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Foreword

Protection of endangered or threatened plants and animals is a principal
focus in the continuously evolving realm of environmental management
policy. Motivation for protecting individual species may arise from a variety
of considerations, including esthetic principles, human and ecological
health, conservation ideals, biodiversity valuation, and commercial interest.
In addition, in order to.be effective, environmental policy must balance these
concerns with a wider range of technical, economic, and social issues.

An understanding of the basic principles of population ecology is
essential to the development of technically sound environmental policy as
well as to the creation of specific management strategies for protecting pop-
ulations. In this text, Akqakaya, Burgman, and Ginzburg—through the use
of simple computer simulation models—teach those principles and illustrate
their application to-a brodd spectrum of practical problems. The models used
not only take into account the temporal behavior of populations but also the
significance of their spatial distribution. A modeling approach is helpful
because modeis are such a powerful means for integrating large amounts of
information and data and conducting analyses of uncertainties. Models also
provide a means to analyze population responses to alternative management
strategies and paolicies.

A major theme of this text is uncertainty—how to account for it and
analyze its implications. For those involved in the development of environ-
mental policy, it is essential to recognize uncertainties inherent in our
knowledge of population dynamics, individual species, and the environ-
ment. The policy #nalyst needs to understand the implications of these
uncertainties with respect to predicting population behavior. For example,

the analyst might nged to know whether uncertainties in a specific situation -

are sufficiently srhall to permit practical distinctions betwéen predicted
results of alternative management scenarios. The analyst also needs to be
able to determine what research or monitoring programs would most effect-
ively reduce uncertainty in predictions of a specific population’s response.

For over a decade, the Electric Power Research Institute (EPRI) has been
funding the development, testing, and application of the RAMAS software
used in this book. The motivation for this investment has been to produce
risk-based technical tools to address practical questions concerning endan-
gered and threatened species. EPRI supports the publication of this text as a
means of transferring the technical knowledge and insights that have been
acquired during this process to students, environment professionals, and the
general public.

Robert Alan Goldstein
Environment Group
Electric Power Research Institute

Foreword

To many people, population ecology seems, at first acquaintance, to be the
antithesis of mathematics. Ecology is about living things, not numbers. It is
about the relationships of living things to each other and their environment,
not about formulas. Complex things in a complex world that require quati-
tative observation and description for understanding. Where do deer live?
What do they eat? What species of songbirds are found in old-growth
forest? Why do some plant species seem to grow everywhere, but others
only in specific places? Not the kind of questions that beg for numerical
answers, .

Eventually, however, as our qualitative knowledge increases, quantita-
tive questions emerge. How many deer can live in a thousand-acre woods?
How much food does each need to survive? Why are there more songbird
species in larger patches of old-growth forest? How big a patch of old-
growth do we need if we want to be sure of keeping all its songbirds around?
It does not take long for population ecology to reveal itself as an intensely
quantitative discipline.

For whatever reasons, many people drawn to the fascination and
beauty of the qualitative aspects of ecology are put off by the quantitative
aspects. Mathematics seems far too abstract and inanimate to describe pal-
pable flesh and blood. Yet, it is only through the application of mathematics
that we can begin, not just to see, but to understand the underlying patterns
in the distribution and abundance of living things that is the essence of pop-
ulation ecology. This book is meant for such people. The text is clear and the
examples real. But more than this, the book is accompanied by a friendly
computer program that allows the reader to interact with the quantifative
aspects of ecology without first having to become a mathematician, A ligtle
time with this program and the exercises the authors provide quickly illus-
trates how dynamic and fascinating quantitative population ecology can be.

Another strength of this text is its scope of coverage. Too many treat-
ments of population ecology start and stop with the basic models of popula-
tion growth and life tables. This text and computer program capture the
basics but go beyond to include such current and difficult topics as metapo-
pulation dynamics and population viability analysis. The authors also pro-
vide the best treatment of variation and its effects on population dynamics
that [ have seen anywhere.

By making this discipline far more accessible to a wider audience, the
authors deserve much credit and our sincere thanks.

Mark Shaffer
Vice President for Program
Defenders of Wildlife




Preface

Practical ecological problems such as’preservation of threstened species,
design of nature reserves, planned harvest of game animals, management of
fisheries, and evaluation of human impacts on natural systems are addressed
with quantitative tools, such as models. A model is a mathematical repre-
sentation of a natural process. Many biologists now use models
implemented as computer software to approach the quanhtauve aspects of
these practical problems.

In addition to their practical use, such models are excellent tools for
developing a deeper understanding of how nature works. You can use the
program described in this book, RAMAS EcoLab, to apply most of the con-
cepts discussed in the book and develop your own models. At the end of
each chapter, there is a set of exercises. Some of these require only pencil and
paper, some require a calculator, and others require the program. Although

. the book can be used without the program, we believe that most of the more

complicated concepts will be much easter to understand when you demon-
strate them to yourself using the program.

We hope that, in addition to teaching you the principles of, and prac-
tical methods used in, population ecology, this combination of textbook and
software will also stimulate you to learn more about modeling, mathematics,
and programming. It might even inspire you to write your own computer
program for developing ecological models. The principles of building
models using a software such as RAMAS EcoLab are the same as those of
writing your own equations or computer programs (even though the tech-
nical details are very different). Qur focus here is not on the mechanics of
how a model is implemented, but rather on understanding how various
interacting ecological factors should be put together and on understanding
the implications of the model’s assumptions. Cur aim is to discuss principles
of population ecology, to show a collection of methods to implement these
principles, and to help you appreciate both the advantages and limitations of
addressing ecological problems with the help of models.

To the teacher

This book introduces principles of population ecology, with special
emphasis on applications in conservation biology and natural resource man-
agement. Each chapter includes examples and laboratory exercises based on
the software RAMAS EcoLab. While less powerful than the research-grade
software developed by Applied Biomathematics, RAMAS EcoLab incorpo-
rates all features of the RAMAS Library essential for teaching the basic

principles of population ecology, at a level accessible to undergraduate
students.

xii

Preface xiii

In an introduction to population ecology, most undergraduate students
consider learning the mathematics required by traditional texts to be an
unnecessary hindrance. The aim of this book is to teach quantitative methods
that are necessary to develop a basic understanding and intuition about eco-
logical processes, without intimidating or discouraging students who do not
have extensive mathematical backgrounds. Even students who are
intimidated by mathematical equations are usually not afraid of using com-
puters. We hope that our integration of software that implements
mathematical models in population ecology with an undergraduate textbook
will make these models accessible to undergraduates in the biological and
environmental sciences.

It should be emphasized that we do not consider developing models
with the use of software as an alternative to Jearning the underlying mathe-
matical concepts. The goal of this book is to introduce mathematical ecology
by developing an intuifive understanding of the basic concepts and by
motivating the students through examples that put these concepts to prac-
tical use. We believe that use of software greatly enhances the understanding
of the concepts while encouraging the use of, and emphasizing the need for,
quantitative methods.

In addition to the use of software, there are a number of other points in
which this text diverges from the more traditional textbooks on population
ecology. For example, we decided to develop the models almost exclusively
in discrete time (with difference equations) and only briefly mention such
things as instantaneous birth and death rates. The equations we use are
qualitatively equivalent to the corresponding differential equations, but we
believe they are much more intuitive and easy to grasp.

Another important difference is our emphasis on, and early treatment of
variabiiity and uncertainty. Use of software instead of analytical models has
allowed us to incorporate these important concepts early on, ina way that is
simple enough to be easily understoed by undergraduate students without
strong mathematical backgrounds.

We develop the models from the very beginning in a way that will
make the later addition of concepts such as demographic stochasticity and
age structure very natural and intuitive. In discussing population regulation,
we postponed writing down the famous logistic equation almast to the end
of the chapter, concentrating instead on the general, qualitative aspects and
dynamic consequences of density-dependent population growth. We started
the chapter on age structure with analyzing census data to build a matrix
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model, rather than the more traditional life-table approach. We suspect that
starting with life tables causes some of the confusion that arises when life
table variables are to be used to build age-structured models. '

We designed the book and the software with sufficient flexibility to

. allow their use in lecture classes, computer laboratories, or both. They can be
" ‘used in a lecture class accomp.a_nied_&lgy‘ a computer laboratory, or in a lecture .
class in which the examples that require software are assigned as homework
- exercises, or in a laboratory course where the exercises are the main focus

and the conceptual material is read by students. Our hope is that the soft-
ware tool we provide, in combination with our practical approach, will make
population ecology easier to learn and toteach.
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Chapter 1
Population Growth

1.1 Introduction L

_ Population ecology is concerned with understanding how populations of
" planits, animals, and other'organisms change over time and from one place to

another, and how these populations interact with their environment. This

understandmg may be used to forecast a population’s size or distribution; to
estimate the chances that a population will i increase or decrease; or to esti-
mate the number of individuals that may be harvested while ensuring a high
probability that similar harvests will be avaﬂable in the future. Thus, the
focus of any given study in populatlon ecology may be motivated by very
practical considerations in fields as diverse as fisheries harvest regulation,
wildlife management, pest control in agricuitural landscapes, water quality
monitoring, forest harvest planning, disease control strategies in natural
populations, or the protection and management of a threatened species, This
chapter examines some fundamental concepts in the definition of popula-
tions and their environmental limits, and describes first principles of
developing population models.
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2 Chapter 1 Population Growth

1.L1 Definition of a Population

The first step in developing an understanding of a population is to define its
limits. A population may be defined as a collection of individuals that are
sufficiently close geographically that they can find each other and réproduce.
The implicit assumption in this definition is that if individuals are close
enough, genes will flow-among individuals. Thus, it rests on the biological
species concegh. - - o Ly
In practice, a population usually is any collection of individuals of the
same species distributed more or less contiguously, It may refer to a group of
tndividuals in a glass jar, or to a group of individuals that occurs in a conve-
niently located study area. This approach to the delineation of a populations
is particularly pertinent “for plant species in which there is Jvegetative
reproduction. - - - e
-=_Ofteff, hiologists in the field need to dejermine the geographic bound-

”

- aries of a"pdgklation. THE dimits of a populdtion depend on the 8¢ and

lifeform of a species, its mode of reproduction, mode of seed or juvenile
dispersal, its habitat specificity, and pattern of distribution within its geo-
graphic range. Subpopulations may be defined as parts of a population
ameng which gene flow is limited to some degree, but within which it is
reasonable to assume that mating is panmictic (i.e, an individual has the
same chance of mating with any other individual). All of the factors that

make it difficult to define the limits of a population-are magafied when
trying to determine the [imits of subpopulations, Thus, reliance on the -

underlying principle of reproductive criteria may not be reasonable fer some
species, and it may not be practical to establish even when sexual reproduc- -
tion is the dominant mode. In practice, if individuals are grouped and the

groups are far enough apart that djspersal or reproduction may be partially

 limited, we call these groups subpopulations,

1.1.2 Limits to Survival and Reproduction: Niche and Habitat

Animal and plant species are limited in where they can survive and repro-
duce. Biologists have recognized for many centuries that limits must exist for
most species, either in the form of extremes of physical variables or in the
form of competitors and predators. The concept of a niche is useful in
describing the conditions to which a species is adapted. The niche of a spe-
cies is its ecological role, its functional relationships with other ecosystem
components. It is defined by the limits of ecological variables beyond which
the species cannot survive or reproduce. These ecological variables may be
abiotic {e.g., temperature, rainfall, concentration of chemicals) or biotic (e. B
food sources, predators, competitors). Each of these variables can be thought
of as an axis (Hutchinson 1957}. If we focus on two of these variables, the

Introduction 3

boundaries of the niche may be represented as edges of a rectangle. More
usually the edges are drawn as smooth curves, These suggest an interaction
between the factors, so that the tolerance to one extreme depends on the
levels of the other factors. For example, Figure 1.1 depicts the niche of a spe-
cies of Sand Shrimp with two ecological variables important for this species:
temperature and salinity. Fach of these two variables is represented by one
axis of the graph. The lines represent percentage mortality, which is lowest
when both salinity and temperature are moderate, Extremes of both salinity
or temperature cause increased mortality. The response of a species to ore
niche variable will depend to some degree on the values of the dther vari-
ables. For example, the Sand Shrimp might tolerate a higher temperature if
salinity is within the optimal range (Figure 1.1).

- —

70

50 70

24

20

o
1

12

Temperature

Salinity (%)

Figure 1.1. The niche of the Sand Shrimp (Crangon seplemspinosa)
in terms of temperature (*C) and salinity (%), under conditions of low
concentrations of dissolved oxygen. The curves represent percentage
mortality. After Haefner (1970).

The fundamental niche is the niche defined by all the abiotic environ-

menfal variables that affect a species. It represents the Jimits of physical
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4 Chapter1 P_'opulafioﬁ Growth

conditions that a species can tolerate. The realized niche is defined by both
biotic and abiotic variables. It includes things such as food availability, toler-
able physical conditions, competition with other species for resources (such
as nest sites or nutrients), and the avoidance of predators. The niche may be

determined by the availability of potentially limiting resources, or by phys-

ical properties or disturbances that limit a population. For example, the

quality of a particular part of the niche space may depend on the abundance _
of predators and their ability to exploit that niche. The niche of a species may

vary in time and space because the physiological or behavioral properties of
individuals in the population may differ at different times and in different
places.

The size and shape of the niche will change through time, responding to
changes in the properties of individuals in the population, as well as in the
environment. An example of interaction among different niche dimensions
(food, cover, and predators) is provided by the effect of predation on young
perch. The diet of juvenile Perch (Perca’fluiatilis) changes front predomi-
nantly copepods in the absence of predators to predominantly
macroinvertebrates in the presence of predators (Figure 1.2). This change in
the niche preferences of the species is caused by the fact that individuals
forgo foraging opportunities in open water when predators are present, and
focus on prey associated with structures offering protection such as rocks
and crevices. Such dynamics affect the interactions among species that
would compete for food in the absence of predators. Thus, structural com-
plexity of the physical habitat can determine the composition of fish
communities because of its effects on the feeding behavior of young fish.

Not all points in the niche space of a species are equally conducive to
survival and reproduction. In concept, at least, the space includes a prefer-
endum, a region in which reproduction and survwal are maximized. Beyond

this region, the quality of the niche declines monotonically to the boundaries
of the niche space, to regions where survival and reproduction are barely
possible. The niche that is necessary for regeneration and survival through
juvenile life stages is usually different and frequently somewhat more
restricted than the niche that is necessary for survival as an adult. The envi-
ronmental limits that an adult can tolerate may be narrower during the
reproductive season than during the rest of the year.

The habitat of a species is the place where the species lives. It is a geo-
graphical concept, the place in which the set of conditions necessary to
support a species exists. The environmental and biotic vartables that define
the niche of a species are not fixed, but change in time and space. Thus, a
place that was habitat in one year may not be habitat in the next if the requi-
site environmental conditions no longer exist at that place; the individuals
that live there may move, fail to reproduce, or die. Drought, for example,

Introduction 5

Percent in diet

No refuge/No predator Refuge/No predator
No refuge/Predator Refuge/Predator

Treatment

Cyclopeid copepods - Other {mainly macroinverebrates)

Figure 1.2. The diet of juvenile Perch in the presence and absence of
compelition, and the presence and absence of a refuge (after Persson
and Eklov 1995). The refuge was a structurally diverse substrate and
offered a number of feeding opportunities that were not present in
open water. The results in the figure were obtained from replicated
laboratory experiments,

will contract the geographic range in which a species can survive and repro-
duce. In such circumstances, the niche of the species is not altered, but the
habitat contracts. In this book, we examine population ecology with a
particular focus on understanding and explaining a species’ response to
changes in its environment, including its habitat.

1.1.3 Mathematical Models in Population Ecology

Population ecology, as we discussed above, is concerned with changes in the
abundance of organisms over time and over space. Abundance and how it
changes can be described by words such as "abundant” or "rare,” and "fast"
or "slow,” but population ecology is fundamentally a quantitative science. To
make population ecology useful in practice, we need to use quantitative
methods that allow us to forecast a population’s future and express the
results numerically.
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"Frequently, the need to make forecasts leads to the development of
models. A model is a mathematical description of the population. A model
may be as simple as an equation with just one variable, or as complex as a
computer algorithm with thousands of lines. One of the more difficult deci-
sions in building models (and one of the most frequent mistakes) concerns
the complexity of the mbdel appropriate for a given situation, i.e, how much
detail about the-ecology of the species to add to the model.” "~ - -

Simmple models are easier to understand and more likely to give insights
that are applicable in a wide range of situations. They also have more sim-
plistic assumptions and lack realism when applied to specific cases. Usually,
they cannot be used to make reliable forecasts in practical situations.

Including more details makes a model more realistic and easier to apply
to specific cases. However in most practical cases, available data are limited
and permit-anly 448 simplest @odels. Mere eoi
data %ﬁa?ﬁ?i%f?ﬁéia%ﬁtémpté o mclude mbre dtails thankan be -
justified by the quality of the available data may result in decreased predic-
tive power and understanding.

The question of the appropriate level of complexity (i.e., the trade-off
between realism and functionality) depends on:

(1) characteristics of the species under study (e.g., its ecology),
(2) what we know of the spegies {the qvailability of data), and _ —
(3) what we wéﬁ_t to know or predict ‘(t-he qué'stions addressed).
Even when detailed data are available, general questions ;eqt_ﬂ_g&_ s_i_mpie:
models than more specific ones. For gxample, models intended to generalize
the effect of one factor (such as variation in growth rate) on a population’s«.

future mig.include less détail than fose inteheed toforecast the long-term™ ~ . .

persistence of a specific species, which in turn, may include less detail than
those intended to predict next year's distribution of breeding pairs within a
local population.

The purpose of writing a model is to abstract our knowledge of the
dynamics of a population, It serves to enhance our understanding of a
problem, to state our assumptions explicitly, and to identify what data are
missing and what data are most important. If the data required for building
the model are plentiful, and if our understanding of the dynamics of a pop-
ulation are sound, we may use the model to make forecasts of a population’s
size or behavior. In the rest of this chapter, we will introduce some very
simple models. In later chapters, we will add more details to these models.

X _n:lod'{i‘é,requiqé"mre s ‘the Alaskan mgainland.
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1.2 Births and deaths, immigrants and emigrants

The Muskox (Ovibos moschatus) is a large mammal that was eliminated from
substantial areas of its natural range in North America and Greenland
during the 1700s and 1800s by excessive hunting. The last individuals on the
Arctic Slope of Alaska were killed in 1850-1860. In 1930, the legislature of
the Territory of Alaska authorized funds to obtain stock from Greenland for
reintroduction to Nunivak [sland. The island was to serve as a wildlife
refuge in which the reintroduced population could grow. It was chosen
because it was relatively accessible, was free of predators, and permitted
confinement of the population to a large area of apparently good habitat. A
population of 31 animals was reintroduced tp Nunivak Island in 1936. Once
grown, the population was to serve as a source for further reintroductions on

" The population was censused irregularly between 1936 and 1947, and
then annually between 1947 and 1968 (Figure 1.3). The objective of this sec-
tion is to use the census information to construct a modet that may be useful
in managing the population.

800
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Figure 1.3. Population censuses of Muskox on Nunivak Island

between 1936 and 1968. During the last four years of the census, from
1965 to 1968 (shown as closed circles), some animals were removed
from the island and relocated to new sites (after Spencer and Lensink
1970).
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The total number of individuals (N} in a fixed region of space can only
change because of births, deaths, immigration and emigration. Change in
population size over a discrete interval of time from t to f+1 can be
described by the equation

N(r+1)=N(t)+B~D+l—E

where B and D are the jotal number of births and deaths respectively during
the time interval from ¢ to #+1, while [ and E are the total number of indi-
viduals entering and leaving the region during the same time interval (the
time interval in this example is one year). Of course, we may replace
immigration and emigration by processes that are mediated by humans,
such as reintroductions, harvesting, or poaching. Change in population size
from year ¢ to t+1 is given by N(t+1) - N(#).

. .. Many populations like. the. Nunivak Island Muskox ‘population are:

"+~ jgsed iff the Wnée'ﬁlat-thegéis;npi{ﬁmgggtigzj or, eimiggation. In these pases -

the model for the population becomes

N+ =Nn+B-D

1.2.1 Exponential Growth

Rather than express births and deaths as numbers of individuals, we may

express them as rates. For an anniial species, the formulation of an equiation™

to express population growth is relatively simple. In an annual species, a]l

the adults alive at year ¢ die before year ¢+1. Thus the number of individ-+- -

uals in the population next year is equal to the number in the population this
year, multiplied by the average number of offspring per individual,

= . s L3

Ne+D)=NOf

We express births as the fecundity rate, £ It may be thought of as the
average number of individuals born per individual alive at time ¢ that sur-
vive to be counted at the next time step, i +1.

For an annual species, fecundity is equal to the growth rate of the pop-
ulation,

NeD)=NNOR

The rate of population increase (or, population growth} is conventionally
represented by the symbol R. It is called the “finite rate of increase” of a pop-
ulation. Despite the use of words such as "growth” and “increase” in its
definition, R can describe both growth and decline in abundance. If R is

Births and deaths, immigrants and emigrants 9

greater than 1, the population will increase, and if R is Jess than 1, the pop-
ulation will decrease. When births and deaths balance each other, R equals 1,
and the population abundance stays the same.

If we want to predict the population size for two years, instead of one,
we can use the above equation twice:

NH2) =N+ R
N =NHOR

If we combine these two equations, ' -

Nt+2) =N R R
N(t+2) = N(1) R?

. More generally, if there is a need to predict the population size ¢ time steps
- ..into the _future beginning from time step 0, the equation for population
growth may be writtenas =~ -

N =NO) K

which says that, to estimate the population size at time step ¢, multiply the
population size at the beginning, N((), with the growth rate, R, raised to the
power of # ("raised to the power of " means multiplied by itself ¢ times).
This equation represents a model for the dynafnics of a population. A
simple model such as this one is an equation describing the relationship
between independent variables, parameters, and dependént.,variables..‘A
dependent variable (or state variable) is the quantity you want to estimate

(such as the future population size). It depends on the other factors, called -

- independent variables. Parameters are those components of a model that
mediate the relationship between independent and dependent variables. The
equation above allows us to estimnate the population size at any time in the
future. The population size at time ¢, N(f), is the dependent variable, and
time (f) is an independent variable, The growth rate (R) and the initial pop-
ulation size, N(0), are parameters. The type of population growth described
by this model is called exponential growth because of the exponentiation in R'.

Sometimes, it is also called geometric growth or Malthusian growth (after
Thomas Malthus).

1.2.2 Long-lived Species

Many species are not annual; they survive for more than one year and
reproduce more than ence. To allow for the survival of individuals for more
than a single time step, we may introduce a survival rate (s), which is the
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10 Chapter 1 Population Growth

proportion of individuals alive at time ¢ that survive to time t+1. Thus the
population size at the next time step is the sum of two numbers: (1) the
number of individuals that survive to the next time step (out of those that
were already in the population), and (2) the number of offspring produced
by them that survive to the next time step. We can write this sentence as the
following formula : )

- wia T

Nty =Ny s+ N(O f

This is a model of population growth in which births and deaths are
expressed as fecundities and survivals. By rearranging the formula we get
- N+ =N@ (s +f)
.Q}f_’_ P R . - F - i - -
the population abundance. If we add these two numbers, we can rewrite the
equation as

Nt+D)=N@t R

where R is the same growth rate that we discussed above. In the rest of this

chapter, we will only use R and not concentrate on its components s and f

These components ‘will becofe important in the next chapter, becausethe

effect of certain types of variability depends on kow the growth rate is parti-

tioned into survival and reproductiori*We will further develop this
. Wistinction between survival and reprodutton when we learn about
- age-structured models in Chapter 4 Y N -

- . VR " i 4 L . ;

1.2.3 Using the Model

The first task in applying the model above is to estimate R. We may
rearrange the equation so that

Nt+1YND =R

Let's consider the growth of the Muskox population on Nunivak Island
(Figure 1.3). Knowing the sizes of the Muskox population in 1947 and 1948
(49 and 57, respectively), we can estimate the growth rate of the population
in 1947 simply as 57/49, which equals 1.163. This estimate of R does not use
all of the information available to us. We know the population sizes in all
years between 1947 and 1968. Figure 1.4 below provides values for R for all
years during which observations were made in consecutive years.

) *TResum s+ f replresents thexcombined effect of fecundities anghsurvivals on = -
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Figure 1.4, Growth rates of the Muskox popuiation on Nunivak Island
between 1947 and 1968. The cissed circles represent years in which
animals were removed from the. population. These rates were
exciuded from the estimation of the average growth rate for the pop-
ulation, represented by the dashed line.

