survival and movement

probabilities were of interest. Simulations again indicated reasonable perfor-

mance of estimators.

Misclassification problems with static state variables such as sex and

species have the advantage that if classification can be certain at any time

during an animal’s capture history, then the animal’s state is known for all

other periods in the history. Similarly, in the case of deterministic transitions

(e.g., state variables such as age), knowledge of an animal’s dynamic state at

any observation period permits reconstruction of an animal’s state at any

other point in time. However, the situation is more difficult with dynamic

state variables that exhibit stochastic transitions. One approach to dealing

with such state variables involves use of ancillary information providing

information on true state (and thus classification probabilities) for a subset

of individual animals. Kendall et al. (2003 and 2004) used repeat observa-

tions of individuals from secondary periods of a robust design to deal with

state uncertainty in photo‐identified manatees. In order to parameterize

projection matrix models, it was necessary to estimate the number of adult

females with and without calves (young). Some observations were conclusive,

in that a calf is so closely associated with a female that there is no uncertainty.

However, calves may be ‘‘missed’’, either because they are not visible at the

angle from which the photo is taken or they are far enough from the female to

admit uncertainty. Because truth is assumed known for animals classified as

‘‘with calf’’, repeat observations on females within the season permit estima-

tion of classification parameters.

The previous applications were all focused on specific study systems,

whereas Fujiwara and Caswell (2002b) and Lebreton and Pradel (2002)

discussed general approaches to dealing with state uncertainty in MSMR

models. Fujiwara and Caswell (2002a) included ‘‘stage‐assignment’’ matrices

in their MSMR models specifying relative probabilities of individuals being

in different stages. These probabilities were viewed as being estimated sepa-

rately and then inserted into the MSMR estimation process. Lebreton and

Pradel (2002) considered general multievent models, including matrices for

the probability that an animal was in a specific true state conditional on an

observation that provided a probabilistic state assignment. These latter

observations are viewed as events that are related to true states, such that

the probabilities associated with these relationships become part of the

estimation problem.

This general multievent view of MSMR was developed more fully by

Pradel (2005). Multievent models cover as particular cases several previously
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published models including multistate models with memory (Brownie et al.,

1993) and finite mixture models for heterogeneity of capture (Pledger et al.,

2003). As argued by Pradel (2009), the treatment of such models within a

general framework will be more powerful than their treatment as particular

cases. One may expect to be able then to explore progressively issues of

goodness‐of‐fit and identifiability; one may also expect that stochastically

dynamic state variables will be difficult to handle without some external

source of information that provides knowledge of true state at each occasion

for a subset of individuals. However, the current exploration of multievent

models (Pradel, unpublished results) reveals that the level of uncertainty

associated with state classification is not radically different from other

uncertainties already at the core of capture–recapture modeling. Program

E‐Surge (Choquet et al., 2009), expanding on the philosophy of M‐Surge, is
indeed available for flexible fitting of multievent models. An optimistic view

is that such models will evolve and become standard tools in the same fashion

that multistate models have evolved up to now. Integrated modeling (e.g.,

Gauthier et al., 2007 and Section 7 below), blending information from

surveys of population size and/or structure, may play a key role to improve

the robustness of multievent models when needed.

6. Occupancy as a Multistate Problem

Occupancy estimation and modeling concern the probability that a sample

unit is occupied by a particular species (e.g., Mackenzie et al., 2002, 2006).

The study design involves detection‐nondetection (frequently referred to as

‘‘presence–absence’’) surveys in which sites or units are visited and surveys

are made to try to detect one or more focal species. The units on which

observations are obtained are sites, rather than individual animals, and sites

are characterized as occupied by the species of interest or not. The problem

is thus a simple case of MSMR with uncertainty in state assignment. True

state is known for the sites at which the species is detected, but the sites at

which no detections are made represent sites at which the species is either

absent, or present but undetected. In single‐season studies, repeat visits

permit estimation of detection probability conditional on species presence,

and these probabilities permit resolution of the ambiguity associated with

nondetection.

Multiseason occupancy modeling focuses on the dynamics of this 2‐state
problem, using probabilities of local extinction and colonization to describe

this Markov process. Nondetection in a given year is again ambiguous, but

the ambiguity is resolved with a robust design in which repeat observations

within a season permit direct estimation of detection probabilities

(Mackenzie et al., 2003, 2006). Recent modeling efforts have extended these
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models to deal with multiple occupancy states (e.g., abundance categories,

Royle, 2004; Royle and Link, 2005; sites that do and do not produce young,

Nichols et al., 2007) and ambiguity in state assignment even when animals

are supposedly detected (Royle and Link, 2006).

