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Summary

1.

 

Over the last 30 years there has been a great deal of interest in investigating patterns
of species co-occurrence across a number of locations, which has led to the development
of numerous methods to determine whether there is evidence that a particular pattern
may not have occurred by random chance.

 

2.

 

A key aspect that seems to have been largely overlooked is the possibility that species
may not always be detected at a location when present, which leads to ‘false absences’
in a species presence/absence matrix that may cause incorrect inferences to be made
about co-occurrence patterns. Furthermore, many of the published methods for invest-
igating patterns of species co-occurrence do not account for potential differences in the
site characteristics that may partially (at least) explain non-random patterns (e.g. due to
species having similar/different habitat preferences).

 

3.

 

Here we present a statistical method for modelling co-occurrence patterns between
species while accounting for imperfect detection and site characteristics. This method
requires that multiple presence/absence surveys for the species be conducted over a rea-
sonably short period of time at most sites. The method yields unbiased estimates of
probabilities of occurrence, and is practical when the number of species is small (

 

<

 

 4).

 

4.

 

To illustrate the method we consider data collected on two terrestrial salamander
species, 

 

Plethodon jordani

 

 and members of the 

 

Plethodon glutinosus

 

 complex, collected
in the Great Smoky Mountains National Park, USA. We find no evidence that the spe-
cies do not occur independently at sites once site elevation has been allowed for,
although we find some evidence of a statistical interaction between species in terms of
detectability that we suggest may be due to changes in relative abundances.
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Introduction

 

One approach to ecological science seeks to draw infer-
ences about community dynamics and function based
on observed patterns (e.g. Brown 1995; Rosenzweig 1995;
Marquet 2000; Hubbell 2001). One type of pattern that
has attracted much attention from ecologists is the
spatial occurrence of species. Indeed, a simple presence–
absence matrix of species occurrence in spatial units
has been termed ‘the fundamental unit of analysis in
community ecology and biogeography’ (Gotelli 2000;
also see McCoy & Heck 1987). Investigations of such

matrices have led to the development of interesting eco-
logical hypotheses (e.g. the community assembly rules
of Diamond 1975) and to the identification of interest-
ing empirical patterns (e.g. the nested subset structure
of Patterson & Atmar 1986; Patterson 1987).

A key issue in the investigation of presence–absence
matrices involves how to draw appropriate inferences
about whether an observed matrix is unusual with respect
to either random processes or processes that are neutral
with respect to some purported ecological mechanism
(Harvey 

 

et al

 

. 1983; Gotelli & Graves 1996). For example,
could a particular matrix have been generated by random
species colonizations or is it more likely to have arisen
as a result of interspecific competition? This issue of
appropriate inferential methods has led to heated debate
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(Connor & Simberloff  1979, 1983, 1984; Diamond &
Gilpin 1982; Gilpin & Diamond 1982, 1984) and con-
tinued methodological development (Kelt, Taper &
Mesevre 1995; Manly 1995; Gotelli 2000; Gotelli &
McCabe 2002).

In this paper we address a problem that has not received
adequate attention in previous work, the assumption
that all species present at a location are detected with
certainty. In many, if  not most, practical situations it is
not realistic to obtain a census of all species. Few species
are so conspicuous that they will always be detected when
present at a location and in many cases, even after exhaust-
ive searches, some species may still go undetected when
present. This feature of the data collection will lead to
‘false absences’ in the presence–absence matrix, which
may lead in turn to incorrect inferences about the patterns
of species co-occurrence. Cam 

 

et al

 

. (2000) presented
methods that can be used to deal with species non-
detection when testing hypotheses about nested subset
community patterns (Patterson & Atmar 1986;
Patterson 1987). The methods of Cam 

 

et al

 

. (2000) are
based on estimates of the fraction of species present at
one location that are also present at another (Nichols

 

et al

 

. 1998). However, these estimation methods are
based on groups of species and cannot be used to draw
inferences about specific patterns of co-occurrence of a
small number of species.

Another potential problem with attempts to draw
inferences about interspecific interactions from presence–
absence matrices involves other factors (e.g. habitat
preferences and physiological tolerances) which are likely
to result in non-random patterns of species co-occurrence,
yet have nothing to do with interspecific interactions.
This class of problem is inherent in all attempts to draw
inferences about process based on pattern and has been
recognized in previous efforts to analyse presence–absence
matrices (e.g. Connor & Simberloff  1984; Gilpin &
Diamond 1984; Peres-Neto, Olden & Jackson 2001).
One approach to dealing with such factors is to identify
them a priori and incorporate them into analyses. For
example, one approach is to develop a regression model
to predict detections of one species as a function of
both habitat variables and detections of other species
(Schoener 1974; Crowell & Pimm 1976).