Perhiaps the most s:;r-i_king aspect of Figure 1.4'is that the growth rate of
the population is not fixed, but varies from one year to the next. There is no
apparent trend through time. We will explore the causes and consequences
of this variation in the next chapter. For the moment, if we want to make
forecasts about the size of the population, it will be necessary to calculate the
average growth rate of the population. The growth of a population is a mul-
tiplicative process. That is, we estimate next year's population by
multiplying the current population by the average growth rate. Because
growth is a multiplicative process, the appropriate way to calculate the
average growth rate is to find the geometric mean of the observed growth
rates. There are 17 growth rates between 1947 and 1964, so we calculate the
geometric mean of the series by multiplying these 17 numbers, and taking
the 17th root of the result:
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%x1.27x1.14x1.24x1.14x1.2x1.15X% 1.15)
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10.392

R =""10392
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The population increased by an average of 14.8% per year between 1647
and 1964. We can use this statistic to make predictions for the population.
For example, if the island population continues to grow at the same rate as it
has in the past, what is the population size likely to be in 1968, given that
there were 514 Muskox in 19652 To answer this, we would calculate

- -
e - - "
E 5 3 [

R . T A . T K -
R (U i I T s

N(1968) =N(1965) - R*
=514 - (1.148)
=771.7

Thus, in three years, we can expect that the population will increase to about
778 animnals.
If a population is growing exponentially, then the population size should

~appear 10 be linear when it is expressed on 'z log scale. Theog scale is a* - -

means for verifying visually that a population is indeed growing exponen-
tially. The Muskox data fit a straight line quite wellwhen population size is
on a log scale (Figure 1.5). '

134 Boublinglime -~ -

Frequently, the rate of increase is expressed in terms of doubling time. Given
that the average rate of increase is known, how long will it take for the pop-
ulation to double in size? We know from above that

N(ty=N)-R'
where N(0) is the current population size and N(f) is the population size {

time steps in the future. We may write the question above as: If N(t}/N(0)
equals 2, what is t? In other words, if

R=2

then what is t? Taking the natural logarithms of both sides of the equation,
and rearranging, we get

Births and deaths, immigrants and emigrants 13

1000 -

500 4 o?
300 0
200 4 . it

100 1 o©

50+ 0

Population size

30 1
20 1

e ) B K

- =

T T T T A | 1 o
1945 1950 1955 1960 1965 1970
Year

10

Figure 1.5. Plot of population size versus time for the Nunivak Istand
Muskeax population. Note that the population size (y-axis} is in loga-
rithmic scale.

1 In(R)
t

In(2)
In(2} / In(R) -

[

In the case of the Muskox, the doubling time is In(2)/In(1.148), which is
equal f55 years. e — —— :

1.2.5 Migration, Harvesting, and Translocation

We estimated above that the population in 1968 would be close to 778 indi-
viduals. In fact, the population size was recorded at 714 animals. Note that
the growth rate of the population in the period from 1965 to 1968 was
consistently below average (Figure 1.4). At least part of the reason for this
was that 48 animals were removed from the population and released in sites
elsewhere in Alaska, a process called translocation. Without these removais,
the population would have been 762, much closer to the predicted value of
778. Of course, this ignores mortality and reproduction among those animals
that were removed, had they remained.

—

g MICTE.
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One may use calculations of the growth rate of the population to éti-
mate the number that may be removed in perpetuity. The basic idea is that if
things continue in the future as they have in the past, one could remove or
harvest a number of animals from a population so that the effective growth
rate is 1. In the case of the Muskox, the natural rate of increase is 1.148, so
0.148 (or about 15%) of the RORMati?_n, on average, will be avaﬂable:_{n a

- population of 714 animals, #Hus would be about 106 animals, Werhave
already seen that the growth rate varies from year to year, which means that
the number of additional individuals in the population may not be 106 every
year. A more intelligent strategy would seek to remove all those anirmals in
excess of a base population of, say, 700 animals. Nevertheless, we could
expect to have about 100 animals available each year for translocation to
other sites. If we were managing, the population for harvest rather than

If the population were not completely closed, so that immigration or
emigration could occur, this could be incorporated into the existing model
quite easily. For instance, a fixed number may arrive on average each year,
but a fixed proportion of the existing population may disperse to other
places. Emmigration could be expressed as the addition of a fixed number (1),
because the number that arrives in a population often does not depend on
what is already in the population. Emigration could be expressed as a rate
{¢), if we assume that moge animals would emigrate fram a mgore crowded
population. The model would becc;mgx' " ' 3

NG = N s NG SN e+ T
- =N (s +f- &)+ 1

-

R, e T IR oy By ona
In this model, the emigration rate is incorporated into the growth rate term,

R._Emigrants are treated in the same way as deaths.

In some cases, it may be better to represent emigration as a fixed number
rather than a rate. For example, the management strategy for a species may
stipulate a fixed number of removals. However the model is written, it
should best reflect the dynamics of the species in question. There are no strict
rights and wrongs in building mathematical expressions to represent the
dynamics of a population. The only rule is that they should represent the real
dynamics of the population ag faithfully as possible.

1.3 Assumptions of the exponential growth model

Whenever a model is constructed, it employs a set of assumptions reducing
the complexity of the real world to manageable proportions. Assumptions
are all those things not dealt with explicitly in the model but that must nev-
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ertheless be true for the model to provide reasonably accurate predictions.
The model above makes a number of assumptions; it is obviously a vast
oversimplification. A list of assumptions of this model is:

(1) There is no variability in model parameters due to the vagaries of the
environment. The model for exponential population growth above is
clearly a deterministic model; there is no uncertainty in.its prediction. It
says that at some time, ¢, in the future, the population size will be N(),
and it can be calculated exactly by the right-hand side of the expression,

We have already seen that the rates are not likely to be constant ovet

time. We will explore the consequences of varying growth Tates in the
next chapter. .

(2) Population abundance can be described by a real number. In other words,
the model ignores that pGpulations are composed of discrete numbers of
individuals. In fact, birth and death rates (and immigration and emigra-
tion rates) may vary simply because real populations are discrete and
structured. We will explore this factor in the next chapter. However, this
kind of variation is unimportant in large populations.

{3) Populations grow or decline exponentially for an indefinite period. This
implies that population density remains low enough for there to be no
competition among members for limiting resources. These processes (re-
lated to density-dependent effects) are discussed in Chapter 3.

{4) Births and deaths aré i'r'ldegendent of the ages or of any other unique
properties of the individyals. Essentially, we assume that individuals are
identical. In real populations, the probability of surviving, the number of
surviving offspring produced, and the propensity to immigrate or emi-
grate are_pot likely to be-the same for different individuals in,a
population. They may depend to some extent on the age, sex, size,
health, social status, or genetic properties of the individuals. However, it
turns out that even if birth and death rates are, say, age-dependent, the
mean rate per individual will remain constant if the proportions of the
population in each age class remain constant over time {see Chapter 4).
Thus, it is sufficient to assume that the proportion of individuals in these
different categories (such as age) remains the same. This assumption will
be violated by, for example, genetic changes in the population, or by
changes in the sex ratio (the relative numbers of males and females), or
by changes in the age structure (the relative numbers of individuals at
different ages). In Chapters 4 and 5, we will discuss models that track
changes in the composition of a population.
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(5) The species exists as a single, panmictic population. Within the popula-
tion, the individuals are mixed. The interaction with other populations of
the same species is characterized by the rates of emigration (as a constant
proportion of the abundance per time step) and immigration (as a con-
stant number of individuals per time step). The interactions with other
species are characterized by their constant effects on the population
growthrate. In Chapter 6, we will explore models in which the dynamics

« - 0f several populations of the samne species are simultaneously described.-

* (6) The processes of birth and death in the population can be approximated

by pulses of reproduction and mortality; in other words, they happen in
discrete time steps and are independent. Of course, the time interval may
be made arbitrarily short, in which case the models would approach for-
mulations in continuous time. The continuous time analogues of these
expressions will be explored in Section 1.5.

-, T i A A
o :

4.4 Applications - ‘ i "

We have already explored some applications of the exponential growth
model in the above discussion. These applications are relevant to wildlife
management, translocations and reintroductions, and harvesting control. In

this section we describe applications to human population projections and
pest control.

1.4.1 Human Populafion Growth™ ‘
The exponential model for population growth 13asosmfple that one might

hesitate to_use it in any real circumstances. Howiéver, we have seen that it
approximates the pepulation dynamics of the Muskox population reason-

saplvwell, at leagt in the skogtgerm Jiewas invented originally-by Malthugin -

1798 to predict the size of the human population. [t still fits the growth of
human populations, both globally and within individual countries. Table 1.1
shows estimates of the human population size in the recent past

In the 45 years between 1950 and 1995, the population grew from 2.51
billion to 5.75 billion ("billion" has different meanings in different countries;

here we use 1 billion = 10 = 1,000 million). Using these figures, and the
equation

N(t)y=N©O) - R
or
N(1995) = N(1950) - R*

we can calculate the annual rate of growth. Rearranging the equation,

Py L, B . —
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Table 1.1. Estimates of the human population size.

Year  Population in billions

(i.e., x 107
1800 091
1850 1.13
1870 1.30
1890 149
1910 1.70
1930 2.02
1950 2,51
1970 3.62
1975 397
1980 441 . ,
- 1985 4B . T s
1990 * 529 ;
1995 5.75
After Holdren (1991), and Pulliarn and
Haddad (1994).
R® = N(1995) / N(1950)
R®=575/251=2729084, 4

which means that R, multiplied 45 times by itself equals 2.29084. To find the
value of R, we need to find the 45th root of 2.29084, or find

R=229084%%9 N
- - = _ -~
You can do this with a calculator or a computer (using spreadsheet software,
for example). Another easy way is to use logarithms. Taking the logarithm of
both sides, simplifying, and then exponentiating, we get

In(R) = (1/45) - 1n{2.29084)
In(R) = 0.02222 - 0.82892
In(R)=0.01842

R =exp(0.01842) = 1.01859

These figures suggest a rate of increase per year between 1930 and 1995 of
about 1.0186, or 1.86% per year. At this rate, the human population doubles
every 37.6 years. The rate between 1800 and 1950 was about 1.0068, or 0.68%
each year (which corresponds to a doubling time of 1025 years). The

A, A, AN aEa w7
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increase in the growth rate betweehn these two periods is generally attributed
to improvements in medicine and standards of living that have served to
reduce the death rate.

Predicting the size of the human population holds a great deal of interest
for organizations that deal with public health, international trade, and

development planning. The models that are used for these purposes are

° more complex than the ohes de‘;efoped so far in this book, but they use the

same kinds of parameters such as fecundities, survivorships, and migration.
They differ mainly by assuming that growth rates are not fixed but wiil
change over the coming few decades, and by assurning that the growth rate
will decline to 1.0 in most countries in the first half of the next century.

A few projections Bf the human population have been carried out
without assuming that the human rate of increase will slow down, resulting

inciearly unreasortablé preditiions. For exampler-istie growth rate of 1.0186.
- was to be sustained until the year 2100, there would be 40 billion people on

earth, and by 2200 there would be 262 billion people. There is little doubt
that the planet cannot sustain this many people, even given the most benign
assumptions about the interactions between people and the environment.
Using a different model in which the rate of population increase was itself
increasing, Von Foerster et al. in 1960 suggested that the human population
would become infinite in size on November 13, 2026 (this date is the so-
called Doomsday prediction). The United Nations takes a more conservative.
‘view, assuming appropriate slowing in the growth rate of Human

9 popita¥airs, and it predicts _q\{ng{_pgpulatio_h size of between'7.5 and 14:2
' <billter’people by the year 2100. This view rests on the assumption that the ..

.birth rate in sany ndtions will decline to equal the death rate®over the next

few decadgs (Figuge.6). The reasoning, ig that there is a certgin amount of,,

o e Bl B i3
cultural inertia that résults in large family sizes, developed originally to
compensate for child mortality, and that this propensity towards large fami-
lies will erode over one or two generations as people realize that most of
those born will survive.

The size of the human population is also of considerable interest to ecol-

ogists and wildlife managers, not least because of the relationship between

the size of the human population and the rate of the use of natural resources,
both within most countries and globally. For example, collection of firewood
and charcoal for domestic and industrial use is an important cause of forest
clearance, particularly in savanna woodlands, and increasingly in tropical
moist forests. However, the relationship is not simple. Frequently, the
unequal distribution of land and other resources plays an important part in

determining the rate at which resources are used.
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Figure 1.6, The *benign demographic transition" assumed in models
used to predict human population growth in the 21st century (after
Hardin 1993}. The differance between the death and birth rates causes
population growth, but birth rates aventually decline and the papulation
growth stops.

v s

Human'population growth raises three issues. Thef_ includé'the absolute

size of the population (P), the per capita consumption of biclogical resources
(called affluence, A), and the environmental damage of the technologies

employed in suPplying each unit of consumption (T). The impict (I) of-the
human population on the natural environment may be expressed as (see
Ehrlich and Ehrlich 1990; Hardin 1993) '

I=PxAxT

Human population size and energy use are relatively easy to measure (Table
1.2, Figure 1.7). Environmental impact per unit 6}—;:'onsum£)tion is more diffi-
cult. Energy use per person has risen over the last 150 years. Even if the
environmental impact per unit of consumption remains constant, changes in
environmental impact are measured by the product of increasing affluence
and increasing population size. - T

Of course, the equation above is a vast oversimplification of the issue of
human population growth. For instance, it ignores interactions and cumula-
tive effects that may be felt long after the impact is made. Humans make
direct or indirect use of about 30% of the terrestrial net primary production
of the planet, and the changes caused by human impacts have reduced ter-
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Figure 1.7. Energy use per person, 1850-1990 (after Holdren 1981
and Vitousek 1994).
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restrial met primagy- production by about 13%. As a species, huma_ns'
currently u¥urp dpproximately two-fifths of the productivity of terrestrial -
ecosystems.” The product of population size, per-capita consumption and

 environmental damage.per unit of consumption sets the limit to human acti-
" “¥ities. It remains to be seen e_x%gltlyyi what tRat lifhit’ is, “Per-capifd ™
consumption of energy is one indicator of environmental load, and recent
estimates for different parts of the world are provided in Table 1.2. Japan is
considered to be an industrial country that is an efficient energy user. The
United States alone has been responsible for 30% of the world’s cumulative
use of industrial energy forms since 1850.

Malthus pointed out about 200 years ago that increasing human popula-
tions would eventually create unsupportable demands on natural resources.
Even in countries with little or no populat_i_gg ﬂg:jgvﬂh; per-capita
consumption grows more or less equr_}entiall?;"'_lfhe solutions to many prob-
fems lie in hl_aihéng'ihg' resource consumption and_i.n the equitable distribution
of access to and use of resources. In the case of nonrenewable resources, net
consumption eventually will have to be reduced to zero. It is relatively easy
to become pessimistic about the way in which humans use natural resovrces,
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Table 1.2.  Population size and average energy consumption
for different demographic groups in 1990.

Per-capita energy ~ Population

consumption size
Population (gigajoules per year).  (millions)
Industrial countries 205 - - 1210
Developing countries 22 4081
india 11 855 "¢
Africa 25 550
Japan 134 150
Australia 230 18 -
‘North America : 330 250
Global average 63 '

= After Holdren {1991), and Boyden and Dovers (1992).

although there are still many people who believe in the ultimately benign
nature of human development and interactions with the environment.
Despite such optimism, it is likely that as the human population and its
standard of living increase, the effects of human activities on the earth’s
resources will accelerate in the near future, .

142 Explosions of Pest Densities

' Ecological explosions are rapid, large-scale and frequently_:sééctacﬁlaf

increases in the numbers of a species. They have had long-term and impor-
tant impatts on ecosystems and on the health and economic well-being of
human communities. The term explosion was coined in reference to plant
and animal invasions by Charles Elton in 1958, to describe the release of a
population from controls. Diseases often show explosive growth. Influenza
broke out in Europe at the end of the First World War and rolled around the
world. It is reputed to have killed 100 million people. The rabbit viral disease
myxomatosis is a nonlethal disease of Cotton-tail Rabbits in Brazil, which
has a lethal effect on European rabbits. It was introduced to Europe in the
early 1900s and eliminated a great part of the rabbit population of Western
Europe. It was also introduced as a biological control agent of feral rabbit
populations in Australia, dramatically reducing rabbit populations there
after its introduction in the early 1950s. Explosions also occur when plants
and animals are deliberately or accidentally introduced to islands and conti-
nents where they did not exist before. There were several attempts to
introduce the Starling (Sturnus vulgaris) to the United States from Europe in
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the 1800s. A few individuals from a stock of 80 birds in Central Park, New
York, began breeding in 1891. By 1910, the species had spread from New
Jersey and Connecticut. By 1954, the species spread throughout North
America as far as the West Coast of the United States and northern Canada,
and was beginning to invade Mexico.

Agricultural systems and natural communities in many countries are
threatened by the introduction of pests and diseases that, in their country of
origin, are harmless or tolerable annoyances. We live in a period of the
world’s history when the rate of movement of species among continents and
between regions is perhaps higher than it has ever been, largely as a result of
deliberate translocations by people. ,

Exotic animal populations usually are defined as pests because they
damage production systems such as crops or livestock. Similarly, a weed is
simply-ariwunwant®® plant- usually defin® by s -fmpact ofF producti®s
systems. Environmental pests-and weeds aze species that invade natural
communities, changing the composition or adversely affecting the survival
of the native biota. Pests and weeds may be the result of an introduction
from another region or country, or they may be local (endemic) species that
have become more abundant because of changes in the landscape or because
of natural cycles in the population. Most deliberate introductions between
continents or regions have been for ornamental or utility reasons. Movement

within continents may involve natural dispersal (by wind or water), apimal 2.
movements (native, domestic, and feral animals disperse, tht_a jseeds of : .

weeds), vehicles, transport of agricultural produicts and so on. R TR
Frequently, explosions in the population size of pest a imals talk --th.re
form of an exponential increase. For example, jn 1916 about 4 dozert indi-

; . viduals of the Jipanese Beetle (Popiiin japoniicd) were._ poticé i -awplant

nursery in New Jersey. In the first year, the beetle had spread across an area
of less than a hectare. By 1925, it had spread to over 5,000 km?, and by 1941 it
had spread to over 50,000 km” (Elton 1958).

The beeties probably arrived in 1911, on a consignment of ornamental
plants from Japan. In Japan, they were seldom a pest, held in check by their
own natural predators, competitors, diseases, and limited resources. In
America, their numbers became formidable. By 1919, a single person could
collect 20,000 individuals in one day. The species fed on and often defoliated
over 250 species of plants, including native North American plants, and
many commercially important species such as soy beans, clover, apples, and
peaches,

Genetic improvement of species, by selection and field trials, has long
been a focus of agricultural science. The development by plant molecular
biologists of transgenic crop plants that are resistant to predation by insects
and infection by fungal and viral pathogens is an area of active research, and

.
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one with immediate potential for economic gain. Targets for research include
the development of plants for pesticide resistance, nitrogen fixation, salt tol-
erance, and tolerance to low nutrient status. Many results of transferring
genes between species may be environmentally beneficial. For example,
development of innate pest resistance will decrease the dependence of agri-
culture on pesticides. Genetic engineering also provides advantageous
prospects for wildlife management, such as fertility control of feral animals
and the biological control of weeds. .
However, genetically engineered organisms pose risks through (1) the
effects of transgenic products (primary and secondary); (2} the éstablishment
and spread of transgenic €rop plants in nontarget areas; and (3) the transfer,
by hybridization and introgression, of transgenes from crops to wild, related
material. It is typically difficult or impossible to predict the effect of the
‘products of a transgenic species on the multitude of species and processes
with which the species will come into contact. Most predictions for the like-
iihood of transgenic plants forming feral populations assume that their
potential is the same as other exotic species and that, if successful, such
species are likely to spread in an exponential fashion, at least in the short

term. Such dynamics may be adequately modeled by the exponential growth
model.

1.4.3 Exponential Decline

It is well known that human exploitation of marine mam;nﬂl papulations has
resulted in steady declines. The harvesting pressure on“many species com-
tinued over much of this century until the animals becaine 80 scarce that it
was no longer economically viable te-catch then. Several important whale®
fisheries have followed this pattern, including Fin, Sei, and Blue Whales, all
baleen whales of the Antarctic Ocean. We will explore the dynamics of the
Blue Whale population, using available data to fit a model of exponential
decline.

For Antarctic whales, virtually complete and reasonably accurate data of
the catches are available (Figure 1.8). A decline in Blue Whale stocks was
clearly evident from catch data before the Second World War. The war
tesulted in a cessation of whale harvest, which commenced again in earnest
after 1945,

The declines in stocks had been a cause for concern among whaling
nations. The International Whaling Commission, set up in 1946, set limits to
the total Antarctic catch. The Blue Whale catch was largely replaced by Fin
Whale catches after 1945, as Blue Whales became rarer. The general quota
provided no differential protection of species, and there was provision for
revision of the quota if there were declines in stocks.

1
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Figure 1.8. Total catch of Blue Whaltes in the Antarctic, 1920-1963,
and an index of abundance of Blue Whales in the Antarctic {estimated
as the number of whales caught per caicher-ton-day), 1945-1963
(after Gulland 1971).

Blue Whale populations were already very depleted by the time quotas
were introduced in 1945. The stocks of the species continued to decline, and
a shorter open season for the species was introduced in 1953. However, the
difference between the catch and the productive potential of the whale pop-
ulation continued to widen because the quotas were more or less fixed and

}\ i
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the population did not reproduce quickly enough to replace the numbers
removed. The imposition of quotas, and the allocation of the catch among
countries, were topics of intense political and scientific argument from the
1950s through 1967. In 1960 and 1961, the International Whaling Commis-
sion fatled to set quotas at all because of disagreements among its member
nations. As late as 1955 there was no agreement on the extent, or even the
existence, of a decline in Antarctic whale stocks. Fin Whales were the main-
stay of the industry at this time, and their abundance did not begin to decline
dramatically until 1955, even though the abundances of other -whale species
were obviously falling. Throughout the period of the early 19608, Blue Whale
stocks continued to decline. The population abundange data for the Blue
Whale from the period 1945-1963 fit a straight line quite well, suggesting

that the decline in the population size was approximately exponential
(Figure 1.9). -
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Figure 1.9. The abundance index for Blue Whale in Figure 1.8 plotted
on a logarithmic scale.

In 1963, evidence was presented to the whaling industry that its guota

was three times higher than the level at which further depletion of the stock
could be avoided. The industry reduced its harvest to these levels by 1967.
One critical failure in the process of regulation of the industry was that sci-
entists failed to provide clear advice to the industry after 1955, when a
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26 Chapter 1 Population Growth

reduction in the quota was clearly necessary and would have been much less
drastic than the reduction that eventually was necessary. The Blue Whale
population was reduced from about 20 to 50 thousand individuals in the
1930s to between 9 and 14 thousand in the mid 1950s. It remained approxi-
mately constant at about 14,000 individuals between 1965 and 1975.

1.5 Additional topic

1.5.1 Population Growth in Continuous Time

Most examples in _this book involve populations of species living in tem-
perate regions, which have distinct reproductive seasons tied o the
seawonality of the environment. This property, fogether with the way most
field studies estimate demographic parameters (by periodically observing a
population), make it easy and natural to use the discrete-time formulations
of population models. However, some natural populations reproduce and
die continuously, as does the human population. The basic model for pop-
ulation growth in discrete time was

N+ =N +B - D

* This could be rewritten as

i
v TR

WS ANE N Y E NG e
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&
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The symbol AN is the difference in population size. Tf the time interval rep-
resented by AN is small, we can approximate it by the derivative dN/dt.
Rather than express births and deaths as numbers of individuals, they may
be expressed as instantaneous rates, giving

dN/dr = bN - dN
=(b-dN
= rN

The difference between the birth rate and the death rate in continuous time is

called the instantaneous growth rate (r). The equaﬁp_r_l__él_ipvqmay be sql\(a,_i
giving

N =N(O) e
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This equation says that the population size at time ¢ in the future is given by

the current population size, multiplied by e"". Tn this equation, ¢ is a con-

stant (about 2.7); sometimes ¢’ is written as exp(rt). By analogy with the
equivalent discrete time equation, you can see that

R=e¢"

because R'=(¢")'= e The equation for exponential population growth in
continuous time is equivalent to the model in discrete time, in which the time

interval is made arbitrarily small. Frequently, models for population growth
are written in continuous time because they are analytically tractable, i.c.,
one can find solutigns to the_.equa“t_ipns using calculus. Equations in discrete
time, although more plausible for many biological scenarios, are generally
less tractable. However, this is not a big disady'z_gqt_agg when numerical solu-

tions can be obtained using computer simulations. We will ignore models in
continuous time I this book because discrete-time models are more
applicable to most of our examples, and they are easier to explain and
understand. While we shall mention analytical solutions where they exist,

we will use computer simulations to solve most of the problems.