Occupancy modeling can thus be viewed as aMSMR problem. Indeed, the

initial work on multiseason occupancy modeling (Barbraud et al., 2003) used

mark–recapture software developed to deal with temporary emigration, a

problem now viewed as MSMR with observable and unobservable states

(Fujiwara and Caswell, 2002b; Kendall and Nichols, 2002; Schaub et al.,

2004b).

7. Integrated Modeling

A general estimation approach in population dynamics that has seen sub-

stantial development in the past 5 years involves use of multiple data sets

providing information about either abundance or fundamental demographic

parameters and combining these with population‐dynamic models as a

means of permitting the different data sources to contribute to the estima-

tion. For example, state–space models for projecting abundance as a func-

tion of demographic parameters estimated from capture–recapture studies

can be combined with direct estimates of abundance based on count data

(e.g., distance sampling, Buckland et al., 2001) to directly link data from

these disparate sources to parameters under a common estimation frame-

work. Estimation under the resulting joint models can be accomplished by

maximum likelihood (e.g., Besbeas et al., 2002, 2005; Gove et al., 2002), least

squares (White and Lubow, 2002), or using Bayesian approaches (e.g., Elliott

and Little, 2000; Millar andMeyer, 2000; Newman et al., 2006; Trenkel et al.,

2000; Thomas et al., 2005). This general approach has been used for several

years by fisheries scientists (e.g., Gallucci et al., 1996; Quinn and Deriso,

1999; Schnute, 1994) and is beginning to see use in investigations of terrestrial

animal ecology (Besbeas et al., 2002; Gauthier et al., 2007; Gove et al., 2002;

Trenkel et al., 2000; Véran and Lebreton, 2008; White and Lubow, 2002).

An even more intimate and fruitful relationship between capture–mark–

recapture models and integrated modeling is provided by formulating the

hidden Markov chain model inherent in MSMR models as a set of state

equations (the multistate Markov chain, at the individual level) and observa-

tions equations (the recapture/detection process) (Gimenez et al., 2007).

Because MSMRmodels provide the natural methodological tool for estimat-

ing the parameters of state–based population projection matrices (e.g.,

Caswell, 2001; Fujiwara and Caswell, 2002a; Nichols et al., 1992), thus

providing close links with state–space models, we believe that they will

assume a prominent role in future integrated population dynamic modeling.
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C. Conclusion

Multistate mark–recapture models make it possible to address a variety of

questions at the population level, in case where detected individuals can be

organized into mutually exclusive states. They are thus extremely relevant to

population biology. We thus expect that MSMR and their associated gen-

eralizations will become an integral part of the population biologists’ toolbox

and will in turn influence our knowledge of population dynamics and biology

at least to the extent that single state, survival oriented, capture–recapture

models has done so over the last 20 years. We hope that powerful and flexible

user‐friendly software will continue to develop, facilitating access to this

broad class of incompletely observed Markov chains. In parallel, we recom-

mend that multistate capture–recapture models be considered as part of the

quantitative training of population biologists. Such training would provide

young biologists with the ability to use this powerful tool, and prepare them

for the spread and development of further generalizations, out of which the

most immediately promising of which are integrated (state–space) models

and multievent models.
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Burnham, K.P. and Anderson, D.R. (1979) The composite dynamic method as
evidence for age‐specific waterfowl mortality. J. Wildl. Manage. 43, 356–366.

Burnham, K.P. and Anderson, D.R. (1992) Data‐based selection of an appropriate
biological model: The key to modern data analysis. In: Wildlife 2001: Populations
(Ed. by D.R. McCullough and R.H. Barrett), pp. 16–30. Elsevier, London, UK.

MODELING INDIVIDUAL ANIMAL HISTORIES 161



Burnham, K.P. and Anderson, D.R. (1998) Model Selection and Inference: A Practi-
cal Information‐Theoretic Approach. Springer‐Verlag, New York, New York, USA.

Burnham, K.P. and Anderson, D.R. (2002) Model Selection and Multimodel Infer-
ence: A Practical Information‐Theoretic Approach. 2nd edn. Springer‐Verlag,
New York, USA.