Here, we present a method that deals with both prob-
lems by incorporating both non-detection and possible
habitat preferences directly into the model set. This
method is based on the approach of MacKenzie 

 

et al

 

.
(2002), who developed a single-species model for esti-
mating the fraction of locations occupied by the spe-
cies, allowing for the possible non-detection of the
species when present. They considered the realistic
situation where multiple surveys are conducted at the
locations, over a relatively short time period. Straight-
forward probabilistic arguments are used to model the
sequence of species detections and non-detections
from the repeated surveys, enabling the probability of
an observed sequence to be calculated. By combining the
information from all locations, the model parameters

(probability of occupancy and probability of detection
given occupancy) can be estimated using maximum
likelihood techniques. Importantly, the model of Mac-
Kenzie 

 

et al

 

. (2002) does not require equal sampling
effort across all locations, and the parameters can be
functions of covariates such as habitat type.

Here we extend the work of MacKenzie 

 

et al

 

. (2002)
to estimate and model co-occurrence patterns between
two or more species across a landscape, when species are
not detected with certainty when present at a location.
The likelihood-based framework detailed below enables
the magnitude of interspecific interactions in prob-
abilities of occurrence to be estimated directly, while
accounting explicitly for imperfect detectability. The
flexibility of our approach also enables the level of co-
occurrence to be estimated, above and beyond any
habitat preferences exhibited by the species. We en-
visage that this model could be most useful to address
questions about the importance of interspecific inter-
actions such as competition and predator–prey relation-
ships as potential determinants of community structure.

In this paper we begin by discussing the practical
sampling framework required for the method; detail
the straightforward probabilistic arguments used to
construct the model likelihood; show, via simulation,
that the estimators have reasonable properties in terms
of bias and precision; and apply the method to a field
study of terrestrial salamanders in Great Smoky
Mountains National Park (Bailey, Simons & Pollock
2004). Throughout this paper we refer to interactions
between species. When we do so, we use the term ‘inter-
action’ in the statistical sense to mean that the species
are not occurring independently at sites. Our use of
‘interaction’ does not imply any particular biological
mechanism (e.g. predation, resource competition,
behavioural dominance) that could produce a lack of
independence in pattern of co-occurrence.

 

Methods

 

  

 

We envisage a practical situation where 

 

N

 

 locations are
monitored for the presence or absence of target species.
The monitoring locations may represent user-specified
quadrats or sites within an area of interest, or discrete
habitats such as ponds, islands or patches of vegeta-
tion. Each location is surveyed for the species on mul-
tiple (not necessarily an equal number of ) occasions,
and species are either detected or not detected during
each survey. For the duration of the surveying the loca-
tions are closed to changes in the occupancy state with
respect to each species, i.e. a species is either always
present, or always absent from the location over the
surveying period (this requirement may be relaxed in
some situations, see the discussion).

The sequence of detections and non-detections at a
location for each species may be recorded as a ‘detection
history’: a vector of 1s (detection) and 0s (non-detection).
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For example, the detection history 

 

 =

 

 101 represents
that location 

 

i

 

 was surveyed on three occasions, with
species A being detected only in the first and third
surveys. Similarly, the detection history 

 

 =

 

 000 would
represent that species B was never detected at location 

 

i

 

.

 

 

 

We define the model here for situations involving only
two species, but the approach can easily be extended
to a greater number of  species. However, the number
of parameters in the model increases exponentially
with the number of species; hence this technique could
become very ‘data hungry’ and not all of  the para-
meters may be estimable for a given data set. In addition
it could be difficult to interpret meaningfully the inter-
actions among a large number of species; therefore, we
recommend that users focus their research questions
on a small (

 

<

 

 4) number of target species.
A monitoring location may be considered to be in one

of  four mutually exclusive states of  occupancy for
two species (more generally there are 2

 

k

 

 possible states
for 

 

k

 

 species); (1) occupied by both species A and B;
(2) occupied by species A only; (3) occupied by species
B only; or (4) occupied by neither species. Using the
notation introduced in Table 1, we define a row vector for
the probability of location 