1.6 Exercises T o % _
) I, s

Elgc'ercise 1.1: Blue Whale Recovery ; o

This exercise is based on the Blue Whale example of Section 1.4.3. The pop~
ulation dynamics of the Blue Whale population and predictions of harvest
levels have been made using exponential models. The growth rate (R) of the
population during the period represented in Figure 1.9 was .82, ie, the
population declined by 18% per year. The fecundity of Blue Whale has been
estimated to be between 0.06 to 0.14 and natural mortality to be around 0.04.
In the absence of harvest, the growth rate of the population would be
between 1.02 and 1.10. We want to estimate the time it will take for the Blue
Whale population to recover its 19305 level. Assuming a pepulation size in
1963 of 10,000 and a target population size of 50,000, calculate how many
years it will take the population to recover:

{a) if its growth rate is 1.10

(b) if its growth rate is 1.02
Hint: Use the method for calculating doubling time, but with a factor dif-
ferent from 2.
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Exercise 1.2: Human Population, 18001995

In this exercise, we will investigate the data on human population growth
given in Section 1.4.1. Before you begin the exercise, look at your watch and
record the time.

Step 1. Calculate the growth rate of the human population for each
interval in Table 1.1. Note that each interval is a different number of years:
initially 50, then 20, later 5 years. It is important to convert all these into
annual growth rates, so that we can compare them. Use the method
described in Section 1.4.1 to calculate the annual growth rate from 1800 to
1850, from 1850 to 1870, so on, and finally from 1990 to 1995. Enter the results
in Table 1.3 below (in the table, the first growth rate is already calculated as
an example).

Table 1.3. Calculating the annual growth rate of the human population.
Year Population Time Population Growhrate  Annual growth rate
(bilions)  interval  in previous in Tyears {R)
{years) census (A"
t N() T N@-T)  N@/NGE-T)  [N@/NE-DI?

1800 0.91 — — — —

180 183 50 091 1.24176 1.00434
o 130 T3 - . o
1890 iR NC. . 130 . .

1810 170 T . s
190 202 " 170 - ’
1950 251 202

1970 362 251

1975 397 a6

1980 441 397

1985 484 441

1990 529 484

195 575 5.29
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Step 2. Plot the growth rate against year and comment on any pattern.

Step 3. [t is important to know the difference between relative and
absolute growth. Even though the annual growth rate (a relative measure of
growth) declines, the number of individuals added to the population each
year (an absolute measure of growth) may increase. The number added to
the population in one year is equal to N-{(R-1), where N is the population
size and R is the annual growth rate. For example, in 1850,

1.13 billion - 0.00434 = 4.9 million

people were added to the population, (Strictly speaking this is not correct,
because the two numbers refer to different times: 1.00434 is the average
growth from 1800 to 1850, whereas 1.13 billion is the population size in 1850.
However, for the purpose of this exercise, it is a reasonable approximation.)

Caleulate the number of people added to the human population each
year, for 1975, 1985, and 1995, using Table 1.4 below. Compare the change in
annual growth rate with the absolute increase in the population size per
year. :

Table 1.4. Calculating the number of individuals added to the

human population.
Year  Population size Annual Annual rumber of people
_— growth rate added to the populafioy) .
3.97 billion

- 1975 -

r s

1985 483 bilion ' ' e? e
-~ - ‘ . :

1895 575 billion

Step 4. Using the estimated number of people added to the human pop-
ulation in 1995, calculate the approximate number of people added to the
human population:

(a) per day

(b) per hour

{c) per minute

{d) during the time you completed the exercise
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Exercise 1.3: Human Population, 1995-2035

In this exercise you will investigate one rather optimistic scenario of the

slow-down and stabilization of human population. Specifically, you will cal-
culate the population size in 2035, assuming that by that time the growth rate
has reached 1.00 (no growth). For this exercise, assumne that (i) the fecundity
in 1995 is 0.0273, (ii) the survival rate will not change in the future, and {jii) in
the 40 years after 1995, the fecundity will decrease so as to make the annual
growth rate in 2035, R(2035) = 1.0.

Step 1. Using the annual growth rate for 1995 you calculated above, esti-
mate the annual decrease in fecundity necessary to make R(2035) = 1.0.
Assume a linear decrease, i.e., an equal amount of decrease in fecundity for
each year.

=~ gtep 2. Calculate the fecundity and the annual growth rate for years
" 2005, 2015, 2025, and 2033, and enter them in Table 1.5 below.

Step 3. Calculate the 10-year growth rates for the periods 1995-2005,
2005-2015, 2015-2025, and 2025-2035, by multiplying each annual growth
rate by itself 10 times. For example the 10-year growth rate for 1995--2005 is
R(1995)". Enter these in the table below (enter the 10-year growth rate for
period 1995-2005 in the line for 1995.)

Table15. Projecting human population growth.

Yea Fecundify  Anqual  10vear - _Populationgtthe  Populaionatthe
’ (fy . growth fate growth rate *ﬁe ﬁmm Bffﬁ'e’ end of the 10-year

LAY (A Cetbyealintenal < interval
;.7?35_',_ 0.0273 —r  875bilon - = - :
s S '

2015

2025

2035 1.0000 1.0000

Step 4. Estimate the population size at the end of each 10-year period by
multiplying the 10-year growth rate you calculated in the previous step with
the population size at the beginning of the time period.

How much did the population increase while the fecundity was
decreasing for 40 years? If the fecundity decreased to the same level in 80
years instead of 40, would the final population size be larger or smaller?

Further reading 31

1.7 Further reading

Ehrlich, P. R. and A. H. Ehrlich. 1990. The population explosion. Simon and
Schuster, New York.

Elton, C. S. 1958, The ecology of invasions by animals and plants. Methuen,
London.

Hardin, G. 1993. Living within limits: ecology, economics and population taboos.
Oxford University Press, New York.

Holdren, |.P. 1991. Population and the energy problem. Population and Envi-*

ronment 12:231-255.
Vitousek, P. M., P. R. Ehrlich, A, H. Ehrlich and P. M. Matson. 1986 Human
appropriation of the products of photosynthesis. BioScience 36:368-373.
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2.1 Introduction

We view population ecology as an applied science that helps find solutions
to practical problems in wildlife and game management, natural resource
management and conservation, and other areas. All of the cases explored in
| Chapter 1 dealt with real world problems. Yet they ignored a fundamental
component of the ecology of populations, namely variability in populations
and in the environment in which they live. Such variation is pervasive. The
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growth rate of the Muskox population on Nunivak Island varied substan-

tially around the average of 1.148 that was used to predict future population
sizes. The rate of decline in the Blue Whale population averaged (.82
between 1947 and 1963, but in no year was it exactly 0.82. In this chapter, we
introduce the concepts and the framework that are necessary to deal with
natural variation in population ecology.

Ecologists think in terms of what is known as the central tendency of
their data. The first questions to come to mind in any population study usu-
ally are of the kind: "What is the average growth rate?" A somewhat more
thoughtful ecologist might also ask "What is the year-to-year variation in the
growth rate?" or even "What are the confidence limits on the predicted pop-
ulation size?" These are all important concepts. It is equally important to
consider the distribution of outliers. In practical situations, for example, it is
often important to know the worst case we might expect, and how likely it is.

.. The chances of extreme events are particularly relevant to people interested

in keeping population sizes within predetermined lirnits. To look at data or
ta make predictions in this way first requires a special vocabulary.

2.1.1 Vocabulary for Population Dynamics and Variability

Stochasticity is unpredictable variation. If the long-term growth rate is less
than 1.0, the population will become extinct, no matter how stable the envi-

* ronment” Thése: popiilations ‘are said to be the wvictims of "systematic

pressure’; their decline results from deterministic causes. Po ulations that
would persist indefinitely in a’'constshit eneiimet nevefm'eles_s'-fa@é’ some
risk of extinctjon through variationin fecundity and survival rates. These
populations, when they decline, are the victims of sfochasticity.

in Chapter 1, we began constructing models to represent the dynamics
and ecology of populations. Population models that assume all parameters
to be constant are called deterministic models; those that include variation in
parameters are called stochastic models. Stochastic models allow us to eval-
uate the models in terms of probabilities, accounting for the inherent
unpredictability of biological systems. The probabilities generated by
stochastic models allow us to pose different kinds of questions. We might
want to know the worst possible outcome for the population: If things go as
badly as possible, what will the population size be? We might like to know

which parameter is most important. When the problems that we face are
subject to uncertainty (and they almost always are), then the questions we
ask should be phrased in a specific way. For example, if our focus is the size
of the population, then we should ask:

What is the probability of {decline / increase}
to [population size, N] fat least once before / at) [time, t]?
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The components inside braces {...} are choices and the components inside
square brackets [...] are quantities. Circumstances will ordain whether we are
most interested in (or concerned about) population increase or population
decline, or both. We _must specify the critical population size or threshold

(Ne) that represents an acceptable (or unacceptable) ouicome, or a range of

such values. We must specify a time horizon (¢), a period over ihich we

wish to make predictions.
at the end of the period. :

The words risk and chance may be used in place of the word probability,
but they emphasize slightly different aspects of a problem. Risk is the poten-
tial, or probability, of an adverse event. When applied to natural populafions
of plants and animals, risk assessment usually is concerned with the
caleulation of the chance that threateried populations will fall Below some
specified size, or that pests will exceed some upper population size. Declines
in population size may be seen as desirable when dealing with a pest, in
which case we talk of reduction. They may be undesirable when dealing
with rare species, in which case we may refer to the risk of decline or risk of
extinction. Similarly, increases may be either desirable {recovery of rare or
threatened species) or undesirable {explosion of pest species). If we wish to
estimate the chance of decline or increase of a population to some specified

size (a threshold) at least once in the specified period, we talk of the "in-

terval” probability. If our interest js in the chance of being above or below a

. threshold at the end .of Ahe-.time horizon - we talk of the “terminal" -

probability. ] _ .

The critical population size, o threshiold, specifiéd in the definifion of
risk often reflects an abtindance that is considered to be too low (for rare or
threatened species) or too high (for pest species). It may be determined on an
economic basis for harvested species, for example, when a fishery manager
wants to maintain a certain population of Brook Trout in a stream.

Over a given time period, there is a chance that any population will
become extinct. This chance we term the background risk. If the conge-

quences of different types of human impact are measured T terms of

probabilities, it is possible to compare them against the background risks

that 2 population faces in the absence of any impact. Added risk is the

increase in risk of decline that results from some impact on a natural pop-

ulation. Similarly, if the consequences of different types of conservation

measures are measured in_terms of probabilities, we can compare them

against the background risks in the absence of conservation efforts. The dif-
ference {which we hope is a decrease in the risk of decline} is a measure of

the effectiveness of the conservation effort, ' '

_ Lastly, we must say whether it is sufficient that
these conditions are met at least once during the period or that they are met

&
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The probability of extinction or explosion of a population in a given time
period is one way we can describe the charces faced by natural populations.
Another way is to use the expected time to extinction or explosion. These
statistics are the average time it takes for a population to fall below or to
exceed specified population thresholds. We will discuss this further under
the heading Additional topics (Section 2.5.1).

2.1.2 Variation and Uncertainty

We saw in Chapter 1 that the change in size of a population is governed by
births, deaths, immigrants, and emigrants. Births and deaths may be gov-
erned by environmental parameters. Variation in the envirenment leads _.tg
variation in survival and fecundity rates, and results in varation in

population size that is independent of the average growth rate of the pop-
ulation. "Good" years are those in which the population produces more’

offspring and experiences fewer deaths. Species respond to envifonmental
variation in different ways. The time scales of impact and response are
related to the ecology of populations. Some species will resist environmental
change and others will respond to it, depending on its severity and duration.
The picture is further complicated by the fact that estimates of popula-
tion size will vary f; from one time to the next, even in. the absence of any real
c'}Ta;:q,e because of measurement errors. Further, some_populations will
fluctuate in a regular fashion, following diurnal, seasonal, or longer term
weather patterns, or becapse of their interactions with predators or competi-
tors. Natural variation in the environment and measurement error will
overlay any other natural or human caused pattefns; ‘trénds; or g&c',ltes in-
_ “pepulation sjze. The consequences of thi: V.anahoﬁ are that We cannot be
. certain what the popt
" . other factors'that may cause’ populanon sizes to vary unpredittably, and
there are other reasons why our predictions may be uncertain. However, 1f
we can characterize this uncertainty, we may be able to provide an m@n_g:g—_
tion of the reliability of any estimate that we make. We will explore these
concepts below and introduce ways of dealing with them in circumstances
where predictions are necessary for resource and wildlife management and
species conservation.

2.1.3 Kinds of Uncertainty

Uncertainty may be considered to be the absence of information, which may
or may not be obtainable. Uncertainty encompasses a multiplicity of con-
cepts including:

incomplete information (what will the population size be in 50 years?)

on size will be in the future. In addiHen, there are

L
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disagreement between information sources (what was the population size
last year?)

linguistic imprecision (what is meant by the statement "the population is
threatened"?)

natural variation (what will be the depth of snowfall this winter?)

relationships between variables (does resistance to cold in winter depend
on the amount of food available in the preceding summer?)

the structure of a model (should emigration be represented as a number
or arate?)

Models are simplifications of reality. Uncertainty may be about the
degree of simplification that is necessary to make the model workable and
understandable. Tt may be about the decision we should tike, even if all
other components of the problem are known or understood. Different types
and sources of uncertainty need to be treated in different ways. Probability
may be a useful means of describing some kinds of uncertainty. Others are
more appropnately handled with decision theory, or even with ith polttical
Erocess There are numerous claseLﬁcatxons of the kinds of uncertainty and

variability. Decomposing uncertainty into its s different forms allows us to use

available information together with appropnate tools to make predictions.
These > predictions may then be qualified by a degree of uncertamty

-t

2.2 Natural variation -

2.2.1 Individual Variation . N

population, It is the term used to describe the variation within a population
due to genetic and developmental differences among individuals that results
in differences in phenotype. Individual variation also includes genetic vari-
ability. Each individual has a different genetic makeup that results from the
combinations of genes in its parents, and the random selection of those genes
during meiosis. The rate of change in the genetic makeup of a population is
inversely proportional to the number of adults that contribute to reproduc-
tion. In small populations, the genetic composmon of the population may
change significantly because of these random changes, a process known as
genetic drift.

Inbreeding is mating between close relatives. In small populations,
mating between relatives becomes more frequent. If the parents are related
to orie another rare recessive genes are more likely to be expressed and

‘. . F .

% (,
Individual variation is the variatton between individuals within the same -
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population as a whole. The loss of variation may also reduce thg ability of
the population to adapt to novel or extreme env1_ronmental 'con.chhons. ]

Other differences among individuals contribute to this kind of uncer
tainty. For example, in species with separate SEXEs, unever sex raucf»s l‘rtnhay
arise by chance and have an enhancing or a dem{nental effect on uoCl eL;
population increase. While these processes are relatively we?l underlst? .
is not possible to say if, and to what extent, the§e effects will be felt in any
given instance. The process is inherently unpredictable.

fecundity of individuals, and reduce the average values of these rates in the

2.2.2 Demographic Stochasticity

Demographic stochasticity is the variation in the average changes of survi-

vorship and reproduction that occurs because a population is made up of a_

finite, integer number of individuals, each with di'fferent chafa;t_egnsitlcs;l.
Consider the following example. The Muskox population on Nunivak Is an8
began in 1936 with 31 individuals and had an average grov.vth .rate of 1.148.
On the basis of this average, we might expect the population in 1937 to be
35.6, but there is no such thing as 0.6 of 2 Muskox. The growth rate we spe-
cified is an average based on observations. What this result says is that,4to 5
more births than deaths are expected in the Muskox population between the
1936 census and the 1937 census. Exactly how many, we car.mot be .surle.

*  The peopte who conducted the ‘censuses of‘_t%le.Muskox poPulatmn on
Nunivak Island recerded the number of calves ptoduced each year. Over the

- years the average number of calves per indéwiduatty) was.227. Given that

R=f+s
the average survival rate was
s=1.148 - 0227 =0921

The parameters in the models we developed in Chapter. 1do not‘vary, 50
they are termed deterministic models. They provide a single estimate of
population size at some time in the future. We could add an element of

realism to these models by following the fate of “each individual. For

example, rather than multiplying the whole population by a survival veglug
of 0.921 to calculate the number of survivors, we coqld“ (i_eprngiit_eag_ljl _t'{ne
step, whether each individual survives or dies. We do this ifl sucha way
that, in the long term, 92.1% of the individuals survive. One way t-o do FhlS is
to choose a uniform random number between 0 and 1 for each individual.
("Uniform” means that each number in that range has an equal chance of
being sampled; see the exercises section for ways of choosing random num-
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bers.) If the random number is greater than the survival rate of 0.921, then
the individual dies. Otherwise, the individual lives. We ask the question for
each individual in the population, using a different random number for each,
Thus, if there are 31 individuals in the population, there is no guarantee that
29 will survive, although it is the most likely outcome (31 x 0.921 =28.6).
There is some smaller chance that 28 or 30 will survive and some still smaller
chance that 27 or 31 will survive. This kind of uncertainty represents the
chance events in the births and deaths of a real population, and is what we
mean when we talk of demographic uncertainty.

We could add a further element of reality by treating the births in the
population in an analogous fashion. 1.ike deaths; births come in integers (no
Muskox will produce ¢.227 offspring: rather, most will produce none, some
1). We can represent this in our model by following the fate of individuals in
the same way as we did for survival. That is, choose a randem number for
each individual. ¥f the value is less than 0.227, the animal has an offspring.
Otherwise, it does not.

A time step of a year seems appropriate because reproduction in this
species is seasonal and the environment s highly seasonal. We treat the
Population as composed of an integer number of individuals and we sample
the survival and reproduction of members of the population, using the
observed population size and the population average fecundity and surviva]
rates. The result is that our predictions will no longer be exact. As in a real
population, our model reflects how a run of bad luck could lead to the
extinction of any populati'cgi,}iomatter how large the population size offiow
large the potential growth rate. ' =

Each time we tally the population and we ask "Does this animal die?"
and "Does this animal produce offspring?”, the answer may be different. To
gain some idea of the expected outcome, and the reliability of that cutcome,
we need to run a series of trials. We need to repeat the experiment a number
of times and calculate the average and the variability of the outcome. Vari-
ability of a set of numbers is often expressed as their variance or standard
deviation (variance is equal to the standard deviation squared). Histograms

showing the frequencies of different possible population sizes one year after
the introduction of Muskox to Nunivak Island are shown in Figure 2.1. The
larger the number of trials, the more reliable will be our knowledge of the
average and the variance. This approach is most effectively implemented on
a compriter.

Formulating demographic stochasticity in this way makes a number of
assumptions about the ecology of the population. It assumes that a fernale
can have no more than one offspring per year. More efficient and more gen-
eral methods are available that involve sampling the binomial and Poisson
distributions, but learning how to use them is beyond the scope of this book

-
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Figure 2.1.  Histogram of population sizes for a Muskox population
model with demographic stochasticity.
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(the computer program that comes with this book implements these more
advanced methods). Our approach here assumes further that births and
deaths are independent events. We choose different random numbers to
represent the survival and reproductive success of each individual, If an
animal dies in 1937, it may also have offspring before it dies that year. We
could, if we wanted, preclude reproduction if an animal dies, or make it less
likely for an animal to survive if it reproduces.

It is clear that demographic stochasticity can have an important effect on
estimates of population size. From a starting population of 31, the popula-
tion quite reasonably could increase to 46 animals, or decrease-to 27 animals
after one year, just because of the random chances associated with giving
birth and surviving from one year to the next. This kind of variability is
present in every population. The deterministic expectation of 35.6 is just one
of many possible outcomes. The mean predicted by the model including
demographic stochasticity (Figure 2.1) is similar to the number predicted by
the deterministic model (35.6). By carrying out a great many trials, we can be
reasonably certain that we know the mean and the variation in expected
population sizes. The uncertainty arises because real populations are struc-
tured, composed of discrete individuals, and because the individual
occurrences of births and deaths are unpredictable.

By developing forecasts in this way, we can ask different kinds of ques-
tions. For example, we could ask "How likely is it that there would be less
than 31 animals in 19372" or "What is the chance that the population will
increase by 30% of more, rather than the average 14.8%?" To answer these
questions let’s count the number of trials that met the stated cfiteria and
divide by the total number of trials. For example, to answer the first ques-
tion, we tally the number of trials that reached 30 animals, 29 ahimals, etc.,
down to the smallest recorded number (which was 24). The result is given in
the second column of Table 2.1. The third column shows the cumulative fre-
quencies, i.e, the number of trials predicting a given number or fewer

individuals. Each row of this column is calculated by adding up the numbers
in the second column up to and including the current row. Adding up the
first 7 numbers gives 548, which is the number of trials in which the pre-
dicted number of animals was 30 or less. The last column gives the same
(cumulative number), divided by the total number of trials {10,000 in this
example). Note that this table contains only part of the data represented by
the last histogram in Figure 2.1; the dots ("."} at the end of table are to

remind you that the maximum population size was 49, and the table could
have ancther 18 rows,

-
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Table 2.1. Number of trials (out of the total of 10,000 trials) that predicted 24
to 31 animals in 1937.

Population  Number of trials that ~ Cumulative number of trials  Probabiity of

level( N,) reachedalevel <N,  (thatreached alevel < N,) declineto N,
24 3 3 0.0003
25 2 5 0.0005
26 11 16 0.0016
27 29 45 0.0045
28 67 112 0.0112
29 142 254 0.0254
30 294 548 0.0548
31 449 997 0.0997

According to the table, 548 trials out of 10,000 predicted a population size
of 30 or less, so the chance is 548/10000 or 0.0548. Thus, even though the
deterministic model tells us the population will increase, and the stochastic
model tells us the population will probably increase, there is a better than 5%
chance that the population will actually decline from 1936 to 1937.

Wg.can answer the second question pased above in a.similar way. The
question was "What is the chance that the population will increase by 30% or
more?” An increase of 30% is'equal to a popglqt:i_gp-sjze &£40.3. The number
f trials that predicted a population size greater than 40 was 669. The chance
of exceeding 40 is therefore (.0669, or about 6.7%, Note that You cannot find
this answer in the table above. The above table shows the probability of
reaching a level less than or equal to N,, whereas this question was expressed
in terms of reaching a level greater than or equal fo N..

The task of wildlife managers is to implement plans to manage both the
expected population size and the probabilities of extreme outcomes. Wildlife
management questions that may be answered by population forecasts come
basicaily in two forms. The first is: “What is the chance that the population
will exceed some threshold?" (for control problems) and the second is "What
is the chance that the population will fall below some threshold?" {for con-
servation problems). The management of natural populations may require
ensuring that the populations remain within prespecified levels, so that both
the upper and the lower bounds are important. For example, large herbi-
vores in parks or reserves frequently must be maintained within upper and
lower limits so that they persist indefinitely within the confines of the
reserves without becoming so numerous that they displace other herbivores.
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Alternatively, it may be important to manage various ecalogical processes
and human impacts to maintain a population, to keep it from becoming
extinct,

To addtress these questions, we may redraw the histograms in Figure 2.1
as cumulative frequencies. As we demonstrated above, if the cumulative fre-
quencies are divided by the number of trials, they may be interpreted as
probabilities. Thus, the curve in Figure 2.2 represents the chances that the
population which began as 31 individuals in 1936, will be equal to or less
than various threshold population sizes in 1937. The x-axis of this curve is
the threshold population size (first column of Table 2.1}, and the y-axis is the
probability that the population size will be less than or equal to the threshold
(last column of Table 2.1).
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Figure 2.2,  Cumulative frequencies from Figure 2.1, divided by
10,000 (the number of trials), and plotted against population size.

To interpret the figure above, let’s use the two sets of arrows on the
figure to answer a couple of questions: What is the chance that the popula-
tion will be equal to or less than 31 individuals in 1937 {in other words, what
is the chance of no increase)? Looking at the figure, we see that the curve
predicts a probability of about 0.1, or 10% for a threshold population size of
31 (see also the last colurnn of Table 2.1, which shows a probability of 0.0997,
or about 10%, of declining to 31 or below). What is the chance that the pop-
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ulation will be less than or equal to 40 individuals in 19377 The answer is
about 0.93. The curve represented in Figure 2.2 is called a risk curve. More
specifically, it is a quasi-extinction risk curve. It provides answers to ques-
tions phrased as follows: "What is the chance that a population with current
size N will fall below some critical threshold population size, N,, within the
next period, £ 7" Thus, it is useful for questions concerning the lower bound
of population size.