Burnham, K.P. and White, G.C. (2002) Evaluation of some random effects method-
ology applicable to ringing data. J. Appl. Stat. 29, 245–262.

Burnham, K.P., Anderson, D.R., White, G.C., Brownie, C. and Pollock, K.H. (1987)
Design and Analysis Methods for Fish Survival Experiments Based on Release–
Recapture. American Fisheries Society, Bethesda, Maryland, USA.

Cam, E. (2009) Contribution of Capture–Mark–Recapture modeling to studies
of evolution by natural selection. In: Modeling Demographic Processes in Marked
Populations (Ed. by D.L. Thomson, E.G. Cooch andM.J. Conroy). Environmental
and Ecological Statistics, Vol. 3. Springer, New York, USA.

Cam, E., Hines, J.E., Monnat, J.Y., Nichols, J.D. and Danchin, E. (1998) Are adult
nonbreeders prudent parents? Ecology 79, 2917–2930.

Cam, E., Link, W.A., Cooch, E.G., Monnat, J.Y. and Danchin, E. (2002) Individual
covariation in life‐history traits: Seeing the trees despite the forest. Am. Nat. 159,
96–105.

Cam, E., Oro, D., Pradel, R. and Jimenez, J. (2004) Assessment of hypotheses about
dispersal in a long‐lived seabird using multistate capture–recapture models.
J. Anim. Ecol. 73, 723–736.

Carothers, A.D. (1973) The effect of unequal catchability on Jolly–Seber estimates.
Biometrics 29, 79–100.

Carothers, A.D. (1979) Quantifying unequal catchability and its effect on survival
estimates in an actual population. J. Anim. Ecol. 48, 863–869.

Caswell, H. (2001) Matrix Population Models. Sinauer, Sunderland, Massachusetts,
USA.

Caswell, H., Naiman, R.J. and Morin, R. (1984) Evaluating the consequences on
reproduction in complex salmonid life cycles. Aquaculture 43, 123–134.

Caswell, H., Fujiwara, M. and Brault, S. (1999) Declining survival probability threa-
tens the North Atlantic right whale. Proc. Natl. Acad. Sci. USA 96, 3308–3313.

Catchpole, E.A., Freeman, S.N., Morgan, B.J.T. and Harris, M.P. (1998) Integrated
recovery/recapture data analysis. Biometrics 54, 33–46.

Chapman, D.G. and Junge, C.O. (1956) The estimation of the size of a stratified
mobile population. Ann. Math. Stat. 27, 375–389.

Charnov, E.L. and Schaffer, W.M. (1973) Life‐history consequences of natural
selection: Cole’s result revisited. Am. Nat. 107, 791–793.

Chiang, C.L. (1984) The Life Table and its Applications. Krieger, Malabar, Florida,
USA.

Choquet, R., Reboulet, A.M., Pradel, R. and Lebreton, J.D. (2002) M‐SURGE
User’s guide. CEFE, CNRS, Montpellier, France.

Choquet, R., Reboulet, A.M., Pradel, R., Gimenez, O. and Lebreton, J.D. (2004)
M‐SURGE: New software specifically designed for multistate capture–recapture
models. Anim. Biodivers. Conserv. 27, 207–215.

Choquet, R., Rouan, L. and Pradel, R. (2009) Program E‐SURGE: A software
application for fitting multievent models modelling demographic processes in
marked populations. In: Modeling Demographic Processes in Marked Populations
(Ed. by D.L. Thomson, E.G. Cooch and M.J. Conroy). Environmental and
Ecological Statistics, Vol. 3, pp. 847–868. Springer, New York, USA.

162 JEAN-DOMINIQUE LEBRETON ET AL.



Church, D.R., Bailey, L.L., Wilbur, H.M., Kendall, W.L. and Hines, J.E. (2007)
Iteroparity in the variable environment of the salamander Ambystoma tigrinum.
Ecology 88, 891–903.

Clark, J.S., Ferraz, G., Oguge, N., Hays, H. and DiCostanzo, J. (2005) Hierarchical
Bayes for structured, variable, populations: From recapture data to life‐history
prediction. Ecology 86, 2232–2244.

Clobert, J. and Lebreton, J.D. (1985) Dépendance de facteurs de milieu dans les
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