 

i

 

 being in each of the four
respective states as,

eqn 1

Note that the elements of φφφφ

 

i

 

 sum to 1.
Conditional upon the occupancy state of the location,

the probability of observing the detection histories for
the two species can be stated in terms of the detection
probabilities defined in Table 1. For example, the prob-
ability of observing the detection histories given in the
previous section, conditional upon the location being
occupied by both species, is:

Another possibility for this example would be that
the location is occupied by species A only, in which case

the probability of not observing species B is 1·0. The
conditional probability of observing the two detection
histories in this situation would be:

The probability of observing this combination of his-
tories for all other occupancy states (occupied by spe-
cies B only and occupied by neither species) is 0, as both
states prohibit species A from being at the location, yet
species A was actually observed there. Therefore, we
define a column vector  representing the prob-
ability of observing the detection histories conditional
upon each state. For instance, using the above example:

. eqn 2

The unconditional probability for observing the two
detection histories could then be calculated as:

. eqn 3

By using the probability vectors we account for poten-
tial uncertainties in the occupancy state of a location
due to not detecting one or both of the target species
during the surveys. Note that our use of different detec-
tion probability parameters for the cases of  single-
species and two-species occupancy is very general and
permits the possibility that detection probability of one
species depends on whether the site is occupied by the
other species (e.g. the detection probability for a prey
species may depend upon whether a predator species is
also present). Some examples of detection histories and
the unconditional probabilities of observing them are
given in Table 2.

Assuming that the detection histories collected at the

 

N

 

 locations are independent, we can define the model
likelihood as:

. eqn 4

X i
A

X i
B

Table 1. Notation for the parameters used in the model

Parameter Description

Probability of both species being present at location i
Probability of species A being present at location i, regardless of occupancy status of species B
Probability of species B being present at location i, regardless of occupancy status of species A
Probability of detecting species A during the jth survey of location i, given only species A is present
Probability of detecting species B during the jth survey of location i, given only species B is present
Probability of detecting both species during the jth survey of location i, given both species are present
Probability of detecting species A, but not B, during the jth survey of location i, given both species are present
Probability of detecting species B, but not A, during the jth survey of location i, given both species are present
Probability of detecting neither species during the jth survey of location i, given both species are present; 
= 
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This can then be maximized numerically to obtain
the maximum likelihood estimates (MLEs) of  the
parameters.

For generality, we have presented the above model
using location-specific parameters (as denoted by
the subscript 

 

i

 

); however, there is never sufficient
information in the type of  data considered here to
estimate a different parameter for each location.
Constraints are required in order to obtain MLEs (e.g.
require all or groups of locations to have a common
parameter). Another approach is to let the location-
specific parameters be defined by some function of the
features that characterize a location, i.e. habitat
type, patch size, etc. We consider how these covari-
ates could be accommodated by the model in a later
section.

 

    
 

 

The general likelihood-based framework presented
above provides the opportunity to both test for, and
quantify, the level of interaction between two species.
There are two mechanisms through which we can
investigate species interactions that may reflect differ-
ent questions of biological interest; species occupancy
probabilities or in terms of  detection probabilities
given the species are present. In both cases we can
determine whether the occupancy (or detection events)
for one species appear to be occurring independently

of the presence (or detection) of the other species, i.e.
do the species both occur at a site (or similarly, do we
detect both species in a survey) more/ less often than
expected under an assumption of  independence. In
addition, we can determine whether there is evidence
that the probability of detecting one species changes in
the presence of the other species, i.e. if  species B is also
present at a site, we are more/less likely to detect species
A (regardless of detecting species B).

To investigate potential interactions between species,
one has the choice of using hypothesis testing or a model
selection approach, depending upon the goals of the
research. Standard likelihood ratio tests (LRT) could
be used to test for independence of the species with
respect to either occupancy or detection. For example,
if  species occupy sites independently then, based upon
the statistical definition of independence, it would be
expected that 

 

ψ

 

ΑΒ

 

 

 

=

 

 

 

ψ

 

Α

 

 

 

×

 

 

 

ψ

 

Β

 

. A LRT could be constructed
by comparing the likelihood values from two models; a
full model where 

 

ψ

 

ΑΒ

 

, 

 

ψ

 

Α

 

 and 

 

ψ

 

Β

 

, and are each esti-
mated; and a reduced model where only 

 