Demographic stochasticity, as well as phenotypic variation of all kinds,
has most important consequences in small populations. This s because the
effects are inversely related to population size. We can see the qualitative
effect of population size by considering the survival probability for the
Muskox, 0.921. Assume some catastrophe affects the population and only
two animals remain. What is the chance that both will die before the fol-
lowing year? The chance due to demographic uncertainty is (1 - 0.921)" =
0.0062. When there are 31 animals, the chance is (1 ~ 0.921)*, which is a very
small number. In general, the chance of loss of the entire population (p) in a
single time step is

p=(1-s)

where N is the population size. As N increases, p decreases. Nevertheless,
even for medium-sized populations, there remains some chance of impor-
tant deviation from the deterministic model and some small chance of loss of
the population through nothing more than bad luck~ - -

Questions such as those posed abgve are particularly relevagt to w1ldhfe

managers and environmental, scientists who have tq,m@age papplationg

within limits. They are phyased and answered quite naturally in terms of the
probabilities of different outcomes. Common sense tells us that we can never
predict exactly the size of the population next year. Models that include ele-
ments of randomness may be designed to cope with the uncertainty that is
part of all environmental prediction and decision making. Such models will
allow us to target both the expected size and the risk of decline or expansion
of a population. We will see below that, to some extent, these properties are
independent. The management strategies to maximize the expected popula-
tion size may be different than those that are required to minimize the risk of
decline.

It is important to remember that, even though the models we developed
in this section allowed variability in the number of survivors or the number
of offspring, they did not allow the survival rates and fecundities to vary. We
demonstrated that even when these rates remain the same, demographic sto-
chasticity introduces randomness and unpredictability in the estimated
population size. In the next section, we will add more realism to our models
by allowing their parameters (survival rates and fecundities) to vary.
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2.2.3 Environmental Variation

2.2.3.1 Temporal variation

Environmental variation is unpredictable change in the environment in time
and space. It is most often thought of as temporal variation at a single loca-
tion. An obvious example is rainfall. Even in circumstances in which we
know precisely the average annual rainfall of a location based on records
going back centuries, it is difficult to say if next year will be relatively wet or
dry, and even if next week will be rainy or not.

In circumstances in which the vital rates of a populatlon depend on
environmental variables, the rates will likewise be unpredictable. The con-
cept of a niche implies that a set of biotic and abiotic variables limits the
distribution of a species. It is usually assumed that a set of environmental
parameters will affect the rate of growth of a population within the niche
that a species occupies. Environmental variation that results in variations in
population size is seen as a mechanism that is extrinsic to the population.
Environmental variation is not the sole determinant of fluctuations in pop-
ulation size. We will explore intringic causes of population change in
subsequent chapters.

Envirenmental variation results in fluctuations in population size when
environmental variables affect the number of survivors and the number of
offspring in a population. There are many examples of relationships between
environmental variables, and the survival and fecundity of individuals
within populations. For example, population numbers of the California

- Quail are influenced by climate. High winter-and spring rainfatiis asseciated

with high repgaduction in semi-arid regions (Figure 2.3)..The mechanisms
for this dependence may be based on the quality and quantity of plant
growth or the availability of free drinking water. If water is scarce in the
region inhabited by the California Quail, fewer juveniles survive than if
water is plentiful.

The causes of interactions between population dynamics and environ-
mental variables such as rainfall may be less direct than in the example
above. The fecundity of Florida Scrub Jays, expressed as nest success, is
likewise dependent on rainfall (Figure 2.4). However, the researchers specu-
late that the direct cause of variation in nest success is variation in nest
predation rates. Rainfall could influence nest predation by affecting the
density or activity of predators, the availability of alternative food items, the
nest vigilance of the Jays, or the protective vegetation cover surrounding
nests.
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Figure 2.3. The relationship between rainfall (December to April pre-
cipitation) and fecundity in the California Quail {Calfipepla californica)
for a population in the*Panoche Management Area, California {after
Botsford et al. 1988). The correlation coefficient for these (log trans-
formed) data was 0.68. Fecundity was expressed as the number of
juvenile birds per adult.” - '

There are many causes of death in the Muskox population on Nunivak
Island, some of which are directly related to environmental variables. Over
the 20-year period that observations were made, animals fell from cliffs,
became lost on sea ice, were mired in a bog, drowned, were otherwise
injured, were shot by humans, or died during winter snow falls. There were
almost certainly deaths due to starvation in years of heavy snowfall, during
which it was harder te find food. A relatively comumnon event in this popula-
tion was for small groups of animals to wander onto pack ice around the
island during winter. The ice floes broke up or melted, blocking the animals’
return to land. These animals either starved or were drowned at sea. It
would be impossible to predict the number of animals that might suffer such
a fate in any year, because it depends on the propensity of groups to wander
over the ice, and the chance environmental events that lead to the break up
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Figure 2.4. Nest success in Florida Scrub Jays (Aphelocoma c. coer-
ulescans) as a function of total rainfall in the preceding 10 months
{June to March) (after Woolfenden and Fitzpatrick 1984). Nest success
is the proportion of nests that survive to fiedgling. The correlation
between rainfall and nest success is 0.78. -

of the pack ice. Weather conditions are thought to be the single most impor-
tant factor determining year to year variation in population growth of
Muskox on other islands (see Gunn et al. 1991).

If we wanted to predict the population size next year, and in making this
prediction take into account the variation due to some environmental factor,
we would need to know three things: (1) which environmental factor is
important, (2) how it affects the population dynamics, and (3) what the value
of that environmenta! factor will be in the future. In other words, even if the
dynamics of a population are directly related to an environmental variable
(and we knew exactly what this relationship is), we still cannot make precise
predictions because it is impossible to say what the value of the environ-
mental variable will be next year.

We noted in Chapter 1 that the growth rate of the Muskox population
was not fixed through the period of observation. It varied from a maxirum
0f 1.27 to a minimum of 0.94. Having taken note of the fact, we estimated the
mean growth rate and then made some predictions for population sizes that
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ignored the fact that growth rates are variable. The results of our predictions
were made without any estimate of how reliable they were. For example, we
predicted that the population size in 1968 should have been 778 animals. It
turned out to be 714 {or 762 if you include removed animals). Was the pre-
diction within the bounds of probability, given the variable nature of the
population’s growth rate?

We may rewrite the equation for exponential population growth as fol-
lows:

N(+1) =N - R(5)

where R(t) is the growth rate for time step #. Writing R(#) instead of R
indicates that the growth rate varies from one time step to the next. When we
use this equation, we sample the growth rate from some distribution for each
time step, rather than use a fixed value. We may, for example, use observed
distribution of growth rates for the population (Figure 2.5). This distribution
shows that between 1947 and 1964, there was one year when the growth rate
was between 0.90 and 0.95 (indicated at the mid-value of this range, 0.925),
one year when it was between 1.00 and 1.05, etc.

Frequenéy

0.925 0.975 1.025 1.075 1.125 1.175 1.225 1.275
Growth rate

Figure 2.5, Frequency distribution of growth rates abserved in the
Muskox poputation on Nunivak Island between 1947 and 1964 (see
Figure 1.4 in Chapter 1).
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By sampling randomly from this distribution, we assume that the prop-
erties of the random variation that we have observed in the past will persist
in the future. By properties, we mean characteristics such as the mean,
variation, and shape of the distribution. Why do we sample randomly,
instead of using the correct sequence of growth rates between 1947 and 1964?
We cannot use the exact sequence of growth rates because there is no guar-
antee that the environmental factors between 1947 and 1964 will repeat
themselves in exactly the same order in the future. It would be a very strong
assumption (meaning very likely to be wrong) to assume that they would.
Instead we make a generalization based on this observed distriution: We
assume that the distribution of growth rates in the future (their mean, varia-
tion, etc.) will remain the same as the observed distribution, even if the
growth rates do not repeat themselves in the same order as in the period
from 1947 to 1964.

Of course, even if we sampled randomly, the set of growth rates we
chose will probably be different from what actually will happen in the
future. To account for the inherent uncettainty of the future growth rates, we
do this many times. We randomly select a set of growth rates for, say, 20
years, and estimate the population’s future with these 20 growth rates. This
gives one possible future for the population. Then we select another 20
random numbers, and repeat the process. By undertaking repeated trials we
may predict the population size into the future, accounting for the effects of
the environment on the population. In order to get a representative sample
of possible futures of the population, we have to repeat this hundreds of
times. This procedure is most easily implemented on a computer (actually, it
is next to impossible to do without a computer).

The procedure may be further generalized by ;amphng the growth rates,_

from a statistical distribution that has the same properties as the variations
that have been observed in the past. For example, we may sample the distri-
bution known as the normal distribution, with the same mean and standard
deviation as the observed distribution. This approach has the advantage of
recognizing that values of R more extreme than those observed in the past
are possible in the future. For instance, if we observed the population for 100
years instead of 17, perhaps there wouid be a year with a growth rate of 0.8
orl4.

Before we proceed, we need to define some terms we will use frequently
in describing stochastic models. A time series of population abundances is
called a population trajectory. When we estimated the population’s future
with 20 randomly selected growth rates, we produced a populaticn trajec-
tory. Each trial or iteration that produces a population trajectory is called a
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replication. Finally, running the model with many replications is called a
stochastic simulation. A deterministic simulation produces a single popula-
tion trajectory without any variation in model parameters.

The Muskox population in 1936 was begun with 31 animals. Applying
our current knowledge of the population, we can make predictions for the
population over the period before regular sampling, between 1936 and 1948.
The results of 1,000 trials for the Muskox population are shown in Figure 2.6.
This figure shows, for each year, the average expected size (dashed curve),
plus and minus one standard deviation (vertical lines), and the maximum
and minimum values recorded for that year (triangles). These statistics
(mean, standard deviation, minimum and maximum) are calculated over the
1000 replications (trials) of simulated population growth. The five observed
values for the Muskox population size made between 1936 and 1948 are also
shown (black circles). The model includes both demographic and temporal
environmental variation. The growth rate, R , is 1.148, the survival rate, s , is
0.921, and the standard deviation in the growth rate is 0.075 (based on the
observed variation in Figure 2.5).
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Figure 2.6. The size of the Nunivak Island Muskox population, based
on 1,000 replications.
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The population grew much as could have been expected between 1936
and 1942. However, between 1942 and 1947, the true population was mark-
edly reduced, compared to growth in periods before and after that interval.
In 1947, the population numbered just 49 animals. The observers suggested
that the losses were due to groups of animals wandering onto sea ice during
winter and being lost, other accidental deaths, and shooting. The observed
population size in 1947 was within the limits of what could have been
expected, once the random variations due to demographic and environ-
mental uncertainty were included in the prediction. s

The variation in the predicted abundance increases as time goes on
(Figure 2.6). Our predictions become less and less certain, the further into the
future we make predictions. This characteristic is a general result common to
all predictions that include uncertainty. It makes good intuitive sense. One
can be more certain of predictions that are made in the short term. Long-term
judgements are subject to many more uncertain events, and the bounds on
our expectations must increase, the further into the future that we make
projections.

Itis possible to construct a quasi-extinction risk curve based on the pro-
jections that are summarized in Figure 2.6. One simply records the smallest
size to which the population falls during each trial. There will be 1,000 such
records from 1,000 trials. These numbers are then used to create a cumulative
frequency histogram. The frequencies, rescaled between 0 and 1, and plotted
against population size, become the risk curve (Figure 2.7a).

If one collects the smallest value recorded at any time during each trial,
the risk curve has a specific meaning. It tells us the chance that the popula-
tion will fall below the specified threshold at least once during the period
over which predictions are made.

Of equal interest is the creation of explosion risk curves. [t is possible to
construct a curve representing the chances that the population will be
greater than or equal to a specified threshold population size. The procedure
is much the same. One records the largest size to which the population rises
during each trial. These numbers are used to create a cumulative frequency
histogram. The frequencies, rescaled between 0 and 1, and plotted against
population size become the explosion risk curve (Figure 2.7b}. Extinction risk
curves are useful for questions related to the likely lower bound of a pop-
ulation. Explosion risk curves are useful for questions related to the likely
upper bound of a population,

bt
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Figure 2.7. Risk curves for the Nunivak Island Muskox popuiation for
the 12-year period between 1936 and 1948: (a) quasi-extinction risk

curve and (b) quasi-explosion risk curve, for the population based on
an initial size of 31 individuals.
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2.2.3.2 Spatial variation

The environment varies in space as well as in time. Changes in environ-
mental conditions are related to distance, Two butterflies living in an oak
forest in New York are more likely to experience the same kind of weather
from day to day than are butterflies that live on opposite sides of the conti-
nent. Anyone who has dived in the ocean will have noticed a smooth
transition from light to darkness with increasing depth. If survival or
fecundity depend on environmental conditions, then they too will vary in
space in response to the variation in environmental conditions.

One way of looking at spatial variation in the environment is to think of
it as your ability to predict the conditions in some other place, knowing the
conditions where you are. It is not possible to predict exactly the rainfall at
one location, knowing the current rainfali at another location. The degree of
reliability in the prediction from one place to another will depend, at least in
part, on how far the two points are apart. The association between the
recorded values of an environmental variable at different places is termed
spatial correlation.

Spatial variation may also be thought of as the variation in environ-
mental conditions between spatially separate patches of habitat, the different
conditions experienced by each of several populations. Many species consist
of an assemblage of populations that occur in more or less discrete patches of
habitat. We can ignore the differences in the environment experienced by
these populations only if these patches are identical in composition and close
enough that they experience the same environmental conditions. In most
real populations, at least one of these conditions will be violated. All of the
populations will experience some environmental changes in common (such
as the average summer temperature) and some will experience local envi-
ronmental changes uniquely in a given patch (such as the local water hole
drying out). The pattern of change in local population size in response to
unique environmental conditions can have profound effects on our expecta-
tions of future population sizes. The interactions between these processes
and the role of migration of individuals between patches will be explored
more fully in Chapter 6.

2.2.3.3 Catastrophes

Catastrophes are extremes of environmental variation, including natural
events such as floods, fires, and droughts. Any environmental change that
has a relatively large effect on the survival or fecundity of individuals in a
population compared to the normal year to year fluctuations may be consid-
ered a catastrophe. Thus, it is somewhat arbitrary to single out and label
such environmental conditions as extreme. The category is useful only
insofar as some ecological processes are driven by relatively infrequent, cat-
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astrophic events. In many ecosystems, disturbances such as fire, windstorms,
or snowstorms are an important or even the dominant ecological process
determining the structure and composition of populations and communities.
Often, we may know quite a lot about the characteristics of these events such
as their average frequency and the distribution of intensity of the events.
With field data it is possible to specify the effects of catastrophes on the
parameters of a population. If so, then there will be better understanding of
the relationship between the population and the environment incorporated
in the expressions that we write. .

Explicit modeling of unique catastrophic events may even be essential
for circumstances in which species are specially adapted to the effects of the
catastrophe. For example, seeds of many plant species in the genus Acacia
require a fire to germinate. In the absence of fire, adults produce seeds that
mostly fall to the forest floor and remain dormant. Fires stimulate the germi-
nation of dormant seeds and kill adults, which have life spans of 10 to 100
years in the absence of fires. Thus, recruitment of new individuals into the
population occurs in pulses following the fires that stimulate germinati(?n
and eliminate adults. Fecundity is a binary condition: either there is none (in
years without fire} or most seeds in the soil-stored seed bank germinate {in
years with fire}. Such dynamics could only be modeled by writing expres-
sions that include the chance of a fire.

2.3 Parameter and model uncertainfy

2.3.1 Parameter Uncertainty

In all of the above discussion, we have assumed that the quantities obtained
from field observation including mean survival, fecundity, growth rate, and
the variation in these parameters, are known exactly. Effectively, we have
assumed that the observed variation in population parameters comes from
sources including demographic and environmental variation. Anyone who
has attempted to measure the simplest parameter more than once under field
conditions knows that this is a false assumption. All measurements involve
error.

Parameter uncertainty is the variation in our estimate of a parameter that
is due to the precision and accuracy of the measurement protocol. The
assumption that sampling error is absent is particularly suspect when data
are limited. Smatler samples are subject to relatively large sampling errors, If
sampling variation is included in a model, projected variability will be much
larger than in the true population. The Muskox of Nunivak Island provide
an example. Aerial census techniques were used to estimate population size
between 1949 and 1968. These data were used to calculate all of the parame-
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ters in the examples used up to the present. However, between 1964 and
1968, independent estimates were made based on ground samples
(Table 2.2).

Table 2.2. Counts {from ground samples) and estimates (from
aerial samples) of the total population size of Muskox on

Nunivak Island,
Year Count Estimate Bias
(Count/Estimate)- -
1965 532 514 1.035
1966 610 569 1.072
1967 700 651 1.075
1968 750 714 1.050

After Spencer and Lensink (1970).

The aerial "estimates" of population size were consistently lower than the
ground-based counts. If we assume that the counts are correct {and there is
no absolute guarantee of that), then the estimates were consistently biased,
but the magnitude of the bias varied from year to year, from 3.5% to 7.5%
(Table 2.2). Bias may be defined as systematic error, the difference between
the true value and the value to which the mean of the measurements con-
VeTges as more measurements are taken. Precision is the repeatability of a
measurement made under the same conditions. Unfortunately, we do not
have any estimates of Muskox population size made in the same year using
the same method. Such data would allow us to quantify the precision of the
population estimates.

Often, subjective judgment is involved in the choice of a method for
measuring a parametet. Similarly, judgment may be made in assuming a
correspondence between one variable and another. For example, we may
observe that rainfall varies by 10% each year, and assume that population
growth varies by the same amount. Even mnore subtie is the assumption that
the levels of variation that we have observed in the past will persist in the
future. There is nothing wrong with such judgments; often they are
unavoidable. However, it is wrong to ignore the uncertainty inherent in such
judgments.

2.3.2 Model Uncertainty

The structure of a model relates the parameters to the dependent variable, in
this case future population size. If our ideas concerning the population’s
dynamics and ecology are wrong, or if we have not been careful in trans-
lating our ideas into equations, our predictions may be astray. Uncertainty
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concerning the form and structure of the expressions we use to describe the
population is known as model uncertainty. Thus, even if the parameters that
describe the dynamics of a population were known exactly, and the variation
associated with each parameter was decomposed into demographic uncer-
tainty, environmental uncertainty and measurement error, we coutd stll
make mistakes in predicting future population size.

Model structure is a simplification of the real world. It represents a com-
promise between available data and understanding, and the kinds of
questions that we need to answer. It is difficult to know the degree of
simplification that is both tractable and adequate to the task at hand, but that
is not so simple that it misses some important ecological processes. Com-
peting model structures may provide as good, or almost as good,
explanations of past observations as one another, but generate quite different
expectations. The only way to deal with model uncertainty is to compare
predictions of models with different structures and (if they make different
predictions) to analyze the models in detail to understand which assump-
tions led to the differences, Such an analysis may guide further field
observations or experiments to decide which model structure is more
realistic.

2.3.3 Sensitivity Analysis

Both parameter uncertainty and model uncertainty may be explored using a
process known as sensitivity analysis. Sensitivity analysis measures the
change in a model’s predictions in response to changes in the values of
parameters, or to changes in the model structure. To illustrate sensitivity
analysis, consider the model in which a population’s growth rate is related to
several environmental variables. For example, variation in the growth rate of
a population of Shrews (Crocidura russula) that inhabit suburban gardens in
Switzerland is related to weather variables by

AR = 073-P —078-5 + 050-T, — 0831,

where P is mean monthly precipitation in spring (m), § is winter snow fall
(m), and T is average monthly mean temperature (*C) in summer (T), and
winter (T,,). We know that summer rain averages about one meter and that
winter snow fall averages about the same value. The coefficients for the two
parameters are similar. Thus, the growth rate will be equally sensitive to
variations in snow fall and rainfall. The coefficients for temperature are
about the same magnitude. However, the values for temperature vary more
{they are around 10°C in summer and around 5°C in winter), so that R is
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effectively more sensitive to variations in temperature. A 10% increase in
summer temperature will increase R by 0.5, whereas a 10% increase in snow
depth will decrease R by only 0.08.

The object of sensitivity analysis is to tell us which parameters are
important and which are not. If a 10% change in a parameter results in a
small change in the dependent variable (say, less than 1%), the model is
insensitive to the parameter. If the change in the dependent variable is large
{more than 10%), then the model is highly sensitive to the parameter. Such
information is useful because it may guide the direction of research effort. It
is more important to eliminate measurement errors from-parameters to
which our predictions are sensitive than to eliminate it from parameters that
contribute little to our predictions.

Sensitivity analysis may also be used to explore alternative model struc-
tures. For example, our model for the growth rate of a population above may
have the best explanatory power in a statistical sense. However, our
biological intuition may tell us that the following model is likely to be a
better predictor of future population growth:

AR = 0.15-P-T, - 07-5

In this version, P and T, are multiplied because we treat the effect of
rainfall and summer temperature as an interaction. We may fix the param-
eter values and explore the consequences for predictions of one model
versus the other. In some cases, the model structure will make little
difference to expected outcomes. In other cases, it will make an important
difference, If the latter is true, it would be advisable to perform experiments
or acquire more data to discriminate between the competing models. If the
acquisition of data or experimental results are impossible, then predictions
may be made with both models, and the most extreme upper and lower
bounds may be used to place limits on the predictions. In this way, predic-
tions can incorporate model uncertainty that is not reducible without further
field work.

The above example was based on a statistical relationship between pop-
ulation growth rate and environmental variables. Sensitivity analysis may be
based on other variables as well. It is important to evaluate both the
deterministic and the probabilistic components of a prediction. Thus, the
dependent variable against which we judge model sensitivity may be the
risk of pepulation extinction within a specified period of time, or the risk of
the population increasing above some specified upper bound. The indepen-
dent variables would be model parameters and their variation. If an increase
in a parameter (say, average growth rate or the standard deviation of growth
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rate) results in more than a 10% increase in risk, then the model may be can-
sidered to be sensitive to that parameter. We will further explore this type of
sensitivity analysis in the exercises of this section.

Sensitivity analysis is perhaps one of the most important tools in quanti-
tative population ecology. It allows us to explore the consequences of what
we believe to be true (in terms of the model parameters and their ranges). It
provides a measure of the importance of parameters and model assump-
tions. It may be used to place bounds on predictions that subsume both
model and parameter uncertainty, providing a relatively complete picture of
the reliability of a prediction.

2.4 Ambiguity and ignorance

In natural resource management, rare and unexpected events may be termed
"surprises” (see Hilborn 1987). Ignorance leads to surprise. It may result from
unawareness of unexpected events, or from false knowledge or false judg-
ments. That does not mean that surprise itself is rare, only that each event is
essentially unexpected. It includes anything we do not expect, anything that
is unaccounted for by our modet or by our intuition.

Some surprises are avoidable because the ignorance they spring from
may be reducible. That is, it may be amenable to study or learning. One may
be ignorant of a process or a predictable outcome, but could overcome that
ignorance by learning or research if the information or the methods of sfudy
were available. There are direct and indirect costs of such ignorance. For
example, ignorance of past experiments or observations may lead to the tacit
acceptance of hypothetical results, without empirical testing. It may cause
disciplines such as wildlife management to loose credibility with people
with a vested interest in wildlife.

Other surprises may be unavoidable. We may be unaware that we are
unable to make predictions accurately, if the structure of the system were to
change. That is, we would be faced with novel circumstances. For example,
the demographers studying the human population as recently as 60 years
ago predicted that the population size would be 3 billion by the end of the
century. It will probably be over 6 billion. They were wrong by a factor of
two, in part because of unavoidable surprises. They could not have foreseen
the decrease in mortality caused by the invention of antibiotics, or the
increase (albeit temporary) in food production as a result of widespread use
of pesticides.

Uncertainty may arise from disagreement, even amongst scientists inter-
preting the same information. Interpretations are colored by a person's
technical background, expertise, and understanding of the problem. Things
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are further complicated by the fact that people, decision makers and scien-
tists included, frequently hold direct or indirect stakes in the outcome of a
question. Judgments are influenced by motivational bias.

Linguistic imprecision may be responsible for important components of
uncertainty. The statement "the population is not threatened by what we
plan to do" is ill-specified. To interpret it, we need more information. Would
the statement be true if the probability of decline of the population to half its
current size was 10% in the presence of the impact, and 2% in the absence of
the impact? Even so, many more specifics are needed, » -

A quantity is called well specified when there is a single true.value that is
measurable, at least in theory. The test for clarity of specification of a
problem is whether it can be unambiguously defined, ‘given a description.
For example, the phrase "Provide a management plan that results in an
acceptable risk of decline of a population” is an ambiguous request. Risks
include both a probability and a time frame, so one must first ask, What is
the time horizon over which one wishes to estimate the risk? Secondly, the
term "acceptable” is undefined. The concept of an acceptable risk will vary
depending on the magnitude of the decline, whom you ask, and what it is
they have to gain or lose by various management strategies. Thus, ambiguity
in the specification of a problem may create kinds of uncertainty that are
beyond any kind of quantitative or qualitative analysis, and it may be
resolved only by political er social processes. We will explore these concepts
further in the final chapter of the book.

2.5 Additional topics ’

2.5.1 Time to Extinction

The quasi-extinction risk curves we examined focus on probability of falling
below certain levels anytime during a fixed interval of time (thus we call
them “interval” risk curves). For example, we used a 12-year period or
interval in the Muskox example (Figure 2.7a). A different way to express the
results of the simulation is to keep a record of the time it takes each replica-
tion of the simulation to become extinct (or fall below a critical threshold
abundance). If we ran the simulation for a long time and recorded the year of
extinction for each of the 1000 replications, we could use these data to con-
struct a time-to-extinction curve, the same way we used minimum
abundances to construct risk curves. A Hme-to-extinction curve (Figure 2.8)
gives the probability that the population will have gone extinct by the time a
given number of years (x-axis) have passed.
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Figure 2.8. Time-to-extinction curve {the number of years that will
pass before a hypothetical population falls below a fixed threshold).

Note that the curve looks similar to the quasi-extinction risk curve, but it
has a very different meaning. In this case (Figure 2.8), the x-axis gives the
number of years, and the threshold of extinction is fixed. In the case of the
risk curve above (Figure 2.7a), the x-axis gives the threshold, and the time
interval is fixed. In this book we will mostly use the risk curves, but briefly
come back to the Hme-to-extinction curve in a later chapter.

2.5.2 Estimating Variation

Very often, estimates of population size through time are used to calculate
parameters for population growth models. In Figure 2.6, the standard devi-
ation representing variation around the mean population size was predicted
by a simple population model that included both demographic stochasticity
(see Section 2.2.2) and environmental variation (see Section2.2.3). In this
model, the environmental variability was modeled by a population growth
rate that varied randomly from one year to the next. The amount of variation
in the growth rate is measured by its standard deviation. In this case, the
standard deviation was 0.075. This estimate was based on the observed,
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year-to-year variation in growth displayed in Figure 2.5. In other words, the
number 0.075 is the standard deviation of the 17 yearly growth rates from
1947 to 1964.

There are some problems with this approach. The observed variation in
growth rate (Figure2.5) has several sources, including environmental
change between years, demographic stochasticity, and sampling {measure-
ment) etror. Even if the environment was constant, demographic variation
and sampling error would ensure that the rate of change in the size of the
population changes (or appears to change). When estimating the standard
deviation of the growth rate (which we used in the model that produced
Figure 2.6), we assumed all of the variation is due to environmental change.

This assumption may be reasonable if the population is large (so that
demographic variation is negligible) and the size of the population is known
with a high degree of reliability (so that sampling error is negligible). In
other circumstances, to assume that all observed variation in growth rates in
due to the environment alone will overestimate the true variation in the
population.

We should subtract the sampling variance and the demographic variance
from the total variance estimate. The difference would be variance due to the
environment. In general, this is difficult to do correctly and it is a topic of
ongoing, active research. In the meantime, assuming that alt variation is due
to the environment generally will tend to result in estimates of extinction
and explosion probabilities that are too high. It is important to remember
this fact when interpreting the results of a study, and to explore the conse-
quences for the results of relatively small values for environmental variation.

2.6 Exercises

Before you begin this set of exercises, you need to install the program
RAMAS EcoLab, if you have not yet done it. Read the Appendix at the end of
the book to install RAMAS EcoLab on your computer.

Exercise 2.1: Accounting For Demographic Stochasticity

In this exercise, you will predict the change in population size of the Muskox
population between 1936 and 1937, accounting for demographic stochas-
ticity. For this exercise you will need to choose uniform randem numbers.
Some calculators give a uniform random number every time you press a key.
If you have one of these, you can use it {skip "Step 0" and go to "Step 1"; you
will need two such numbers for each repetition of this step). If you don't
have such a calculator, you can use RAMAS EcoLab (see "Step 0").
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Step 0. Start RAMAS EcoLab, and select "Random numbers,” which is a
program that produces random numbers. The program will display two
uniform random numbers {between 0 and 1) on the screen. To get another
pair of random numbers, click the "Random” button. {To quit, select "Exit"
under the File menu, or press (aix].)

Step 1. The Muskox population consisted of 31 individuals in 1936. Write
down this number (N = 31) on a piece of paper. Repeat the following steps 31
times, once for each Muskox on Nunivak istand in 1936. For each repetition,
use a new pair of random numbers.

Step 1.1. Use the first random number to decide if the animal pro-
duces an offspring or not. If the first random number is less than the
fecundity value ( f = 0.227), then increase N by 1, otherwise leave it as it
was.

Step 1.2. Use the second number to decide if the animal survives or
dies. If the second random number is greater than the survival rate
(5 =0.921), then decrease N by 1, otherwise leave it as it was.

Step 2. After repeating the above steps 31 times, record the final N. This
is your estimate of the Muskox population size for 1937.

Step 3. Repeat Steps 1 and 2 four times, for a total of five trials. You will
have 5 estimates for the Muskox population size for 1937. Comment on the
amount of variation among the results of the five trials.

Exercise 2.2: Building a Model of Muskox

In this exercise, you will use RAMAS EcoLab to build and analyze a sto-
chastic model of Muskox on Nunivak island.

Step 1. Start RAMAS Ecolab, and select the program "“Population
Growth (single population models)" by clicking on its icon. See the
Appendix at the end of the book for an overview of RAMAS EcoLab. For
on-line help, press [€1), double click on "Getting started,” and then on “Using
RAMAS EcoLab." You can also press [} anytime to get help about the par-
ticular window (or, dialog box) you are in at that time. To erase all
parameters and start a new model, select "New" under the Model menu (or,
press [CalN)),

Step 2. From the Model menu, select General information and type in
appropriate title and comments (which should include your name if you are
going to submit your results for assessment).

Enter the following parameters of the model.

Replications: 0

‘-“AA““--A‘--‘-‘-‘A.“A“A““"

Duration: 12
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Setting replications to 0is a convenient way of making the program run a
deterministic simulation, even if the standard deviation of the growth rate is
greater than zero. Note that the last parameter of this window, whether to
use demographic stochasticity, is ignored (it is dimmed and is not available
for editing). This is because when the number of replications is specified as 0,
the program assumes a deterministic simulation. This parameter is ignored
because it is relevant only for stochastic models.

After editing the screen, click the "OK" button. (Note: Don’t click
“Cancel” or press (B to close an input window, unless you want to undo the
changes you have made in this window.) Next, select Population (under the
Model menu). Recall that the Muskox population on Nunivak Island began
in 1936 with 3! individuals and had an average growth rate of 1.148. Based
on these, enter the following parameters in this screen.

Initial abundance: 31
Growth rate (R); 1.148

The parameter "Standard deviation of R" is not available for editing
because we will first run a deterministic simulation, in which standard devi-
ation will not be used. Similarly, "Survival rate (s)" is used only to model
demographic stochasticity, so it is also ignored by the program when the
simulation is deterministic.

For this exercise, you can ignore the last two parameters in this window
(density dependence and carrying capacity); we will discuss density depen-
dence in a later chapter. The default selection for "Density dependence type"
is "Exponential,” which refers to exponential growth with no density
dependence. The last parameter is ignored because it is related to other types
of density dependence. When finished, click "OK" and press to save
the model in a file.

Step 3. Select Run from the Simulation menu to start a simulation. The
simulation will run for 12 time steps; you will see "Simulation complete" at
the bottom of the screen when it’s finished. For a deterministic simulation,
this will be quite quick. Close the simulation window.

Step 4. Select "Trajectory summary" from the Results menu. Describe the
trajectory you see. What is the final population size?

Step 5. Close the trajectory summary window. Select General informa-
tion and change "Replications” to 100 by typing the number. Next, click the
little box next to "Usedemographic stochasticity”  This will add
demographic stochasticity to the model. The parameters should now be as
follows:
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Repiications: 100
Curation: 12

Vi Use demographic stochasticity {checked)

Click the "OK" button and select Population (again, under the Model
menu). Recall that the survival rate of the Muskox population was 0.921 and
that the observed standard deviation in the growth rate was 0.075. Based on
these, enter the following parameters in this screen.

initial abundance: K1

Growth rate (R): 1.148
Survival rate (s): 0.921
Standard deviation of R: 0.075

Click "OK," and select Run to start a simulation. While this stochastic
simulation is running, after the first five replications, the program will dis-
play each population trajectory it produces {the program cannot display the
population trajectories produced by the first five replications, because it uses
them to scale the graph). Describe the trajectories in compatison with the
deterministic trajectory. Do any of these trajectories look similar to the
deterministic trajectory? What is the cause of the difference?

Step 6. After the simulation is completed, close the simulation window
and save the model by pressing (CuiS). Then, select "Trajectory summary."
You will see an exponentially increasing population trajectory. Describe the
trajectory summary. What is the range of final population sizes? You can try
to read the range from the graph, or if you want to be more precise, you can
see the results as a table of numbers. To do this, click on second button from
left ("show numbers") on top of the window. The first column shows the
time step, the others show five numbers that summarize the abundance for

each time step: (1) minimum, (2} mean - standard deviation, (3) mean, (4)
mean + standard deviation, and (5} maximum.

Step 7. Select "Extinction/ Decline” from the Results menu. What is the
risk of decline to 3] individuals based on this curve?

It might be difficult to read the precise value of the risk from the screen
plot. Do the following to record this number precisely:

Click the "Show numbers" button, and scroll down the window to where
you see "31" in the first column. Record the probability that corresponds to

this threshold level.
Exercise 2.3: Constructing Risk Curves

In this exercise you will construct an interval decline risk curve based on the
Muskox model. If you have exited the program after the previous exercise,

e
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first open the file you saved at Step 6 in Exercise 2..2 (press and choose
the file you saved). If you did not save the previous model, then enter the
parameters as described in Step 5 of the previous exercise.

Step 1. In the next step we will generate single tra]t'acto_nes."To prepare
for this, select General information, and change "Rephce%nons to ]Also
change "Duration” to 5. Make sure that "Use demograp.hlc s.tochasn.cxty is
checked. Click OK. (Note: If you want to save the model in tl‘u.s exercise, use
"Save as” and give the file a different name, so you keep the original flle.)‘

Step 2. Generate a single random trajectory based on the mode] in Exer-
cise 2.2. To do this, run the model and display the trajectory summary as a
table of numbers (see Step 6 in the previous exercise), Rgcord ‘the smallest
value that the population trajectory ever reach?d during time sFepshl
through 5 of this single replication. (Note: Ignore time step 0, for which the
abundance is always 31.) —

. Repeat Step 2 a total of 20 times.

g::g 25’2?1 now Eave 20 minimum population sizes from 20 runs. Sort
these in increasing order, and use the table layout-below to generate fre-
quencies from the records of minimum population sizes. I.n the first column
of the table, write the population sizes you have in incregsmg order. You are
likely to get some population sizes more than once. Wr1.te th.ese down only
once. You will most likely use only some of the rows in this ta?le. Ip t[}e
second colurmn, write how many of your numbers is the population size in
column one. In the third column, cumulate the numbers of thz_a_s_econd
column (see Table 2.1). In the fourth column, calculate probabilities _by
dividing the cumulative frequencies (third column) by the numbel: of H:;Eits
{20). Note that this table is similar to Table 2.1, but your numbers will be dif-
ferent because you have only 20 trials or replications, whereas Table 2.1 was
constructed based on 10,000 trials. o

Step 5. Plot the probabilities against population size in Figure 2.9.
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Figure 2.9.

Exercise 2.4: Sensitivity Analysis

In this exercise, we will use the Muskox model from Exercise 2.2 to analyze
the sensitivity of quasi-explosion probability to model parameters. Qur aim
is to decide what parameter is more important in this particular model in
determining the probability that the Muskox population will increase to 150
individuals. You might consider this probability a measure of the success of
the reintroduction project: Assume that the project is regarded as successful
if the Muskox population reaches 150 individuals within 12 years.

Step 1. Load the stochastic Muskox model you saved in Step6 of
Exercise 2.2. In this exercise, we will call this model the "standard model.”
View the "Explosion/Increase” curve. Record the threshold and the proba-
bility of increasing to 150 individuals.

It might be difficult to read the precise value of the probability from the
screen plot. Do the following to record this number precisely. (This proce-
dure can also be used for "Extinction/Decline”; it is similar to, but more
detailed than the one in Exercise 2.2.)

Click the "Show numbers" button, and scroll down the window to where
you see "150" in the first column. Record the probability that corresponds to
this threshold level. If "150" is not in this table, then click the third button on
top of the window ("scale”). You will see a window with various plotting
parameters (the exact numbers may be different in your simulation).
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Title: Explosionfincrease
7] Autoscale (checked)
X-Axis Label: Threshold
Minimum: 46
Maximum: 455
Y-Axis Labei: Probability
Minimum: 0.00
Maximum: 1.00

First, uncheck the box next to "Autoscale” by clicking on it. (This makes
the program use the values entered in this screen instead of automatically
rescaling the axes.) Second, change the maximum value of the r-axis to the
threshold (in this case, 150). Third, click OK.

Scroll down the table. The last line of the table will give the threshold

(150), and the probability of reaching or exceeding that threshold. Record
this probability below.

Probability of increasing to 150 =

Step 2. Create eight new models based on the standard model. For each
model, increase or decrease one of the four parameters of the model (see
below) by 10%, and keep all the other parameters the same as the standard
model. Note that there are some restrictions. For example, the survival rate
(s) carnot be less than 0 or greater than 1. And the initial abundance must be

an integer. Make necessary adjustments or approximations for these param- -

eters. Save each model in a separate file. Record the low and high value of
parameters, and filenames that contain them.

Initial abundance: 31

Growth rate (R): 1.148
Survival rate (s): 0.921
Standard deviation of R: 0.075

Parameter: low value and filename | high value and filename
Initial abundance

Growth rate (R)

Survival rate (s)

Stand. deviation of R
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Step 3. Run stochastic simulations with the eight models you created in
the previous step. After each simulation, view the guasi-explosion results,
and record the probability that the Muskox population will increase to 150
individuals within the next 12 years. Record the results in the table below.

Probability of increasing to 150

Parameter: with high value | with low value difference
Initial abundance
Growth rate (R)
Survival rate (s)

Stand. deviation of R

Step 4. For each parameter, subtract the probability with low value from
the probability with high value of the parameter. Discuss the results.

(a) In which direction did each parameter affect the result? (In other words,
does higher value of the parameter mean higher or lower probability?)

{b) Which parameter affected the outcome most, when the change was 10%?
What should this result tell about field studies which attempt to estimate
these parameters, or about future projects similar to this one?

Note that sensitivity of the result to +10% of survival rate, or growth rate, or
its standard deviation can be interpreted in terms of accuracy in the estima-
tion of these parameters, or in terms of the value of these parameters in other
places where a similar project will be implemented. However, sensitivity of
the result to +10% of initial abundance cannot be interpreted in terms of
accuracy: It is probably not very difficult to count 31 animals. However, it
might be interpreted in terms of the effect of the initial number of individ-
uals on the success of the project.

2.7 Further reading

McCoy, E. D. 1995. The costs of ignorance. Conservation Biology 9:473-474.

Morgan, M. G. and M. Henrion. 1990. Uncertainty: A guide to dealing with
uncertainty in quantitative risk and policy analysis. Cambridge University
Press, Cambridge.

Shaffer, M. L. 1987. Minimum viable populations: coping with uncertainty.
In M. E. Soulé (Ed.). Viable populations for conservation (pp. 69-86). Cam-
bridge Uriversity Press, Cambridge.
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Chapter 3
Population Regulation

3.1 Introduction

The Muskox population we studied in Chapters 1 and 2 was growing at a
rate of about 14.8% per year; this growth continued for about 30 years. What
would happen if this population actually continued to grow for another 30
years? If you repeat the exercise, starting from the final abundance of 700
Muskox and ran the model for another 30 years, you would see that the final
abundance would be about 44,000 muskox. Another 30 years, and it would
be 2.7 million! Obviously, this is not what happens in nature; this species has
been around for millions of years. How does exponential growth come to an
end?

71
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As we discussed in Chapter 1, exponential growth happens under favor-
able environmental conditions. Sooner or later, the environment will not be
favorable; for example, a series of severe winters will occur during which
there will be few calves born. This will set back the population abundance.
For other species, the reason may be too much water (floods), too little water
{drought), or any of the factors we discussed in Chapter 2 that cause fluctua-
tions in the environment.

It is possible that extrinsic factors (such as climate) will remain favorable
for a long time, even as they fluctuate. When that happens, the population
will continue growing and become crowded. The resources that are available
to the population will have to be shared among an ever-increasing number
of individuals. These resources include water, food (for animals), nutrients
and sunlight {for plants), and space. As we discussed in the beginning of
Chapter 1, individuals of the same species share the same niche, ie, they
have similar requirements for such resources, which is why crowding forces
each individual to get a smaller share of the available resources. In addition
to depleting its food resources, a growing population may poison the envi-
ronment with its own wastes, and attract predators and diseases.

3.2 Effects of crowding

The reactions of species to overcrowding vary greatly, In some species,
crowding causes increased dispersal; many individuals leave the population
and look for less crowded places. For example, in cyclic populations of voles,
dispersal rate increases as the population approaches its peak densities for
the cycle. We will discuss dispersal in more detail in the chapter about meta-
population dynamics.

3.2.1 Increased Mortality

In some species, increased dispersal cannot compensate for increased densi-
ties. In other words, dispersal alone cannot reduce the densities to levels
where there are no crowding effects. This is especially true for species that
disperse only passively. For example, dispersal in many plants accurs as the
dispersal of seeds by wind, animals, etc. In such cases, increased density may
mean that the mortality rate will increase. As more seedlings share limited
space, water, or other resources, more of them will die. In an experiment,
seeds of Cakile edentula (which is an annual plant that lives on sand-dunes)
were sown at densities of 1 to 200 per 400 cm® The survival rate of these
seedlings was inversely related lo the initial sowing density (Figure 3.1). In
this experiment, seed survival was defined as the proportion that produced
mature fruits, 5o it actuatly included both survival and reproduction.
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Figure 3.1. Effect of density on seed survival in Cakile edentufa, an
annual plant. Data from Keddy (1881).

3.2.2 Decreased Reproduction

When individuals get fewer resources, they may reproduce less, or even
cease to reproduce altogether. For example, the clutch size in many bird spe-
cies depends on the available resources. An example of the effect of
crowding on fecundity is the change in the fledging rate in a Great Tit Parus
major population in Oxford, England, shown in Figure 3.2. The number of
fledglings (i.e, the number of young birds leaving the nest} per breeding
bird is used as a measure of fecundity. The figure shows that as the size of
breeding population increases from about 40 to about 90 birds, the fecundity
decreases from about 4.5 fledglings per bird to about 2.5. Despite the large
amount of variation (originating perhaps from fluctuations caused by envi-
ronmental factors), the effect of crowding on fecundity is quite evident. (We
will return to this graph later in this chapter, when we caution about using
such graphs to quantify the density dependence relationships.)
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Figure 3.2. Effect of density on fecundity: Great Tit Parus major. Data
from Lack (1966).

323 Self-thinning

When density-dependent mortality takes its toll and the density of the pop-
ulation declines, the remaining individuals are better off. This is especially
evident in plants; the decline in population size due to density-dependent
mortality is usually more than compensated by the increased size of sur-
viving plants, and as a result, the total biomass actually increases. In several
cases, this compensation of mortality with growth in the size of individuals
follows a very specific and regular pattern, called a self-thinning curve. This is
often plotted on log-log scales, with the density of plants in the horizontal
axis and mean weight of plants in the vertical axis (see Figure 3.3).

There is considerable (although not unequivocal) evidence that self-
thinning curves, when plotted on log-log scales, show a slope of -1.5. If a
stand of plants are sown at sufficiently high density, the change in mean
weight and density through time follows a slope of -1.5.
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Figure 3.3.  Self-thinning curve for White Birch Belula pubescens
(after Verwijst 1989). Density is number of plants per unit area and
biomass is measured as the mean weight of a plant. Each point corre-
sponds to a stand of trees.

3.2.4 Territories

A territory is an area of the habitat defended by an individual or pair, and
from which other individuals are excluded. Examples of territorial species
include many bird species. Spotted owls, for example, hold territories that
may be 10 to 40 km® and that are defended by a pair of breeding owls against
other spotted owls. When density increases in a population of a territorial
species, one (or more) of several things may happen: territories may become
packed more tightly, territories may get smaller, some animals may be
pushed to less than optimal habitat, and, last but not least, a larger number
of individuals may be excluded from all territories. Adult birds without ter-
ritories are often called "floaters.” Floaters do not breed; thus as population
density increases, the average fecundity of all individuals declines, even
though the average fecundity of breeding individuals may remain the same.
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3.3 Types of density dependence

The negative effects of crowding discussed above will build up as popula-
tion size increases, At Jow densities, these effects will be negligible; for
example, there will be enough food for everyone. As densities increase, the
negative effects will become more pronounced. Unless stopped by unfavor-
able environment, the population will soon reach a density at which the
negative effects build up to such an extent that the population cannot grow
anymore. Thus a balance would be reached between growth and the
capacity of the environment to provide food, space, and other resources.
These limitations, be they food, space, self-poisoning, or predators, are called
density-dependent factors because their intensity depends on the density of the
affected population. The phenomenon of population growth rate depending
on the current population size is called density dependence.

How exactly the population growth comes to a stop as a result of these
density dependent factors depends on the ecology of the species and the
limiting resource. Let us first consider food shortage and ignore other factors
such as emigration, immigration, and environmental variation. As popula-
tion size increases, the amount of food resources for each individual
decreases. If the available resources are shared more or Jess equally among
the individuals, there will not be enough resources for anybody at very high
densities. Such a process of sharing leads to a type of intraspecific (within the
species) competition called scramble competition. In contrast, contest compe-
tition occurs when resources are shared unequally, and there are always
some individuals who get enough resources to survive and reproduce.

There are other ways in which competition occurs differently in different
species or for different resources. For example, competition may be indirect,
through the sharing of food, but without actual physical contact or confron-
tation between the competitors. Or it may be direct, with actual fighting over
the lirited resources. We will 'not concentrate on such differences; what
matters from the modeling point of view is whether resources are shared
equaily or unequally.

An example of scramble competition might be competition for food
among fish larvae (newly hatched fish). If there are very few individuals,
almost all of them may survive. If the density of larvae is very high, none of
them will get enough to survive. This is an extreme example of scramble
competition, in which the total number of survivors is less when there are
more individuals to start with. This process is aiso called worsening returns

because as density increases, conditions for the whole population, not just
the average individual, get worse.
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An example of contest competition is competition for tefritories, in
which the winner gets all of the territory (and can not only survive but also
reproduce) while the loser gets none. In this case, no matter how many com-
pete for the limited number of territories, there are always some breedmg
individuals. The process of confest competition is also called dummshfng
returns. As the number of competitors increase, the proportion that can find
a territory diminishes, and the total reproduction {e.g., total nun".lber of off-
spring from all territories) increases more and more slowly, but it does not
decline, :

3.3.1 Scramble Competition

The two types of competition we discussed are important_ because-they_ have
quite different effects on the dynamics of the population and its risk of
extinction. To add effects of density in our models, we need to decide what
causes density dependence, and add appropriate equations to our model.
There are many ways to write equations to add density dependence to the
models we have been using in earlier chapters. We will discuss some of these
equations later in this chapter. For now, we don't need to worry about the
specifics of the equations; we will instead concentrate on their generél char-
acteristics. We will compare various types of density dependence with two
types of graphical representation. ‘

~ One graphs abundance at the next time step (next year, for instance) as a
function of abundance now. Such a function is shown in Figure 3.4. The type
of representation in this figure is called a recruitment curve, or a replace;tnent
curve. It shows what the population size will be next year (th.e_y—a:us)‘, given
the population size this year (the x-axis}. In scramble competition, this func-
tion is humped and the right end of the curve is decluun.g; in other word:q,
for large population sizes, the population size at the next time step, N(t+1), is
a declining function of the population size at this time step, N(t). The curve
always starts from the origin, because if the population size is 7_,ero, then it
will also be zero next year {assuming no immigration). See Section 3.8.1 for
the equation that we used for scramble competition.

The dotted (45°) line shows exact replacement, where N(1) equals N(t+‘1).
The level of abundance at which this line and the replacement curve (contin-
uous curve) intersect is labeled as K on the graph. The replacement curve
(continuous line) is above the exact replacement line at the left part of the
graph, to the left of the point of intersection of the two_. When the current
population size is in this region (N less than K), N(t+1) is greater -than .N(t.),
which means the population will grow. When the current population size is
greater than K (N>K), then N(t+1) is less than N(#), which means the popula-
tion will decline. When the current population size is equal to K, then N(t+1)
is equal to N(t), which means the population size will remain the same. So,
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N(t+1)

N(Y)

Figure 3.4. Replacement curve for scramble competition.

the population tends to grow when it's small, and it tends to decline when
it’s large. This property makes this type of density dependence stabilizing.
Since it pushes the population up from lower abundances and down from
higher abundances, it stabilizes the population size around a certain level. In
mathematical terms, this level is called an equilibrium point because of this
stabilizing effect, and is represented by the parameter K. In a density-
dependent model, the equilibrium point can be described in biological terms
as the carrying capacity of the environment for the population, ie., the
population size above which the population tends to decline. Another
related term we introduce is reguiation. A population is said to be regulated
when its density is kept around an equilibrium point by density-dependent

factors.