ψ

 

A

 

 and 

 

ψ

 

B

 

 are
estimated, with 

 

ψ

 

ΑΒ

 

 being calculated as the product of

 

ψ

 

Α

 

 and 

 

ψ

 

Β

 

 (note that the structure for all other parameters
is unchanged between the full and reduced models). By
conducting the test it is possible to determine whether
there is sufficient evidence to reject the null hypothesis
of independence. Examples of the constraints that could
be imposed are given in Table 3. Alternatively, it may
be appropriate to explore the data using information-
theoretic model selection approaches (e.g. Akaike’s

Table 2. Example detection histories (XA, XB) and the probabilities of observing them (Pr(XA, XB))
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information criterion, AIC), where the intent is to find
a set of parsimonious models upon which inferences
about the species biology could be made (e.g. Burnham
& Anderson 2002).

The magnitude of the interaction between species
could be estimated from the parameter estimates of the
full model (e.g. as ! = @AB/@A@B), which we term a spe-
cies interaction factor (SIF). Values of  !  < 1 would
suggest species avoidance (i.e. the species co-occur less
frequently than if they were distributed independently),
while values > 1 would suggest contagion, or a tendency
to co-occur more frequently than expected under inde-
pendence. Note that !  = 1 would suggest the species
occur independently. However, often it may be advan-
tageous to reparameterize the model so that the SIF is
estimated directly, i.e. ψΑΒ = ψA × ψB × γ. Similarly, we
can redefine the detection probabilities rAB as rAB = rA ×
r B × δ where r A and r B are the overall probabilities of detect-
ing species A and B during a survey, given both species
are present, and δ is the SIF for the detection probabilities.

To consider whether the probability of  detecting
species A during a survey is different when species B is
also present, we could compare models where the con-
straint  is used (and similarly for species B when
species A is also present). Note that this issue is distinct
from the question of  whether detections of  the two
species occur independently given that both species are
present (i.e. does δ = 1?).

  

Potentially, the probability that a species occupies a
location may be affected by characteristics of the loca-
tion. For example, some species may prefer particular
habitat types over other available habitats; have a
higher occupancy rate at locations near permanent
water sources; require a minimum patch size for a sus-
tainable population; or show reduced probability of
occurrence in isolated patches (e.g. Verner, Morrison &
Ralph 1986; Scott et al. 2002). Similarly, the probabil-
ity of detecting species at the location may also be
affected by location-specific covariates (e.g. old growth
forest vs. rejuvenating forest). Detection probabilities
may also be affected by conditions at the time of the
survey, such as air temperature, cloud cover, or time
since a rain event.

One method for incorporating such covariates is to
use the multinomial logistic model (eqn 5).

, eqn 5

where θi is the probability of interest, Yi is a row vector
of  the covariate values for the ith location, ββββi is the
column vector of coefficients to be estimated and m is
the number of discrete outcomes. For example, when
modelling the probabilities for detecting/not-detecting
both species at a survey occasion, e.g. 
there are four discrete outcomes. Three of these prob-
abilities could be modelled using eqn 5, with the final
probability being obtained by subtraction. Note that
when m = 2 (i.e. only two discrete outcomes), eqn 5
reduces to the more familiar binomial logistic model
that could be used, for instance, for modelling the s
or s where the individual species may be either detected
or not detected.

For modelling the occupancy probabilities, one could
use the multinomial logistic model on the elements
of  φφφφi, although the results may not be biologically
meaningful, i.e. interpreting the effect of  a covariate
on . Another approach would be to use the
SIFs, so that modelling of  and  is achieved using
separate binomial logistic models, while ψi could be
modelled as:

γi = exp(Yiββββγ). eqn 6

However, when using such an approach, users must
be mindful of the natural relationship among , 
and , which restricts the values that , hence, γi

can possibly take, reflecting limits to the degree of over-
lap that is possible between the two species, i.e.:

. eqn 7

For example, if  and , then the two species
must both occur at a minimum of 20% of the locations,
while if  they exactly co-occur then it can only be at 60%
of sites at most. This restriction must be enforced when
using SIFs (which may cause numerical problems), but
when using the first approach the restriction is auto-
matically imposed because of the different parameter-
ization of the covariate relationship. Similar reasoning
applies when using the SIF parameterization with
respect to the r parameters.