We can use a replacement curve to make a deterministic prediction of the
population’s future. All we need is the initial population size. The top graph
(A) in Figure 3.5 is a replacement curve, and the bottom one (B) is the pop-
ulation trajectory based on this curve.
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Figure 3.5. Predicting the population trajectory (B), based on the
replacement curve (A).
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First, find the initial population size, indicated by N{0} in graph (A).
Second, find N(0}) in graph (B). In the second graph the x-axis is time and
y-axis is the population size. For x = N{0), the curve in graph (A) gives N(1},
the population size in the next time step—in other words, the y-value that
corresponds to x = N(0). We read this from the graph as about 300, and plot it
in graph (B) for ¢ =1. To predict N(2) from N{(1), we find the y-value pre-
dicted by the replacement curve for x = N(1). An easy way to do this is to
extend a horizontal line from the curve at x=N(0}, y = N(1) to the exact
replacement line (the dashed, 45° line), and a vertical line from the 45° line
back to the curve. Now the y-value is N(2), which we plot in graph (B). For
the remaining time steps, we repeat the same process: drawing a horizontal
line from the curve to the 45° line, and a vertical line from the 45° line back to
the curve, and plotting the y-value in graph (B).

The reason the replacement curve is also called the recruitment curve has
to do with its historic association with fisheries biology. Recruitment in
fisheries refers to the natural increase in the harvestable portion of the pop-
ulation (fish above a certain size) by growth of smaller (e.g., newly hatched)
fish. Typically, only a small fraction of eggs become recruits. The larger the
number of eggs, the more intense the competition between the newly
hatched individuals, and the smaller their chances of survival. The points in
Figure 3.6 show the recruitment data for Bluegill Sunfish Lepomis macro-
chirus, a popular freshwater sport fish widely introduced throughout the
temperate world.

The bluegill data were used to generate the replacement curve (dotted),
using one of the equations for modeling scramble type density dependence:
the Ricker equation, developed by the fisheries biologist W.E. Ricker. The
point at origin was added to assist the model fitting (Figure 3.6). This is jus-
tified because zero eggs would give zero recruits. The fit of the data to the
model is remarkably good for this type of study, which perhaps has
something to do with the fact that Ricker (1975) developed his equation
while studying bluegill population dynamics.

Another type of graph by which we can visualize a density dependence
function is shown in Figure 3.7, which gives the growth rate of the popula-
tion as a function of abundance. The growth rate in this case is calculated as
the ratio of the population size in the next time step to the population size
now, N(#+1)/N(f). The exact replacement line (which was a 45" line in the
previous figure) in this figure is a horizontal line at growth rate equal to 1.0,
The population grows when growth rate is greater than 1.0 {i.e, when the
curve is above the line), and declines when the growth rate is less than 1.0
{when the curve is below the line).

T
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Figure 3.6. Density dependence in Bluegill Sunfish. After Ferson et al.
(1991).
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Figure 3.7. Density dependence in growth rate for scramble competi-
tion.
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The two types of graphs that we used to represent density dependence
are quite similar, they give the same information. There is one important
piece of information that we can get more easily from the second type of
graph. The y-intercept of the curve (the point at which the curve intercepts
the vertical axis} marks the maximum rate of growth (R,,,,), which happens
as the population size approaches zero, where the effects of crowding do not
affect the population. This is the rate of exponential growth we discussed in
Chapter 1; in other words, it tells how fast this population will start to grow,
if it grows free of density-dependent effects. Because the densities will be
small at the beginning, the change in population size through time will ini-
tially look like exponential growth. This initial phase of density-dependent
population growth is seen in the first few days of an experiment by the
Russian biologist G.F. Gause in the 1930s (Figure 3.8). Gause started the
experiment with 2 Paramecium aurelia (a protozoan species). After the first
few days, the growth rate of the Paramecium population started to decline,
and after day 12 or so, the population size fluctuated around 550.
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Figure 3.8. Growth of a Paramecium atrelia population starting from
2 individuals. Data frormn Gause (1934).

In Chapter 1, we used a logarithmic scale for abundance in order to
demonstrate the exponential nature of the growth of the population of
Muskox. If the abundance graph through time is linear in the logarithmic
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scale, this means that the population is growing exponentially. When the
population growth starts exponentially, and then slows down, as it did in the
case of the Paramecium population in Gause’s experiments, then the loga-
rithmnic graph will be linear at the beginning, and curve down to a horizontal
line. In Figure 3.9, we show the same data as in the previous figure, but with
the population size (y-axis) in logarithmic scale.

Note also that the fluctuations of the population after it reaches the equi-
librium do not seem to be as large in Figure 3.9 as in the original figure, due
to the logarithmic scale. One must be careful in interpreting graphs in
logarithmic scale, which tend to play down the importance of variation and
error. In Exercises 3.1 and 3.2, we will model the growth of this Paramecium
aurelia population using RAMAS EcoLab. '
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Figure 3.9. Growth of a Paramecium aurelia papulation starting from 2
individuals. Data from Gause (1934). Note the logarithmic scale for the
number of individuals.

3.3.2 Contest Competition

If the available resources are shared unequally so that some individuals
always receive enough resources for survival and reproduction at the
expense of other individuals, there will always be reproducing individuals
in the population. As we mentioned above, this will be the case in popula-
tions of strongly territorial species, in which the number of territories does
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not change much even though the number of individuals seeking territories
may change a lot. This process of diminishing returns leads to contest com-
lacement curve in Figure 3.10. If you

scramble competition
you will see that the major difference is in the right side of the

petition, which is represented by the rep
compare this figure with the replacement curve for
(Figure 3.4),
curve, at high population densities. Whereas the curve for scramble compe-
tition is humped, and declines at high densities, the curve for contest
competition reaches a certain level and remains there, The similarity is that,
in both cases, if the population size is above the carrying capacity, it will
decline in the next time step. However, under contest competition, no matter
how high the poputation density is, the population in the next time step will
not be below the carrying capacity, assuming a constant environment. If
there is environmental variability, the population may decline below the
carrying capacity under any type of density dependence.,

N(t+1)

N(t)

Figure 3.10. Replacement curve for contest competition.

The curve shown in Fi

gure 3.10 is a specific type of density dependence
function know as the Bev.

erton-Holt function (see Section 3.8.1 for the equa-

tion we used for this function}, based on Beverton and Holt (1957).
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3.3.3 Ceiling Model

There are several other density dependence models that will give the general
characteristics of contest competition. One of the simplest of these is tt'fe
ceiling model. The replacement curve for ceiling density dependem-:e is
shown in Figure 3.11. Note that this is similar to Figure 3.10 in that the right-
hand side of the curve is flat rather than declining,

N(t+1)

X
N()

Figure 3.11.  Replacement curve for the ceiling model of density
dependence.

In the ceiling model, the population grows exponentially u_ntil it reaches
the carrying capacity (for example until all territories are occupied), and then
remains at that level until a population decline takes it below this level. If the
population grows above the carrying capacity (by ir‘nmigration, f(?r
example), it declines to the carrying capacity by the next time step. In this
case the carrying capacity acts as a population ceiling, above which the pop-
ulation cannot increase. This is somewhat different from the types of density
dependence function we studied earlier, in which the population dengity
equilibrated around the carrying capacity. In contrast, the average population
size in a ceiling model may be well below the carrying capacity, bz_aczfuse the
population may be pushed below this level by environmental variation, but
cannot increase above it. Because of the difference between ceiling type of
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density dependence and the contest type based on the Beverton-Holt func-
tion, our program includes "Ceiling” as an additional choice of density
dependence type, even though it may result from contest competition. We
will explore these differences in Exercise 3.3.

3.34 Allee Effects

The three types of density dependence we explored so far share a common
characteristic: the population growth rate declines with increasing density.
However, the reverse of this would also be density-dependent: If population
growth rate declines with decreasing density, the population growth is still
density-dependent, but in a very different way (because of this, it is called
inverse density dependence). In this section we will discuss natural factors
that cause inverse density dependence, and their consequences. In a later
section, we'll discuss types of harvesting that can also lead to inverse density
dependence.

Factors that cause the growth rate of a small population to decline, as the
population gets smaller, are collectively called Allee effects {named for
Warder C. Allee who studied biological sociality and cooperation; Allee
1931; Allee et al. 1949). Allee effects do not result from a single cause; rather
several mechanisms that draw a small population away from the carrying
capacity and toward extinction are called Allee effects. When the density of
whales becomes very low in the ocean, males and females have a more diffi-
cult time just finding each other to mate. When the density of vegetation on a
mountain stope becomes too sparse, erosion begins to take away the soil so
even fewer plants can take hold there. When a population becomes very
small, inbreeding can create a variety of genetic problems {see Chapter 2),
Whenever a lower abundance means a lower chance of survival or repro-
duction for those individuals that remain, Allee effects may occur. Similar
Allee effects are alse observed in plant populations. The number of seeds per
plant in small populations of Barksia goodii (a shrub) were less than the
number of seeds per plant in larger populations. This species is pollinated by
marmrmals and birds, and the reason for lower fertility in smaller populations
was thought to be decreased number of pollinator visits (Lamont et al. 1993).

We mentioned earlier that a crowded population may attract predators,
leading to density-dependent predation mortality. However, if the density of
the predator in the area is constant, then predation may cause inverse den-
sity dependence. As the number of individuals of the prey species in the
same area increases, the damage the predators do will be distributed among
a larger number of prey, and the proportion of the population lost to preda-
tion will be lower. A decline in predation rate as a result of increased
concentration of prey is also called predator saturation. This is one of the
reasons that some species of birds form flocks to roost, or breed in colonies.
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Breeding in colonies may have other social benefits, too. For example, Birk-
head (1977) found that when the colonies of the Common Guillemot (a
marine bird species) were dense, the hatching of epgs were more
synchronized. This made sure that there were more adults around the colony
when most of the chicks were still at nest, and decreased mortality from
predators such as gulls. The result was that, as shown in Figure 3.12, the
breeding success (measured as the proportion of nests with at least one
fledgling) was higher in denser colonies. Allee effects will occur when a
decline in the population of such colonially nesting species causes declines in
breeding rates, which cause further declines in the populatior size.
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Figure 3.12. Percentage of nests rearing at least one chick to fledg-
ling in colonies of the Common Guillemot (Uria aalge). Data from
Birkhead (1977).

In a density dependence graph, Allee effects are represented by a curve
that declines as abundance gets smaller. The density dependence curve
(growth rate as a function of abundance) for scramble competition that we
studied earlier is repeated as curve (a) of Figure 3.13. Other curves show
how this density dependence relationship changes with the addition of
increasingly stronger Allee effects. Note that these are nat replacement (re-
cruitment} curves; they show the relation between growth rate and
abundance (not abundance next year as a function of abundance this year).
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N{t+1) / N(t)

N(t)

Eigure 3.13. Density dependence in growth rate for scramble compe-
t!tlon (gurve a) and scramble competition with three levels of
{increasingly strong) Allee effects {curves b, ¢, d},

An important characteristic of these density dependence curves is that
the growth rate is below 1.0 at the left end of the curve, which means the
population will decline if its abundance is low. This means that if a popula-
tion declines to a low level by chance, then Allee effects can pull it down
even further. Clearly, such phenomena can dramatically influence the risks
of extinction. It also means that when Allee effects are present, the sigmoidal
growth from low abundances to the carrying capacity (that we saw in Figure
3.8, for example) is not always passible. If the population starts at a low
abundance, it may go extinct even before it starts growing.

_ The models that can be implemented in RAMAS EcoLab cannot explic-
itly incorporate Allee effects (although other, research-oriented RAMAS

programs can). One way to incorporate Allee effects in a model is to adjust

Fhe extinction threshold. Suppose you know that Allee effects must be
important for a

particular species you are modeling, once its population falls
below, say, 100 individuals. After running a stocha
view the quasi-
individuals. Re
"interval" extin

: stic simulation, you can
extinction risk curve and record the risk of falling below 100
member, the quasi-extinction curves in RAMAS Ecolab are
ction curves, which refer to falling below a threshold af least
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once during the simulated time interval. If you assume that the relevant risk is
the risk of falling below 100 individuals, this means that you don't need to
worry about how realistic the model is below this abundance. In a way, you
can assurne the population to be extinct once it falls below this level,

3.3.5 The Concept of Carrying Capacity

In our models, we used the term carrying capacity as equivalent to the
parameter K of the models, which is the level of abundance above whichrthe
population tends to decline. Defined this way, carrying capacity is obviously
a characteristic specific to a population. Different populations of the same
species may have very different carrying capacities, ds a result of the dif-
ferent amounts of resources (food) or space (territories) available to them, as
well as the abundances of competitor and predator species. In summary, we
do not make a distinction among carrying capacities set by different types of
factors. The carrying capacity is simply an abstraction that crudely summa-
rizes the interactions of a particular population with its environment and
describes the capacity of the environment to support a population, in units of
the number of individuals supported.

As any abstraction, the concept of carrying capacity has its limitations.
One of these is that carrying capacity, if determined by such factors as food
and predators, must fluctuate as these factors change over time. The models
we use in this chapter assume that carrying capacity remains constant, and
whatever fluctuations there are in the environment affect the growth rate of
the population. There are models in which carrying capacity is also allowed
to vary, but the distinction between how environmental variation is added to
carrying capacity versus to growth rates is beyond the scope of this book (see
"Adding environmental variation” below),

Another limitation of our definition of carrying capacity is that to some it
may imply (wrongly) that all populations are expected to end up at this
abundance. There are at least four reasons why this may not be true. We
already discussed two of these and we'll discuss two others later in this
chapter: (1) The major reason is that environmental fluctuations will push
the size of the population up and down, and therefore even populations
under the effect of strong density dependence may never reach this level.
Later in this chapter, we will discuss methods of adding this important factor
to our density dependence models and demonstrate it with computer exer-
cises. (2) When the density dependence model is ceiling type (see above), the
dynamics of the population above and below the carrying capacity are
different, and thus the population size may not stabilize at K. Moreover,
even the average abundance predicted by the models may be quite different
from K. (3) As we discussed in the previous section, if the density depen-
dence model includes Allee effects, and the population size starts from a low
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initial abundance, the population may become extinct before it reaches K. (4)
Finally, strong density dependence of the scramble kind may lead to oscilla-
tions even without any environmental fluctuation. We will discuss this later,
in Section 3.5.

3.3.6 Carrying Capacity for the Human Population

As we mentioned above, the models we use in this chapter assume that the
carrying capacity remains constant. The human population is one example of
a population that does not fit a static concept of carrying capacity. In addi-
tion to changes in environmental conditions {for example, droughts) that
may change the carrying capacity, the actions of humans themselves have
greatly affected the carrying capacity of the earth for the human population.
In an earlier chapter, we mentioned the unexpected effects of antibiotics and
pesticides in increasing the limits to the human population. Technology and
innovation have increased the carrying capacity of the earth for the human
population, and many economists still believe that human ingenuity will
always find answers to increased demand. From an ecological point of view,
the damage to natural ecosystems in all parts of the world is an indication
that the nature of the interaction of the human population with its environ-
ment is changing.

As the human population approaches its carrying capacity, its interac-
tions with the natural environment will determine the ultimate size of the
population, as well as the conditions in which humans will live.
Characterizing this interaction is one of the important challenges facing
applied ecologists. As we discussed in Chapter 1, the impact of humans on
the environment is a function of the number of people, consumption rate per
person, and environmental damage per unit of consumption. Changes in
these variables through time and among different regions of earth make it
impossible to calculate the carrying capacity of earth for the human popula-
tion. Nevertheless, there have been several attempts to calculate it (see
Cohen 1995), mostly based on consumption of renewable natural resources
such as food and fresh water. Another factor that might play a role is the
spread of infectious diseases, made easier by increased human densities and
increased long-distance travel.

Limitation of population growth by either shortage of food or by dis-
eases is an unpleasant prospect. A more optimistic scenario is a decrease in
fertility rates or consumption rates as a result of social and economic factors.
Increased national wealth or economic activity (measured by gross national
product, GNP) has been associated with decreased fertility in many indus-
trial counties. Of course, population size is only one factor that determines
the human impact on the environment; increased wealth is also associated

Assumptions of density-dependent models 91

with increased consumption. Among social factars, Pulliam and Haddad
(1994) found that fertility was negatively correlated with contraceptive use
and with education level

3.4 Assumptions of density-dependent models

The assumptions of a density-dependent model are similar to those we dis-
cussed in Chapter 1, with one exception. Instead of assuming that density
will remain low enough to have no effect on population dynamics
(assumption 3 in Chapter 1), we assume that increased density.will cause a
dedline in the population growth rate in such a way that the growth rate will
reach 1.0 when population density (N) is K (the carrying capacity), and will
cause even further decrease in growth rate if N>K.

Regarding variability (assumptions 1 and 2 in Chapter 1), we assume
that there is no variability in carrying capacity from year to year (see
Section 3.3.5). In Exercise 3.2, we will demonstrate the effect of incorporating
demographic stochasticity iz a deterministic density dependence model, and
in Section 3.7, we will discuss adding environmental variation.

All the other assumptions are the same: We assume a single, panmictic
population {assumption 5), in which the composition of individuals with
respect to age, size, sex, genetic properties, and others remains constant
{assumption 4), and in which processes of birth and death can be approxi-
mated by pulses of reproduction and mortality (assumption 6}.

3.5 Cycles and chaos

Strong density dependence functions of the scramble type can induce wild
population fluctuations even in models without any environmental varia-
tion. This phenomenon is called deterministic chaos and has been the subject
of much interest in biolegy and physics as well as other fields during the last
several years. In its simplest form, cycles caused by density dependence
proceed as follows. An initial high density (much above carrying capacity)
causes a population crash. This happens when the density dependence curve
declines very fast at high densities (to the right of the hump in Figure 3.4), so
that a very high initial density causes the density in the next time step to be
much below the carrying capacity. In the next time step, the population
starts with this very low density and, as a result, grows quickly. Such cycling
is illustrated in Figure 3.14, which shows the average densities of seedling of
crucifer Erophila vernau (an annual plant) in two types of plots: plots with
high initial density of seedlings, and those with low initial density.
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Figure 3.14. Mean density of seedlings of an annual plant in plets with
initial high and low densities. Data from Symonides et al. {19886).

Symonides et al. (1986) found that most plots with intermediate densities
stayed at intermediate density in the following year, whereas most of the
plots with high or low densities alternated from one year to the next, as
shown in the figure. This type of dynamics arises with scramble type density
dependence and high growth rates. If the growth rate is really high, the
cycles turn into chaos. Chaotic dynamics are characterized by the fact that
small changes in the initial conditions (i.e., N(0), the initial abundance) result

in much larger changes in the rest of the population’s trajectory, We will
demonsirate these kinds of dynamics in Exercise 3.4.

3.6 Harvesting and density dependence

Earlier in this chapter, we discussed Allee effects that cause inverse density
_dependence. A second, human-caused way a population may experience
wnverse density dependence is through harvesting.
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In Chapters 1 and 2, we discussed the effects of harvest or removals on
the populations of Blue Whales and Muskox. Harvesting a natural popula-
tion can be done with various strategies. Here we will consider two simple
ones: constant harvest, where a fixed rmumber of individuals are taken out of
the pepulation at each time step, and constant rate, where a fixed proportion
of individuals are harvested.

Assuming that the natural (unharvested) population itself has no density
dependence (it is growing exponentially as in the examples of Chapter 1 and
2), then it will also have no density dependence when it is harvested ata
constant rate. This is because the constant rate imposes a fixed mortality,
which is the same as reducing the survival by a fixed arnount. Because the
decrease in survival is fixed, and it does not depend on density, the popula-
tion growth (or decline, as the case may be with overharvesting) will be
density-independent.

However, the constant harvest is a different story. Suppose you decided
on a constant harvest strategy of 10 Muskox per year. If the population size is
1000, this will mean that harvesting imposes an additional 1% mortality. If
the population size is 100, the additional mortality would be 10%. The lower
the population size, the higher the additional mortality due to harvest, and
the lower the population growth rate. This obviously introduced an inverse
density dependence, because growth rate declines with declining population
density.

One of the effects of this inverse density dependence is that it tends to
destabilize the population’s dynamics. Effectively, whenever the population
is reduced by some random change in the environment or by a series of
unlucky events, the proportion of the population that is removed is greater.
The reduction in population size due to chance events is amplified by the
removal strategy. Thus, the removal strategy will increase the magnitude of
natural fluctuations and increase the risks of crossing lower population
thresholds that may be unacceptable for economic, social, or ecological rea-
S0NS.

The effect of constant harvest is similar to Allee effects, but it applies to
the whole range of population sizes, not just to small populations. Like Allee
effects, constant harvest may easily push a population to extinction, because
a lower population size may result in a decline in growth rate, which causes
further declines in the population size.

The reason this form of density dependence (declining growth rate at
low densities) is called inverse is perhaps historical; it does not necessarily
mean that the other type (declining growth rate at high densities) is more
common. A related (and somewhat confusing) terminology is positive and
negative feedback. The crowding effects are said to be a form of negative
feedback, whereas inverse density dependence {e.g., Allee effects) is a form
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of positive feedback. "Positive” in this case does not refer to the rate of
growth, but to the fact that plus makes more plus and minus makes more
minus (low abundance leads to even lower abundance).

We will demonstrate the inverse density dependence imposed by con-
stant harvest in Exercise 3.5, and we will modei the effects of different types
of harvesting in a later chapter.

3.7 Adding environmental variation

So far in this chapter, we assumed that the density dependence relationships
are constant. In other words, the growth rate of a population may change
from year to year as a result of changes in population density, but the nature
of the function that determines these changes remains the same.

How would we add environmental variation to a density-dependent
model? The density dependence function is determined by its parameters,
which, for scramble or contest types discussed above, are the maximum
growthrate, R, and the carrying capacity, K. Both of these parameters may
be affected by environmental fluctuations. We studied in Chapter2 an
example of how growth rate of the Muskox population varied from year to
year.

We can also model environmental variation in carrying capacity. This is
a more complicated congept, since carrying capacity is often measured as the
long-term average abundance of a population regulated by density depen-
dence. For a territorial species, there is usually some variation among
territories in terms of the quality of habitat. In years with unfavorable
environmental conditions these territories may become unsuitable, and as a
result the number of territories may fluctuate from year to year. This process
can be modeled by a randomly varying carrying capacity, with methods
similar to those we used in Chapter 2 for randomly varying growth rates.

In this book, we will model all environmental variation as if it affects the
growth rate and assume that carrying capacity is not subject to environ-
mental variability. We will, however, study a different type of change in
carrying capacities. This is not a random change, but a deterministic change
or a trend in carrying capacity of a population through time. By this, we
mean a change that results in consecutive increases (or decreases) in the car-
rying capacity. An example of such a decrease (a negative trend) is habitat
loss. An example of an increasing carrying capacity might be increase in
habitat quality for a forest-dwelling species as the forest grows (assuming it
is not logged). Many species, including the Northern Spotted Owl, depend
on older forests. For such species, a forested habitat will become more suit-
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able, and the carrying capacity will increase, if the forest is left undisturbed
for a long time. We will study how to model effects of such changes in
Chapter 6.

Having decided to model enwvironmental variation in growth rate, we
still need to decide how exactly to do this. We cannot use the same method
we did in Chapter 2, since now the growth rate depends on density as well
as on random environmental fluctuations. In Chapter 2, we simply sampled
a growth rate from a predetermined random distribution. The distribution
can either be that of growth rates observed in the past, or same.more general
statistical distribution. In this chapter, we modify this procedure a little.
Instead of selecting the growth rate from the same distribution every time
step of a simulation (for example, every year), we select it from similar but
different distributions each year. These distributions are similar because they
have the same shape and the same standard deviation. They are different
because they have different means. The means are different because they are
determined by the abundance or density of the population. In other words,
at a given time step, the population has a certain abundance (density), and
the density dependence relationship determines the average growth rate as a
function of this abundance. The actual growth rate for that time step is then
sampled from a random distribution with this average that was determined
by density dependence (see Figure 3.15).