 

A probable feature of many wildlife studies is that occa-
sionally not all locations will be surveyed for the target
species. This may be due either to logistical constraints
(it is simply not possible to survey all locations virtually
simultaneously); study design; or unforeseen circum-
stances such as a vehicle breakdown en route. We define

Table 3. Examples of the constraints that should be imposed
for testing the independence of occupancy and detection prob-
abilities, where  and  are the marginal detection prob-
abilities for the respective species in survey j, given both species
are present

Testing Constraints

Occupancy

Detection
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A r ij
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such occasions as a missing observation. The flexible
modelling framework presented above can be modified
easily to accommodate missing observations. As in
MacKenzie et al. (2002), for occasions when the
location was not surveyed, the respective detection
probability (or probabilities) is set to zero, effectively
removing it from the probabilistic statement about the
observed detection history for that location.

An important point is that by being able to accom-
modate missing observations, the model does not
require equal sampling effort across all locations. This
provides a great deal of flexibility for study design. For
example, under certain conditions it may be appropri-
ate to survey a subsample of locations more frequently
to gain adequate information about the detection
probabilities, and elsewhere survey only once or twice.

Simulation study

To assess the performance of the above modelling a
simulation study was conducted, with four basic patterns
in species occupancy being investigated. Two species were
given equal probabilities for occupying sites at a
moderate and a high level. The species were then assumed
to either exhibit a strong association or disassociation.
The four combinations of {ψA, ψB, ψAB} used in the
simulations were; (i) {0·4, 0·4, 0·08}; (ii) {0·4, 0·4, 0·24};
(iii) {0·7, 0·7, 0·4}; and (iv) {0·7, 0·7, 0·6125}. In addition,
the effects of three other factors were varied to assess
their influence on the estimation of the model para-
meters; (1) total number of locations surveyed (N ) = 50,
100 or 200; (2) number of repeat surveys (T ) = 3 or 5;
and (3) probability of detecting each species during a
survey, given presence (p) = 0·214 or 0·5. For simplicity,
the detection of each species was assumed to be inde-
pendent of  detection of  the other (δ = 1), detection
probabilities were made constant across time, equal for
both species ( pA = pB), and equal regardless of whether
one or both species were present (r = p). The values of
p used were chosen such that the probability of never
detecting the species given it was actually there, i.e.
(1 − p)T, was approximately 0·5 and 0·3 when p = 0·214
(for T = 3 and 5, respectively); and 0·125 and 0·03 when
p = 0·5.

For each scenario, 1000 sets of simulated data were
generated and a model with the following parameters
was fitted to the data, ψΑ, ψΒ, ψΑΒ, p A, p B, r AB, r Ab and
r aB. This represents a model where neither the occu-
pancy nor the detection probabilities are assumed to be
independent between the two species, and detection
probabilities are constant across time (and locations).
From each set of  data, parameter estimates were
obtained and their standard errors approximated by
inverting the matrix of second partial derivatives (a
standard numerical technique). The average of  the
1000 parameter estimates was used to assess unbiased-
ness, while the standard deviation of the 1000 para-
meter estimates was compared to the average of the 1000
standard errors to ensure that the approximated stand-

ard errors fairly reflected the true level of uncertainty in
the parameter estimates.

In approximately 8·5% of the simulations (on average)
the matrix of second partial derivatives could not be
inverted. This was not unexpected and is a common
feature of likelihood-based methods when parameters
are estimated very close to the bounds of allowable values
(e.g. 0 or 1). These simulation results were discarded,
which may introduce a small bias, but our results and
further investigations suggest any such bias is negligible.

The results of the simulations suggest the parameter
estimates are virtually unbiased for most scenarios
considered, and have a reasonable level of precision.
The standard errors are generally in good agreement
with the true level of uncertainty. Figure 1 presents the
percentage bias for the estimated joint probability of
occupancy (ψΑΒ) and its standard error. In this instance,
the bias is minimal except for when N = 50, T = 3,
p = 0·5 and occupancy for both species was moder-
ate, with a strong disassociation (ψA, ψB, ψΑΒ) = {0·4, 0·4,
0·008}, in which case ψΑΒ tended to be overestimated
and its standard error underestimated. Full results for
the simulation study can be obtained by contacting the
corresponding author.

Example: terrestrial salamanders in Great Smoky 
Mountains National Park

We illustrate the utility of this approach using moni-
toring data collected on terrestrial salamanders at 88
sites within the Roaring Fork Watershed, Great Smoky
Mountains National Park (GSMNP, Mt LeConte
USGS Quadrangle). Sites were located adjacent to
trails and spaced approximately 250 m apart (see Hyde
& Simons 2001 for sampling details). Two parallel
transects were sampled at each site: a natural cover
transect (50 m long × 3 m wide) and coverboard transect
consisting of five stations placed 10 m apart (see Hyde
& Simons (2001) for details). Sites were sampled five
times between 4 April 1999 and 27 June 1999, with
approximately 2 weeks between successive sampling
occasions. Relative abundance information was collected
for each species but here we consider only detection/
non-detection data (pooled for both transects) for two
species: the red cheek variation of Jordan’s salamander
(Plethodon jordani Blatchley; PJ) and members of the
Plethodon glutinosus complex including Plethodon glu-
tinosus (Green) and Plethodon oconaluftee (Hairston;
PG). We stress that the following analyses are presented
only as an example of the above method, and they
should not be used to draw definitive conclusions about
co-occurrence patterns between these two species.

Several previous studies have sought to document
the spatial distributions of these two species and explain
geographical variation in their altitudinal overlap.
Hairston (1980) found that competitive interactions were
stronger in areas of little altitudinal overlap (GSMNP
and Black Mountains, NC) than in areas of broad alti-
tudinal overlap (Balsalm Mountains, NC). Other studies
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have found no evidence of competitive exclusion, sug-
gesting the species’ distributions are either independ-
ent (Rissler, Barber & Wilbur 2000) or determined by
habitat or environmental factors (Dakin 1978).

Here we are interested in determining whether there
is any evidence that the two species exhibit strong co-
occurrence patterns after allowing for any elevational
gradient in occupancy probabilities. Throughout the
following analysis we use the SIF parameterization of
the model and assume that δ = 1, i.e. the species are
detected independently when both are present. We feel
this is a reasonable assumption to make given the field
design and known biology of these species.

Table 4 shows the model fit and selection statistics
for models that do not acknowledge a potential eleva-

tional gradient in occupancy and detection probabilities.
Based upon AIC, the most parsimonious model among
those considered for the data is y(S )y(·)p(S )r(S ), which
suggests that the detection probability for each species
is different if  the other species is also present (for PG:
p = 0·54 and r = 0·48; for PJ: p  = 0·91 and r = 0·55), and
that there is very strong evidence that the two species
avoid each other !(SÊ ) = 0·67 (0·11).

However, once we allow these parameters to vary with
elevation, we obtain models that provide much better
descriptions of the data (Table 5). Unfortunately we
were not able to obtain models that included a γ term to

Fig. 1. Approximate percentage bias of estimated joint probability of occupancy (@AB) and its associated standard error ( ),
obtained from a simulation study, plotted against the factors; number of sites, number of surveys, detection probability per survey
( p); and true value of ψ ΑΒ.

Table 4. Summary of model fit and selection statistics for
models without elevation as a covariate, where K is the
number of estimated parameters in the model and ∆AIC is the
absolute difference in AIC values relative to the model with
the smallest AIC. The terms in parentheses represent the
factors in the model for the respective parameter; with ‘S’
denoting that species has been used as a factor and ‘‘·”
indicating that the parameter is constant. For example, ψ(S )
indicates that the occupancy probability has been estimated
separately for both species, whereas γ (·) indicates that this
parameter has a constant value to be estimated. Absence of
the parameter in the model notation implies γ (·) and absence
of r (S ) implies r (S ) = p(S )

Model Log-likelihood K ∆AIC

ψ(S)γ (·)p (S )r (S ) 736·6 7 0·0
ψ(S)p (S)r (S ) 747·0 6 8·3
ψ(S)γ (·)p (S ) 761·4 5 20·7
ψ(S)p(S ) 776·0 4 33·4

Table 5. Summary of model fit and selection statistics for
models with elevation as a covariate, where K is the number of
estimated parameters in the model and ∆AIC is the absolute
difference in AIC values relative to the model with the smallest
AIC. The terms in parentheses represent the factors in the
model for the respective parameter; with ‘S ’ denoting that
species has been used as a factor, ‘E ’ indicating use of
elevation as a factor, and ‘.’ indicating a parameter set equal
across species and elevation. The best model from Table 4,
ψ(S )γ (·)p(S )r (S ) has been included to show how including
elevation as a covariate substantially improves the fit of the
models. Absence of the γ parameter in the model notation
implies γ (·) and absence of r (S ) implies r (S ) = p (S )