3.8 Additional topics

3.8.1 Equations

There are several different ways of writing equations for the types of density
dependence we discussed in this chapter. One of the earliest equations used
was the logistic equation, which was originally developed for continuous
time (differential equation) models. Another is the Ricker equation (ex-
pressed in discrete time) that we mentioned earlier with respect to the data
on bluegill. For modeling scramble type density dependence in
RAMAS EcoLab, we use a discrete form of the logistic equation that is math-
ematically equivalent to the Ricker equation. The growth rate at time t is
calculated as a function of the density at time ¢, N{t), using the following
equation.
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N(t+1) / N{t)

N(t)

Figure ;3.15. Gonceptual model for adding envirenmental variation to
a dens!ty dependence relationship. The density dependence function
determines the average growth rate (as a function of the current abun-

dgnce). The growth rate is then sampled from a random distribution
with this average.

wlflere R, 18 the maximum growth rate and K is the carrying capacity. In
this c.hapter we use R, instead of R because the growth rate depends on
density, and its average does not make much sense. Ry is the average

growth rate at low population densities, where the effects of density depen-
dence are so weak that they can be ignored.

When the population size N(t) is small, the exponent (l = %’3) is close to
1.{?, and the growth rate R{f) is close to R,,.. When N(8) is equal to the car-
rying capacity, then the exponent is zero and R(#) is equal to 1.0. When the
population size is above the carrying capacity, then the exponent is negative
and R(t} is less than 1.0, i.e, the population declines. Combining this formula
with the population growth formuta we used at the beginning of Chapter 1
the equation for the abundance at the next time step is '

N(E+1) = N(t) - R (%)

ax
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For contest-type density dependence, we use an equation equivalent to
the Beverton-Holt equation used in fisheries management. With this equa-
tion, the growth function becomes

Rmax K
Row N@)-N()+K

N(i+1) = N@) -

This formula looks a bit more complicated, but you can easily verify. for
yourself that when N(t) is small, the population grows exponentially; when
N(})=K, the growth rate is 1.0 [i.e., N(t+1)=N{(¢)}; and when N(£)>K, the pop-
ulation declines [i.e., N{(f+1)<N(f)]. J

For ceiling type, we use a much simpler formuta:
N(t+1) = min (Ro,, - N(), K),

which says that the population size next time step is the minimum of the two
numbers, Ry, N(f)] and K.

3.8.2 Estimating Density Dependence Parameters

Developing a density-dependent population model involves three steps:
determining the presence of density-dependent population regulation,
determining the type of density dependence, and estimating model parame-
ters.

Merely observing a growth rate above 1.0 at low population densities
does not justify using scramble- or contest-type density dependence. You
need other evidence that shows that the population is regulated by these
types of density dependence. This is because the observed growth rates are
affected by factors other than density, such as stochasticity. Populations that
are not regulated by scramble- or contest-type density dependence (for
example, those that are only subject to ceiling-type density dependence} will
also frequently experience periods of positive growth, some of which will
coincide with low population sizes. If you model such a population with a
scramble- or contest-type density dependence, you may underestimate
extinction risks because of the stabilizing effect of these functions. For a dis-
cussion of complexities inherent in detecting density dependence, refer to
Hassell (1986), Hassell et al. (1989), Dempster (1983), Solow (1990), and
Walters (1985).
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Estimating the parameters of a density dependence model may be a
complicated problem. Simply using the maximum growth rate ever
observed may overestimate the strength of density dependence, since this
observed value might have been the result of factors other than the low den-
sity of the population or the lack of competition. One method is to use
time-series data to fit one of the density dependence functions. Suppose that
you have a time series of population estimates, N,, Ni, N;, elc.; and for each
time step £, you calculate the growth rate as R, =N,/ N,. The density
dependence curve discussed above suggests that, to estimate R,,,,, you need
to make a regression of R, on N,, and use the y-intercept as the estimate of
Ry {assuming it is a declining function). However, note that N, appears
both in the dependent and in the independent variable of the regression!
This implies that if N, are measured with error (as they are in most cases), or
are subject to other (stochastic) factors, then the estimate of the slope of the
regression and, hence the estimate of Ry will be biased. In particular, you
may detect density dependence even though it does not exist. Figure 3.2 in
Section 3.2.2 is another example in which the two variables (fledglings per
breeder and number of breeders) are not statistically independent.

There are no simple solutions to this problem. In some cases, averaging
the two growth rates around the time step t (N, /N, and N/N,_), and

Tegressing this variable on N, might be helpful. ¥ you use a geometric

averagegthe dependent variable becomes R =+.N, /N_ .Note that

this does not. contain the independent variable N,, thus no statistical bias
would be introduced to the estimation. '

3.9 Exercises

Exercise 3.1: Gause's Experiment with Paramecium

In this exercise, we will try to model the growth of the Paramecium popula-
tion in Gause’s experiment, using RAMAS EcoLab.

Step 1. Start RAMASEcoLab, and select the program for single-
Population models. We will start with a deterministic model, which means
we will set the number of replications to zero {this is how we tell the
Program to run a deterministic simulation). The duration should be 25 days.
The program doesn’t need to know that we are measuring time steps in
days, but we need to keep that in mind when selecting the parameters of the
model. We enter the parameters of the density dependence function in the
Population window (under the Mode? menu), which is aiso where we enter
the initial population size, 2. In addition to the initial population size, there
are three other parameters you need to specify here. Let's begin with the
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type of density dependence. If you go to the box for "Density dependence
type" and click on the little arrow to the right of the box, you will see a list
from which you can select by clicking. For this model select "Seramble.”
Another parameter is the growth rate, which shows the rate of growth at low
population sizes. This parameter should be greater than 1. We will estimate
this parameter with trial and error. Enter an initial guess, say 1.5. Note that
this is the growth rate per day, since our time step is one day. A third param-
eter is the carrying capacity, K, which is equivalent to the equilibrium
population size. Estimate this number from the average number of
individuals after day 12 in Figure 3.8, and enter it (as an integer) in the line
for carrying capacity. After entering the parameters, click "Apply.”

You can see the two types of density dependence graphs we discussed
above for your model by clicking the "Display” button in the Population
window. A menu will give you two choices. "Density dependence in R" gives
growth rate, N{t+1)/N(t), as a function of density, N(f). "Replacement curve"
(recruitment curve) gives N{t+1) as a function of N(#). Select by clicking,
When finished, close the window, and click "Cancel” to close the menu.

Step 2. Select Run to start a simulation. When the simulation is over,
select Trajectory summary from the Results menu.

How well does the predicted trajectory fit the observed one in Figure 3.8?
Does it reach the carrying capacity around day 12 as the experimental pop-
ulation did? If it reached K earlier, this means the estimated growth rate is
too fast. If it reached K later than 12 days, it means the estimated growth rate
is too low.

Step 3. Repeat Step2, by changing the growth rate according to the
results, until you find the R that fits the observation it terms of how fast the
population grows.

Compare the dynamics of the population as predicted by your model
and the real observations in Figure 3.8, especially for the second half of the
graph after day 12.

Save your modet by pressing (Cs), and typing a name for it (such as
Gausel). The program will add the appropriate file extension, and will also
save the results if they are available.

Step 4. Change the initial abundance to 800, and run another simulation.
Describe the population trajectory.

Exercise 3.2: Adding Stochasticity to Density Dependence

In the previous exercise we have ignored variation. Adding stochasticity to a
density dependent model can be done in several different ways. In this exer-
cise, we will demonstrate one of these, demographic stochasticity.
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In his experiments, Gause tried to keep the conditions in his laboratory
setup stable and was probably successful in maintaining constant tempera-
ture, light, humidity, food, etc. Despite this, we see that there is considerable
variation in the size of the Paramecium population. This variation may be due
to demographic stochasticity, as we discussed in Chapter 2. To test this
assertion, we can add demographic stochasticity to the model you developed
in the previous exercise.

Step 1. To add demographic stochasticity to a model, you first need to
change two parameters in General information. The number of replications
must be greater than zero (say, 100), and the box for "Use demographic sto-
chasticity” must be checked. This is the easy part. The difficult part is in

specifying survival and fecundity in the Population window. As we
discussed in Chapter 1, growth rate, R is equal to the sum of survival and
fecundity, since the number of individuals in the next time step is the sum of
the number of individuals that survive from this time step, plus the number
of offspring they produce that survive to the next time step. When we run a
deterministic simulation, as we did in the previous exercise, we don't need
to know what these two rates are, as long as we kniow what their sum is (i.e.,
what the overall growth rate is). However, if we want to add demographic
stochasticity, then we must also specify the survival rate and the fecundity.

In the case of Paramecium this is not very difficuit if we assume that all
reproduction was asexual (with binary fission). In this case, survival can be
assumed to be zero, and growth rate will be equal to fecundity. The growth
rate you found in the previous exercise by trial-and-error was probably close
to 2. Since binary fission produces 2 “offspring” from one “parent," this
means that the time step of one day is quite close to the generation time of
Parameciym in this experiment. To enter this information into the model, go
to the Population window and make sure that survival rate and the stan-
dard deviation of R are zero. Click "OK."

Step 2. Run a simulation. How do the trajectories with demographic sto-
chasticity compare with the observed experimental result?

Before you quit the program, save the model in a new file, such as
Gause?.

Exercise 3.3: Exploring Differences Between
Density Dependence Types

In this exercise we demonstrate the differences in population growth when

the growth rate and carrying capacity are the same, but the type of density
dependence is different.
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Step 1. Load the deterministic model of Paramecium we cleve[o.ped in
Exercise 3.1. Make sure that demographic stochasticity is not Fsed (1.e._, the
box for "Use demographic stochasticity” is clear in General lnformatlon-}.
Click OK. In Population, make sure the density dependence type is
"Scramble,” and change the growth rate to 10. Click OK, and run a simu-
lation. Look at the trajectory summary. What do you o?bserve?‘ "

Step 2. Repeat Step 1 several times by gradually increasing the grow
rate from 10 to 20. ) )

Step 3. Now change the density dependence type to "Contest,” an.d
repeat the simulation with the same growth rate that you last used. What is
the difference between the trajectories? o

Step 4. Change the density dependence type to Ceiling an_d repea't fthe
simulation with the same growth rate that you last used. What is the differ-
ence between the trajectories?

Exercise 3.4: Demonstrating Chaos

Step 1. Use the following density dependence curve (Figu:e 3.1?) to trace the
trajectory of the population for 10 time steps. The first two time steps are
already simulated. .

Sth 2. Plot a trajectory of the population (i.e., a graph of N(t) versus f).
What do you observe? .

Step g Use RAMAS EcoLab to model this population. Here are some
hints: el

* Make a deterministic model.

* The density dependence type is determined by the s:hape of the curve.

* The carrying capacity is represented by an intersection on the graph.

* Initial abundance is indicated on the x-axis of the graph. N .y

* R is represented by the slope of the curve c:lo?e to thelongm, an }:s
pretty high. Use trial-and-error, and check by comparing the figure with the
replacement curve {from "Display” in Populatmry). e

Step 4. Run a simulation, and look at the trajectory summary. Is the tra

i ?

jectory similar to what you have plotted in Step 22 ) .
J St}::p 5. Change the initial abundance, and run another simulation. Is the
trajectory similar to what you have plotted in Step 27
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Exercise 3.5: Density Dependence and Harvesting

In this exercise, you wili explore the effects of two types of harvesting in
terms of their density-dependent effects. Suppose you are harvesting a fish
species that has an average natural survival of 0.5 and a population that
fluctuates between 2,000 and 14,000. At the end of each year, you harvest
1,000 individuals from whatever number is present in the population.

Step 1. Calculate the overall survival rate of this species (i.e., the propor-
tion that survives both the natural causes of death and harvesting), as a
function of its population size, using Table 3.1 below. For each year, first
calculate the number of fish that survive the natural causes of death. Then,
subtract 1,000 to simulate harvest, divide the remaining number with the
number at the beginning of the year. In the table, the calculation for
N=10,000is provided as an example.
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Step 2. Plot the overall survival rate as a function of population size in
Figure 3.17.

Table 3.1.
Popuiation Natural  Number Number  Number  Number Ovelrall
sizeatthe x suwival = that - 10 = thal + atthe = suwival
beginning rate survive harvest ~ remain  beginning rate
of the year ‘
2000 x 05 = - 1,000 = + 2000 =
4000 x 05 = - 1,000 = + 4000 =
6,000 x .05 o= - 1000 = = 6000 = -
8000 x 05 = - 1000 = + 8000 =
10000 x 05 = 5000 - 1000 = 4000 « 10000 = 040
12000 x 05 = - 1000 = + 12000 =
14000 x 05 = - 1000 = = 14000 =
8 I A
l_“-: 0.4 - rmbeese b
g i H H H '
5 03
= ! | | : ; ; :
= 0.2 +- : ‘ :
>
o
0.1 ;
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Population size at the beginning of time step
Figure 3.17.
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Step 3. Now assume that the harvest strategy is to remove 40% of the fish
that survive the natural causes of death {(or, 20% of the total number at the
beginning of the year), instead of a fixed number. Plot the overall survival
rate as a function of population size (use the same figure, but a different pat-
tern or color of curve). Compare the two curves.

Step 4. Discuss what the long-term effects of these two harvesting strate-
gies might be on the persistence of the population.

Exercise 3.6: Density Independence Graphs

In this exercise, you will find out what the two types of density dependence
graphs we studied in this chapter look like, if there is no density depen-
dence.

Step 1. Draw and label the axis of the two types of graphs for repre-
senting density dependence.

ﬁep 2. To each of these two gxaphs add the lines representing exact
replacement.

Step 3. On each graph, draw two curves that represent {i) a population
increasing exponentially at a rate of 10% per year, and (i) a population
decreasing exponentially at a rate of 10% per year.

3.10 Further reading

Cohen, J. E. 1995. Population growth and earth’s husian carrymg CapaClty
Science 269:341-346.
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Reviews 58:461-481. . e e ¥

Hasgell, M. P. 1986. Detecting ‘dénsxty dependence. Trends in Ecology and -
_Evolution 1:90-93.

Pulliam, H. R. and N. M. Haddad. 1994. Human popuiation growth and the

carrying capacity concept. Bulletin of the Ecological Society of America
75:141-157.

Strong, D. 1986. Density-vague population change. Trends in Ecology and
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Chapter 4
Age Structure

4.1 Introduction

In developing the exponential model of Chapter 1, we used two basic demo-
graphic parameters, survival and fecundity, to describe the growth of a
population, We defined these parameters as average rates of all individuals
in the population and made the assumption that individuals in a population
can be considered to be identical. In particular, this assumption implies that
births and deaths are independent of the ages of the individuals. This might
be a reasonable assumption for some species, such as annual plants, or in
cases where the differences among individuals of different ages cancel each
other out, such that changes in the number of individuals of different ages
do not affect the growth rate at the population level. But for many species,
the age of an individual is one of its most important characteristics having
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12 Ny(r)

N(this year) = »or more generally as: N(z) =

L | Nelt) ]

Here, N,(1) denotes the number of individuals of age class x at time 1. Thus
age classes are denoted in subscripts; the maxithum age class has the sub-
script o {lowercase Greek letter omegay).

In an age-structured model, the characteristics of the age classes are
described by schedules of age-specific demographic parameters, instead of
by the overall population growth rate (or birth and death rates). These
parameters (survival, fecundity, dispersal) are conceptually similar to those
in previous chapters, with one important difference; here we assign different
values for different age classes,

b
( ' f
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(
( strong effects on’ the individual’s chances of survival and reproduction. For Strictly speaking, "age" and "age class” are different congcepts. Age is a
q example, in most plant species, the survival chances of established individ- continuous variable; for example, you can be 19 years, 11 months, and 29
uals are much higher than those of seeds or seedlings. Newly hatched young days old. Age class is discrete; until you are 20 years old, you are in the age
| of many marine animals such as marine turtles and most fishes also have class of 19-year olds. Because we emphasize discrete models in this book, we
‘ much lower chances of survival than adults. Chances of successful breeding will not worry much about this distinction. However, there are a few places
are also dependent on age in many species. where you need to be aware of whether a particular number or variable
| Differences among individuais in terms of their survival and fecundity refers to the beginning or the end of the age class.
q can have important consequences for our predictions about what the pop- As before, the time step of a model can have any units, such as years or
ulation will do in the future. These differences are also important factors in days. The same is true for age, which can be measured in any unit. In our
| terms of management options. When deciding which individuals to discussion below, we will sometimes use the word “year’ to make an
( translocate, reintroduce, or harvest, managers need to keep in mind the sur- example specific. Of course there is nothing special about this particular time
vival chances and reproductive potentials of individuals. To account for step. Age structure can be defined in years, months, days, decades, or any
q these differences, we need more detailed models than those we have ! other units that may be convenient for the particular species being modeled.
¢ developed so faz: Orfe way to add more detail into models is to partition the An age-structured model for Paramecium may define age classes in terms of
population into age classes. Such a model is called an‘age-structured model. days, whereas one for elephants may define age classes in terms of decades.
{ Consider the case in which you have gone into the field and counted the However, there are two important restrictions. First, the time step of the
( number of birds in a population. Your results say that there are 26 birds that model and the interval of an age class must be the same. For example if a
fledged last year (i.., 26 birds are less than 1 year old), 16 are between 1 and model for an elephant population defines age classes in units of one decade,
¢ 2 years old, 12 are between 2 and 3 years old, and so on. Instead of repre- it must have a decade time step. In other words, such a model will predict
( senting the population with its abundance, N, as we have done in previous the population’s abundance once per decade. The second restriction is that
chapters, we represent it by the abundances of different age classes. We can all age classes must have the same width or interval. For example, if zero-
q{« . , display these numbers in a vector, as follows ("vector” ig a mathematical year olds comprise the first age class (i.e., the one-y#ar interval from birth to
. ,, _t,e.:rmrfre_r_a column or row of nymbersy: _ = .. = o - 5 the first birthday), then the second age class must also have an inter-va]-o_fﬂ
,, . aa - ‘ : . K '5: i o one year, and consist of one-year olds (those between their first and"§gcond
N 2 5] e O A (7 ] I o - . birthdays). "The one exception to this restriction is the composite age class, ¥~ < *
, e TR \-_,:_:‘; |16 CE MO o ' ‘which is described later in the cltapter. - g e )
|

4.2 Assumptions of age-structured models

From a practical point of view, using an age-structured model implies that
one can determine the age of all individuals in the population with certainty.
The basic assumption of age-structured models is that the demographic
characteristics of individuals are related to their age, and among individuals
of the same age, there is little variation with respect to their demographic
characteristics such as chance of surviving, chance of reproducing, and
number of offspring they produce.

Initially, we will also assume that the population is closed, i.e., there is no
immigration or emigration.

Stmple age-structured populations also make additional assumptions
that there is no demographic or environmental stochasticity, and that there is
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no density dependence. In the rest of this chapter, we will develop an age-
structured model, to which we will add stochasticity (in Section 4.5) and
density dependence (in the next chapter).

For simplicity, we will assume that all reproduction takes place at the
same time. Such a model is called a "birth-pulse” population model, because
the births take place in pulses, such as during spring breeding seasons. It is
possible to construct age-structured models with the alternative assumption
that births occur continuously (for example, as in humans). Such models are
called "birth-flow" models; they are more complicated, but the principles
behind them are the same as those behind the simpler models we will con-
sider.

4.3 An age-structured model for the Helmeted
Honeyeater

We will illustrate the basic principles and concepts involved in building an
age-structured model with a hypothetical data set, based on the ecological
characteristics of the Helmeted Honeyeater (Lichenostomus melanops cassidix),
an endangered species endemic to Victoria, Australia. The Helmeted
Honeyeater is a terzitorial bird that lives in the Eucalyptus swamplands. More
detailed models for the Helmeted Honeyeater have been developed by
McCarthy et al. (1994), Pearce et al. (1994}, and Akgakaya et al. (1995).

This hypothehcal data set consists of four annual censuseg‘conducted at
the saine tim& e3¢h year, in which all individuals i the populatioii are

arj",cougind and their ages are determined. We assume that these- cénsusey are
= made rlghtrszte_r the breeding season, which we assume is short relative to

the time mteryal between the breedmg seasons.: - -l

In addition-to the basit assumptlons outlined above, we will make an
additional assumption to make the calculations easier. We assume that this
species starts breeding at age 1 and the fertility rate does not vary with age
among breeding individuals.

We also adopt the convention that individuals within their first year of
life are called zero-year olds. Thus the first age class consists of zero-year-old
individuals.

Suppose we collected the data in Table 4.1 by censusing this population
as described above. Each row of this table corresponds to one age class, and
each column corresponds to one anpual census, in which all individuals in
each age class were counted.

L1

]

M

An age-structured model for the Helmeted Honeyeater 109

Table 4.1. Number of individuals of each
age counted between 1991 and 1994 in a

hypothetical population of the Helmeted
Honeyeater.

Census year
Age 1991 1992 1993 1994

0 26 28 27 29
1 6 17 20 20
2 2 1 1314
3 9 8 9 10
4 7 6 6 8-
5 5 4 5 5
6 4 3 3 4
7 3 3 2 3
8 2 2 z_ Z°
9 1 1 1 2
Total 85 83 88 97

43,1 Survival Rates

According to the table, in 1991, we censused a total of 85 individuals, which
included 26 zero-year olds, 16 one-year olds, etc. Of the 26 zero-year olds we
counted in 1991, 17 became one-year olds in year 1992 -and the others died.

The number that survived to be one- year olds (Ny) is the number we counted

as zero-year olds (N} times the survival rate of zero—year olds (5,): =
N(1992) = Nﬂ(}991) So

We can represent this with Figure 4.1, in which the arrows represent the sur-
vival of each age class from 1991 to 1992. We did not count any 10-year olds,
which may mean that all 9-year olds died between 1991 and 1992

Another way of expressing the equation

N(1992) = N,(1991) - S,

is that the age-specific survival rate, S,, is defined as the proportion of
x-year-old individuals that survive to be x+1 years old one year later:

S, = N,(1992) / N(1991)

: ly, iy, F -
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1991 1992
No—_g Ny
N, \SL:\‘ Ny
N, \ N,
Ng &‘ Ny
" \dx'es??fg )

Figure 4.1, Survival of age classes from 1991 to 1992,

Using our data set, we calculate that from 1991 to 1992, the survival of zero-
year olds was 17/26 = 0.654. If we make the same calculation for zero-year
™ olds from 1992 to 1993;thgPurvival rate is found to be 20/28 = 0.714. Finally;
from 1993 to 1994, tHe Strvivalyrate iS 20/27 =-6.741 i Thg;siirvival rate
changes from year to-year, either because of demdgrglﬁ”g stpehasticity or

environmental variatigh- To summarize the survival rate, we can-use the x

mean and staridard déviation of these three numbers. Although the correct
way to calculate the mean is to use an average weighted by sample size (see
Section 4.7.1), for our purposes a simple arithmetic mean is a good approxi-
mation. Averaging these three numbers, we calculate that S, = 0.703. Later,
we will also use the variation in this set of numbers to add stochasticity to

our model.
For the other age classes, the calculations are similar. We can write the

above equation in a more general form:

S{t) =Ny (1) I N ()

Using this equation for x = 1,2,...,9, we calculated the average survival rates
for all classes as given in Table 4.2. Note that we did not count any 10-year
olds, so we cannot estimate S,, which is survival rate from age 9 to age 10.
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4.3.2 Fecundities

The fecundity, F,, is the average number of offspring (per individual of age x
alive at a given time step) censused at the next time step. Note that this defi-
nition incorporates a time delay between the census of the parents and the
census of the offspring. For example, the fecundity in year 1991 is the
number of offspring produced in 1991 that are still alive in 1992, divided by
the number of parents in 1991:

Offspring alive in 1992

Fil =
(8 Parents in 1991

Table 4.2. Age-specific survival -
rates based on the data in Table 4.1

Age (x) Survival rate (5,)

0.703
0717

0.751

0.769

0.746

0.717

086 . . -
0778t
0.667 » -

NN R WA - o

We can represent this with Figure 4.2, in which the solid arrows represent
the fecundity of age classes and dotted arrows represent their survival from
1991 to 1992,

As stated above, we assumne that this species starts breeding at age 1 and
the fertility rate does not vary with age among breeding individuals. In other
words, we assumed that F,=0, and Fi=F,=F=..=F,. To calculate
fecundity for the reproductive age classes, we divide the number of zero-
year olds in the next year's census with the total number of individuals aged
1 and older (potential parents} in this year’s census. For example,

7
F(1991)= % =04746 F(1992) = g =04909 F(1993) = Z—? =0.4754
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9 Ny
dies?

Figure 4.2, Fecundity (F; salid arrows) of age classes. Survivals
from 1991 to 1992 are represented by dotted arrows.