Model Log-likelihood K ∆AIC

ψ(S × E )p (S × E )r (S × E ) 617·3 12 0·0
ψ(S × E )p (S )r (S × E ) 623·6 10 2·3
ψ(S × E )p (S × E )r (S ) 660·1 10 38·8
ψ(S × E )p (S × E ) 675·6 8 50·2
ψ(S × E )p (S )r (S ) 676·1 8 50·8
ψ(S )p (S × E )r (S × E ) 673·2 10 51·8
ψ(S )γ (·)p (S × E )r (S × E ) 671·8 11 52·5
ψ(S )γ (·)p (S )r (S ) 736·6 7 109·3
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converge satisfactorily, because once the probability of
occupancy for PJ was modelled as a function of eleva-
tion, the predicted occupancy probability was < 0·15
for elevations below 750 m and > 0·80 for elevations
above 902 m (Fig. 2). At lower elevations, this means
there are very few data on which to judge whether the
species were acting independently, while at the higher
elevations there is a very small range of allowable val-
ues for γ, implying that there is little scope to evaluate
nonindependent behaviour in terms of occupancy for
these species (i.e. the lower and upper bounds on allow-
able values for γ, from eqn 7, both tend to 1·0 as eleva-
tion increases). The most parsimonious model we were
able to fit to the data, ψ(S × E )p(S × E )r(S × E ) was
indicated clearly as the ‘best’ model in terms of AIC.
Figures 2 and 3 illustrate how the various factors are
affected by elevation. While we have no evidence of an
interaction between the species in terms of occupancy
probabilities, there is strong evidence that the detection
functions are different if  both species are present at
a site. For instance, the detection probability for PG
increases with elevation when PJ is not present but
decreases when PJ is present, whereas for PJ the effect
of  elevation is much larger when both species are

present than when PJ is present alone. From an obser-
vational study such as this it is difficult to suggest
exactly what may be the cause for this phenomenon,
but a plausible explanation involves effects of relative
abundance, a potentially important determinant of
species detection probability. For example, it may be
that PG becomes more abundant as elevation increases
until PJ is also reasonably abundant. At that point, the
abundance of PG starts to decrease while PJ continues
to become even more abundant (perhaps through com-
petition for resources). This reasoning is consistent
with other field studies, which conclude that while PG
and PJ have shown no tendency to be mutually exclu-
sive, PG is more tolerant of dry locations found usually
at lower elevations (Grover 2000; Rissler et al. 2000)
and PJ seems to have a numerical advantage in moist
microhabitats common at higher elevations (Hairston
1951; Dakin 1978). While this reasoning is supported
by published studies it is speculative, and we caution
against inferring ecological process from spatial pat-
terns without the support of experimental studies. In
addition, in this example analysis we have not con-
sidered the potential effects of other habitat variables
through more complicated models.

Discussion

A number of previous authors have suggested various
methods to test the null hypothesis of independence of
species occurrence and to provide related interaction
metrics both for two-species systems (Forbes 1907;
Dice 1945; Cole 1949; Pielou 1977; Hayek 1994) and
for more complex multispecies systems (Connor &
Simberloff  1979, 1984; Gilpin & Diamond 1982, 1984;
Kelt et al. 1995; Manly 1995; Gotelli 2000; Gotelli
& McCabe 2002). However, with the exception of the
work of Cam et al. (2000) directed at specific questions
about nested subset structures (Patterson & Atmar 1986),
we believe that the approach presented here is the first
attempt to account explicitly for the imperfect detecta-
bility of species while modelling species co-occurrence
data. Failure to allow for the fact that a species may
have been present, but not detected, can result in mis-
leading conclusions about species associations and
interactions, as some species may have been classified
falsely as absent. The flexible likelihood-based model-
ling framework we present is based on simple probabi-
listic arguments that are used commonly in other areas of
statistical ecology such as mark–recapture (Lebreton
et al. 1992), and are used widely in many statistical dis-
ciplines. Hence there is already a vast body of  liter-
ature supporting the general approach. The modelling
of the different occupancy states involves the same kind
of  thinking that has been used to develop previous
approaches to testing for independence in the case of
perfect detection (Forbes 1907; Dice 1945; Cole 1949;
Pielou 1977; Hayek 1994). Thus, our approach to
modelling and inference unites two approaches that
are themselves very familiar to ecologists.

Fig. 2. Estimated probability of occupying a site for Plethodon
jordani ( ) and members of the Plethodon glutinosus complex
( ) as a function of elevation according to the model.

Fig. 3. Estimated probability of detecting the species Plethodon
jordani (PJ) and Plethodon glutinosus (PG ) in a survey, as a
function of elevation according to the model ψ(S × E )p (S ×
E )r (S × E ).
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Initial investigations into the different possible
methods for incorporating covariates into the occu-
pancy probabilities suggest that using the multinomial
logistic model on the elements of is the most numer-
ically robust approach. However, as suggested earlier,
this may give results that are difficult to interpret bio-
logically. Our preference is for the use of the species
interaction factors (SIFs), as they provide a meaning-
ful interpretation for the strength of a covariate rela-
tionship on the nonindependence of two species.

While in the terrestrial salamander example we were
unable to get convergence for models that involved
both γ and occupancy as a function of elevation (hence
we were unable to investigate possible species inter-
actions in this respect after allowing for the effects of
elevation), the example does highlight the importance
of considering factors that may affect the marginal
probabilities of species occurring at study sites when
exploring patterns of  species co-occurrences. When
we did not use elevation as a covariate in our models,
there was very strong evidence that the species were less
likely to both occupy a site than they would have been
if  they were acting independently (Table 4). However,
once we began to consider models that included eleva-
tion as a covariate, this strong evidence of an inter-
action disappeared. For example, consider the models
ψ(S)p(S × E)r(S × E) and ψ(S)γ(·)p(S × E)r(S × E) in
Table 5. Here we have only allowed the detection prob-
abilities to be functions of  elevation, yet already there
is little indication that by including γ we have a better
model, given that both models have similar AIC values.
By ignoring potential factors that may affect a researcher’s
ability to detect target species or factors that may affect
whether a species occupies a particular location (such
as habitat variables), erroneous conclusions may be
reached concerning patterns of co-occurrence.

Above we have presented the estimation of model
parameters in terms of maximizing the likelihood.
However, another approach would be to assign appro-
priate prior distributions on the model parameters,
representing current knowledge (or ignorance), and
use the likelihood within a Markov chain Monte Carlo
framework to obtain posterior distributions for the
parameters. Such an approach may provide some bene-
fits, enabling models to be explored that are intractable
using standard maximum likelihood theory.

In some circumstances it may be appropriate to relax
the assumption that all locations are closed to any
changes with respect to occupancy for the duration of
the surveying. If  the species move in and out of the
study locations in a completely random manner, such
as for a highly mobile species, then based upon the
results of Kendall (1999) in a closely related mark–
recapture context we believe that parameter estimates
will still be valid, although their interpretation should
change. What we have referred to as ‘occupied loca-
tions’ above should be interpreted as ‘used locations’,
and ‘probability of detection’ is now ‘probability spe-
cies is present and detected’. However, parameter esti-

mates are no longer valid if  the changes in occupancy
are non-random, i.e. if  animals move to a location dur-
ing the middle of the seasonal survey period or vacate
the location before the sampling has been completed.

Finally, although we believe that the methods pro-
posed here can yield strong inferences about species co-
occurrence using presence–absence data from multiple
locations at a single point (e.g. season) in time, we warn
that this does not imply strong inference about the
processes that generated any observed patterns of co-
occurrence. Despite the popularity of inferring process
from pattern in ecology, strong inference about process
requires typically some sort of manipulative experi-
mentation. Although not generally as powerful as
experimentation, it is often useful to observe system
dynamics over time. MacKenzie et al. (2003) presented
a model structure for estimating the vital rates associ-
ated with occupancy dynamics (local probabilities of
extinction and colonization) based on multiple seasons
or years of detection/nondetection data. It might be
useful to extend this dynamic modelling approach
to the multispecies case in order to estimate effects of
one species on the vital rates of another. Thus, we
believe that the methods presented in this paper will be
very useful in drawing inferences about species co-
occurrence, and we believe that such inferences can be
combined with other kinds of  studies and analyses
in order to investigate mechanisms underlying com-
munity dynamics.

This approach to modelling detection/nondetection
data for two species has been implemented in program
, which may be downloaded freely from http://
www.proteus.co.nz/.
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