The average of these three numbers is about 0.48, which we will use as
the mean fecundity. See Section 4.7.1 for more information on estimating
fecundities. We might also have additional information about the contribu-

- tion of each age class to the production of zego-year olds. Such informatipn
allows the calculfition™of a difféfent fecundity for eack age cléfs. We. will
demonstrate how to use such information ifbane of this Chaptérﬁiﬁﬁ%é?ﬁ
Given a sefrof age-specific fecundities, the number,ofig;gﬁ-'fefa?rf‘f)ld's’ s

calculated by the formula = L P

o
g . - iy .

Nyt +1) = Fe) Nift) + FING) + FONE) + o + F(8) Ni2)

which is equivalent to

Nft+1) = i FN(H

The symbol }ci

=0

means we add for all values of x from 0 to the maximum age.
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4.3.3 Sex Ratio

If you are modeling both sexes, the fecundities should be in terms of "off-
spring (of both sexes} per individual,” and the initial abundances should be
the number of all individuals (male and female) in each age class. In the
Helmeted Honeyeater example, we have censused and are modeling both
sexes, so the fecundity is in terms of offspring per individual. In other words,
when dividing this year's zero-year olds with last year’s parents, we used
the total numbers of offspring and parents, not daughters or adult females.
Sex ratio is the ratio of females to males in a population or int an age class.
Sex ratio at birth is the ratio of daughters to sons among the offspring. In a
matrix model, the sex ratio must be incorporated into the estimation of
fecundities. If you are modeling only the female population, the fecundities
should be in terms of "number of daughters per female,” and the initial
abundances should be the number of females in each age class.
Another important point is that an age-specific fecundity should be esti-
ruated as the average over all the individuals {or all females) in that age class.
For example, assume that you are modeling the females in a bird population,

and you want to estimate the fecundity of the one-year-old age class based
on the following information.

L An average of 2.5 chicks fledged and survived to next year per nest (in
which the breeding female was one year old),

2. sex ratio at birth is 1:1 (Le., ratig qf females is 0.5), and

3. only 40% of one—ygar-old females breed.

In this case, a sex ratio of 1:1 among 2.5 chicks/nest meéans 0.5 - 2.5 = 1.25
daughters per nesting-one-year-old female. But fécundity must be expressed

+ as the average over all females in this age class. Because only 40% of one-

year-old females breed, the average fecundity for this age class is
1.25- 0.40 = 0.5 daughters per female.

4.4 The Leslie matrix

Using the equations we studied in Section 4.3, we can predict the abundance
in each age class from time step ¢ to t+1. Below, we consider the specific case
of predicting abundances for four age classes.

Nyt +1) = F(£)- No(t) + F\(1) - Ni(t) + Fy(1)- Ny(e) + F(1)- Ny(r)
N +1) = N{t)- S,
Nt +1) = N(y- S,
Nt +1) = Ny(r}- S,

.

\
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An operation that is equivalent to this set of equations is matrix multiplica-
tion. A matrix is a table of numbers arranged in rows and columns. The
matrices we will consider in this book are square tables, i.e., the number of
rows equals the number of columns. If the parameters (survival rates and
fecundities) are arranged in the form of a matrix as shown below, multi-
plying this matrix with the vector of age distribution at time ¢ gives the age
distribution at time t+1:

Nyt +1) o FOF R Ny(r)
N{+1) S5 0 0 0 N
N@+D| T {0 5 0 0 Nft)
Nyt +1) 0 0 S 0 Ny(t)

If you know matrix multiplication, you can confirm for yourself that this
multiplication is equivalent to the four equations listed above (and you can
skip this paragraph and the next one). If you don’t know matrix multiplica-
tion, it is easy to learn for this specific case (a square matrix multiplied by a
vector). Let's call the vector on the left the result vector (since it is the result
of the multiplication). The result vector gives the abundance in all age classes
in the next time step (t+1). To calculate the first element of the result vector
[which is; irr thiscgse, Ny(t+1), the abundance of zero-year olds in the next

© time step], youdo twg'things:*Ftfst yotf do an elernent-bj-element multipli-

cation $F the Jfsf row ' of he mattix by the vhctor™ on the right

o Elemerit-by-elemenj mplfy liE‘Etiof:.means that the firs€number of tfie row,
- F, i's_mg.ltipliedﬁ}g;lhe first number c_)f"_’tbe:vectpiﬁ);the second number
of the row with theecond number of the véctor, and so on. Second, you add

up all these products:
Fole) - No(t) + Fi{t)- Ny(e) + Ft) - Nyle) + Filt) “Ny(t)

This operation is the first equation for the population projection we listed
above, and gives the first element of the result vector. Next you repeat the
same process for other rows. For example, to calculate the second element of
the result vector, you do an element-by-element multiplication and summa-
tion of the second row of the matrix and the vector on the right. However,
since there are three zeros in the second row, there is only one nonzero term
in the summation (namely Nyz)-S, ). The same goes for the rest of the rows.

As mentioned above, this matrix multiplication is equivalent to the four
equations listed at the beginning of this section. You might think that the
reason we do this operation with matrices and vectors instead of the set of
equations is to make it more difficult. Actually, the reason is that the matrix

<" cation N(#)- L would be incorrect) .. _ ..
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form makes it easier to expand this model into different types of structures
that we will discuss in the next chapter. The matrix that we used in this
operation is called a Leslic matrix (named after P.H. Leslie, a population
biologist who studied age-structured models in the 1940s) and is represented
by

F, F, F, F,
S 0 0 0
L:
0 S 0 0
0 0 S, 0

where F, and §, are, respectively, the fecundity and the survival rate of the

x-year olds, as we discussed in the previous section. The Leslie matrix has a
very specific structure. The elements of the top row are fecundities. The sur-
vival rates are in the subdiagonal of the matrix. All other elements of the
matrix are zeros. Subdiagonal means below the diagonal. The diagonal is the
set of four numbers (F, and three zeros) that go from the upper-left to the
lower-right corner. Often F,=0, as in the Helmeted Honeyeater example.
The operation of matrix multiplication can be expressed in matrix notation
as

N(t+1)=L-Nft)

where L is the Leiné‘”fnatﬁg._Note that when you do this multiplication, the

matrix must be on the left and the vector on the right, L - N(t). (The multipli-

—
-

441 Leslie Matrix for Helmeted Honeyeaters

We already did the hard part of developing a matrix model for the Helmeted
Honeyeaters, by estimating the age-specific parameters. The rest is simply a
matter of arranging the survival rates and fecundities in the correct order,
which is

0 048 048 048 048 048 048 048 048 048]
0703 0 0 0 0 0 0 0 0 0
¢ 0717 0 0 Y 0 0 0 0 0
0 0 0751 0 0 0 0 0 0 0
0 0 0 0789 0 0o 0 0 0 0
0 0 0 0 0746 0 0 0 0 0
0 0 0 0 0 07117 @ 0 0 0
0 0 0 0 0 6 0806 o0 0 0
0 0 0 o 0 0 0 078 0 (
[0 ] 0 0 0 0 0 0 0667 0 J
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Note that this matrix model includes 10 age classes, for ages 0 through 9.
In fact, Helmeted Honeyeaters are known to live longer than 10 years. The
fact that we did not encounter a 10-year-old bird in our census may be
because of the small size of the population. Even if a species lives for many
decades, there will be fewer individuals in the older age classes, since some
will die every year. As a result, we may not be able to observe very old indi-
viduals in a small population. We can correct this by adding a new element
to the matrix. The lower-right corner element of the above matrix is zero. If
instead it were, say, 0.667 (the same number as Sy), this would mean that
66.7% of the individuals in the tenth age class ("9-year olds") would remain
in the tenth age class in the next year. Of course, they wouldn’t be nine years
old anymore; the tenth age class would consist of individuals aged nine
years or older. When individuals of a certain age or older are lumped into
one age class, that age class is called a composite age class. This is an efficient
way to model populations of organisms with indeterminate lifespans. it may
be useful for modeling species in which the vital rates do not change much
after a certain age, or when the available data do not allow estimation of
survival and fecundity rates separately for each age class after a certain age.
Before we rewrite our matrix model of the Helmeted Honeyeaters using
a composite age class, there is another improvement we might consider. If
you look back at the counts of older age classes in Table 4.1, you will notice
that there are few individuals aged 3 and older. This presents a problem in
estimating survival rates. Since individuals come only in discrete units, few
individuals mean-that there may be a lot of sampling error in our, estimations
- of survi®l rates. Orie way to get arqundgs‘_gm}j!_gm is te lungall these age
classes into one. If %e define the conipo g Clas as ages 3 ar}g older {in-
- stead of ages9 and older), we will Kave a more reliable’ estimiate of the
survivalTates. From the data we have, we don” t:T_Izrs convincing evidence
that the survivals are different for older birds, so it is probably reasonable to
combine them into a single age class.
Survival rates for composite classes may be calculated by pooling the
counts for the appropriate age classes. If we want to pool age class 3 and
older, the data in Table 4.1 may be simplified as follows.

Age 1991 1992 1993 19%4
0 26 28 27 29
1 16 17 20 20
2 12 1 13 14
3 9 8 9 10
4+ 22 19 19 24
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Note that, even though we want to pool all individuals age 3 and olderinto a
single age class, we still need the age 3 abundance separately. This is because
the number of animals aged 3 and older in 1991 determine the number that
are 4 and older in 1992, the number that are 3 and older in 1992 determine
the number that are 4 and older in 1993, and so on.

The survival rates of the 3+ age class from 1991 to 1992 is given by

N, (1992) 19

5,.(1991) = =
199D = 900+ 1991 ~ 22+9)

= 0.613

This represents the proportion of individuals 3 years old and older in 1991
that survived until the next census in 1992. Similar calculations give survival
rate of this composite age class from 1992 to 1993, and from 1993 to 1994

5,.(1992) =

= 0704  §,(1993) = = 0.857

(19+8) (19+9)

The average of these three numbers is 0.725. (You may also calculate a
weighted average; see Section 4.7.1.1 under Additional Topics.) Our new
model, then, has only four age classes: 0, 1, 2, and 3+. Qur new matrix is:

Age( Agel Age2 Aged+

Agel 0 048 048 048

Agel 0703 0 -. 0O 0

Age?2 0 077 0. 0 :
Age 3+ 0 -0 0.751 0Q.725 = P

The element in the lov;\zgr-right corner 6 the matrix is 5;,, the avggge sur-
vival rate of three-year-old and older individuals that we just calculated.

4.42 Projection with the Leslie Matrix

We will now use the matrix we found to predict the age structure of the
population (i.e., the abundances in each age class). After combining the
counts for ages 3 and above into a single age class, the vector of age distri-
bution for 1994 (from Table 4.1) becomes 29, 20, 14, 34. To project this
population, we multiply this vector with the above matrix:

0 048 048 048 29 33
0703 0 0 0 20 20
0 0717 0 o | |4 T |1a
0 0 0751 0725 4 35

“--AAAAAAAA‘AAAQA‘Q@-qqnq&qgn‘.AAAA‘
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Note that at every step of this matrix multiplication, we round the result to
the nearest integer. For example, the calculation for the zero-year olds is

9.60+6.72 + 16.32
10+7+16
33

048x20+048x14+0.48x 34

The total number of individuals predicted to be in the population in the next
time step is 102. Since the previous total was 97, this gives a growth rate of
102/97 = 1.052, or 5.2% growth in one year.

An interesting and important characteristic of age-structured dynamics
is that the growth of the population depends on the initial age distribution
(i, the distribution of individuals among age classes at the initial time
step). We will demonstrate this with two examples, in which we predict the
age structure of the population starting with the same total number of indi-
viduals (97), but with two different initial age distributions. The first age
distribution has about an equal number of individuals (24 to 25) in each age
class. The projection,
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4.4.3 Stable Age Distribution

If we continued the last projection above (with the unequal initial distribu-
tion of individuals among age classes), we would multiply the same matrix
with the next year's age distribution vector (15, 47, 7, 15). This would give
the age distribution for a third time step, which we would multiply again
with the same matrix, and so on. We can plot the result as a trajectory for
each age class, as in Figure 4.3.

This projection was made with the same Leslie matrix we used above, in
which we ignored all forms of stochasticity. The fluctuations in the abun-
dance of various age classes do not result from variation in matrix elements
(survivals and fecundities), but from the particular distribution of
individuals among age classes. Note that the fluctuations subside after the
fifth year, and all age classes start _to grow more-or-fess in parallel. We can

" look at this in another way, by plotting the proportion of individuals in each

age class (Figure 4.4), In this figure the total is always 1.0, and the areas show
the relative abundances of individuals in different age classes. The projection
started with about 10% (10 out of 97) in each of the three older classes (one-
year, two-year, and three-plus-year olds). After the fifth year, the proportion

0 048 048 048 24 36 in each age class becomes stabilized (notice that year 7 and year 50 have the
same distribution), even though the population is growing and the abun-
0703 0 0 0 24 17 & pop growing
0717 0 0 o P = 7 dance in each age class keeps changing, as we observed in the previous
. 0 o7y _ - fipure, e
' Pi"’ v B le 0 = 0,731 0.725 25 36 i} : - Repeatedly multiplying an age distribution by a Leslie matrix with con-
Lo b % . ' b - .. - stantelements tends to draw it to a special configuration known as the stable
.o ‘?,i’ﬁ’“ a total dﬁ;]_.@mdv,rals {36 7 1A H3E in the ?e)it yearJ:iq;junic;h d - - T ugedistribution. Before it reaches the stable age distribution, the population
" " gives a orle-yedy Epvtiv tate of 106/97=1.093, or a 9.3% incr&dse:"The . may show considerable fluctuations. These are especially pronounced if

*second examplethas & much niofé unequal initial distribution of individuals
among age classes, with only 10 individuals in each of the three older classes, |
and the rest (67 individuals) in zero-year-old age class. This projection,

reproduction is concentrated in one or two older age classes. Note that these
fluctuations are not caused by changes in the environment, but result from
the distribution of individuals within the population. Of course, the reason
that the population is not at the stable distribution may have something to

0 048 048 048 67 15 do with the environment. For example, if there is a sudden influx of individ-
0703 0 0 0 ) 47 uals, the age structure may be changed. It may also be changed if the

0 0717 0 0 Sl T 7 fecundities suddenly increase, as happened in the human population in the

0 0 0751 0.725 10 15 United States and elsewhere around the world after World War I, gener-
ating the population fluctuation known as the "baby boom."

The age structure may also change gradually, in response to trends in
vital rates. For example, as people live longer (i.e., the survival rates of older
age classes increase), the proportion of the population in older age classes
increases. Such changes have important consequences, e.g., for social welfare
programs for older people.

predicts a total of 84 individuals in the next year. This gives a one-year
growth rate of 84/97 = 0.866, which is a 13.4% decline in one year. The same
matrix (i.e, the same set of survival rates and fecundities) in equal-sized
populations predicted both a substantial growth and a substantial decline in
the population size, depending on how individuals were distributed among
age classes in the population. The next section explains the cause of this
apparent anomaly.
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Figure 4.3. The predicted abundance of zero-year-old (solid curve),
one-year old {long dashes), two-years-old {dashes), and three-years-
old and older (dots) Helmeted Honeyeaters.
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Figure 4.4. The proportion of zero-year-old, one-year-old, two-years-
old, and three-years-old and older Helmeted Honeyeaters.
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Once a population reaches the stable age distribution, the proportion of
individuais in each of the age classes remains the same. If the population is
growing or declining, all age classes (as well as the total population size)
grow or decline at the same rate. At this point, multiplying the age distribu-
tion by the Leslie matrix is the same as multiplying it by a scalar number,
Mathematically, this is

Ni+1) = L-N(t) = & N({t)

where A (lambda) is a special number called the dominant eigenvalue of the
matrix. Once at its stable age distribution, the population grows exponen-
tially with rate A. The stable age distribution is stable because, if the
population is perturbed from this configuratior, it will spontaneously return
to it over time, if the matrix elements remain constant. However, if a pop-
ulation is cycling because of density dependence, or if the matrix elements
are fluctuating because of envirorumental factors, the age distribution may
not tend toward a stable configuration over time.

The dominant eigenvalue L measures the asymptotic or deterministic
growth rate of the population, which tells how the population would be
changing if the parameters in the model were constant for an indefinite
length of time. A is often called the finite rate of increase; it is equivalent to
the constant growth rate R for deterministic exponential population growth

we used in Chapter 1. As we demonstrated with the above examples, pop-

ulation ‘growth at any particular time step is not always given by .the
daminaht eigerivalue, even if the matrix elements stay the same. In fact, it is_

only when'the population is at its stable distribution that the population’s -

overall growth. is measured by A. When the initial distribution is different
from the stable form, the abundances at the next time step must be computed
by working out the matrix multiplication of the Leslie matrix by the current
age distribution.

4.44 Reproductive Value

Both the dominant eigenvalue L and the stable age distribution are proper-
ties of a Leslie matrix; in other words, they are determined by the matrix
itself and do not depend on the abundances, or any other parameter.
Another variable that we can calculate based on a Leslie matrix is reproduc-
tive value (Fisher 193(}), which is an age-specific measure of the relative
contribution of each age class to future generations. It is the number of
offspring an individual in a given age class will produce, including all its
descendants. The reproductive value is expressed as relative to the repro-
ductive value of an individual in the first age class. Thus reproductive value
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for the first age class is always 1.0. The calculation of reproductive value is
quite tedious, so we will not cover its formula. The program RAMAS EcoLab
allows the calculation of reproductive value (in addition to stable age distri-
bution, and the finite rate of increase, &) of a matrix model; we will
demonstrate these in the exercises.

Reproductive values depend on both survival rates and fecundities. You
might think that younger classes should have a higher reproductive value
since they have a longer life {and a longer reproductive life) than older indi-
viduals. But very young individuals often do not reproduce, and may die
before they begin reproducing. Or, you might think that the age class with
the highest fecundity should have the highest reproductive value. Often
older age classes have the highest fecundities, but they may not-have as long
a reproductive life left as younger individuals.

Knowing the relative reproductive values of different age classes may be
important in several practical cases, such as harvesting. Often harvesting
may have a smaller long-term effect on the population when only the age
classes with lowest reproductive values are harvested.

Another case where reproductive values may be useful is the reintro-
duction of individuals to a location where the species has become extinct. It
may be more efficient to reintroduce individuals from age classes with high
reproductive value, instead of younger individuals who may die before they
reach _reproductive age, or older individuals who may not have a long

reproductive life'18l. However, reproductive value cannot be the only con- -
sideration in such'a decision. Also important are-spatial gonsiderations (the ,»: .
# spegiiflacations where such introduction takes,place) and the effects of agess" . -
#% - "distribution oh population fluctuations. We

"discuss the spatial consid-
erations in a later chapter. In Section4.4.3, we demonstrated how
abundances can fluctuate (even in the absence of any environmental effects)
when the distribution of individuals among age classes differs from the
stable age distribution. If a population is started with all individuals in the
same age class {for example the age class with the maximum reproductive
value), it will be far away from the stable age distribution, and may fluctuate
quite a bit before settling into the stable age distribution. Such fluctuations
may carry the population close to dangerously low levels, or may cause
uneven and rapid depletion of its resources.

Another consideration might involve the cost of the reintroduction to the
source population. If individuals with the highest reproductive value are
taken out of a source population for reintroduction elsewhere, the risk of
decline of the source population might increase. Of course, reintroduction
helps the target population. Whether this balances the cost to the source
population can anly be analyzed with a model that includes both popula-
tions.
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Practical questions such as these rarely have formulaic answers that
apply to all cases. Rather, they often require case-specific analyses. Modeling
the effects of each management option (for example, different age distrib-
utions of introduced individuals), and comparing the model results in terms
of the potential for increase or persistence, provides case-specific answers to
these questions.

4.5 Adding Stochasticity

So far our matrix models do not incorporate any of the various types of
uncertainties we discussed in Chapter 2. In this section, we will explore ways
to incorporate some of these uncertainties into Leslie matrix models.

-—

4.5.1 Demographic Stochasticity

When the number of individuals gets to be very small, there is a sousce of
variation that becomes important even if the vital rates remain constant. This
is exactly the same sort of variation we discussed in Chapter 2 when we
added demographic stochasticity to the Muskox model. Here, we will apply
the same methods to age-structured models. Suppose that the survival rate
of 3-year olds in a particular population is 0.4. If there are one hundred
3-year olds, then the number of 4-year olds next year will be about 40. How-
ever, if there are only three individuals in the age class, the numbes of 4-year
olds next year will not be 1.2, because you cannot have a fraction of an
individual We took care of this fact to some extent in our Helmeted Honey-.
eater model above, by rounding the number of individuals at éach step of the-” ™
calculation. However, just rounding to the nearest integer s not enough, as
we will see.

One way of interpreting a survival rate of 0.4 is to say that each indi-
vidual has a 40% chance of surviving. But each individual can either live or
die. We can guess the number that will survive by following the fate of each
individual, as we did in Chapter 2 for the Muskox population. In the above
example, if there are three individuals, each with a 40% chance of surviving,
we can decide on the fate of each individual by selecting a uniform random
number between 0 and 1 and checking to see if it is greater or less than 0.4, as
we did in Chapter 2. If we repeated this experiment several times, we could
end up with 1 survivor out of the three individuals at one time, 2 survivors at
other times, and even 0 or 3 survivors once in a while. The distribution of the
number of survivors after many such repeated trials is shown in Figure 4.5.
The mean of this distribution is 1.2, which is what you would expect if you
ignored demographic stochasticity. However, each value of this distribution
is either 0, 1, 2, or 3. Such statistical distributions that give only integer
values are called discrete distributions.
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Figure 4.5. Binomial distribution showing the probability a0, 1, 2 and
3 suyvivors with an initial population of 3 individuals and a survival rate
of 0.4.
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.This type of distribution, the bipémial disjribption;applies to cases

- whikre there &fe o possible outcomes (survival or deaﬂi,ﬁré‘:&ample)._You o

cart®calculdte the probability that all will ‘survive by muliplying
04-04-04 =04 and you can also easily calculate the probability that all of
them will die: (1 —0.4)>. We can make these multiplications when we assume
that the fates of these individuals are independent, given that the environ-
ment stays constant. When three events {individual 1 survives, individual 2
survives, individual 3 survives) are independent of each other, their joint
probability {the probability that all three will survive) is the product of their
individual probabilities. We couldn’t make this assumption of independence
if, for example, we knew that two of the individuals were dependent off-
spring of the third one.

We could calculate the probability of the other two outcomes (1 out of 3
and 2 out of 3 surviving) in a similar, but slightly more complicated way.
But, we will leave this tedious computations for the computer to do.
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Notice that if the number of individuals is high (for example 100),
extreme events (all survive, or all die) will be very unlikely, because their
probability would be equal to 0.4 (for all surviving) or 0.6 (for all dying)
multiplied by itself 100 times. Either of these is a very small number. In gen-
eral, demographic stochasticity is less important (compared to other forms of
stochasticity} when the population is large.

Demographic stochasticity also applies to fecundities. Mothers cannot
have a fraction of an offspring; they can only have a whole number of off-
spring. This can be modeled in the same way we did before, if each mother
had either one offspring or none at all (ie., if there are onty-two possible
outcomes, we could use the binomial distribution). If the largest possible
number is not 1, we cannot use the binomial distribution. Instead, we use
another discrete distribution, called the Poisson distribution (which we do in
RAMAS EcoLab). Learning how to use Poisson: distribution without the help
of a computer is beyond the scope of this baek.

We will demonstrate the effect of including or excluding demographic
stochasticity in the exercises at the end of the chapter. In general, demo-
graphic stochasticity should be included in all models unless the model
describes densities (such as number of animals per km?) instead of absolute
numbers of individuals.

4.5.2 Environmental Stochasticity

Natural environments often change in an unpredictable-fashion, causing
changes in a population’s demographic characteristics, such as survivals and
fecundities. If we knew which environmental factors affected which popula-
tion parameters, and we knew 6w much they affected these parameters; nd
we knew how these environmental factors would change in the future, then
we could explicitly incorporate these factors into our prediction of the pop-
ulation’s future. Such detailed knowledge of biology, meteorclogy, and their
interaction is clearly impossible at the present time, and even in the
foreseeable future.

The crude approximation to modeling the effects of environmental fluc-
tuations in computer-implemented models involves replacing the constant
parameters, such as survival rates and fecundities, with random variables.
We cannot know what the exact parameters will be from year to year, but we
can estimate from past observations what their average values will be and
the ranges over which they might vary. We can use the mean and variance of
the parameters to help us predict population abundance in the future.

This is the same approach that we used in Chapter 2. But in the case of an
age-structured model we have several parameters, including several age-
specific survivals and fecundities. Each of them can vary over time in
response to the environment. In the Helmeted Honeyeater example, we had
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three estimates for each survival rate. We used these three numbers to esti-

mate an average of the survival rate. We can also use the same set of

numbers to estimate their standard deviation. The standard deviation of
survival rates and fecundities are given in Table 4.3; these numbers are
based on data in Table 41 and on the assumption that the fecundities of all
breeding age classes (one and above) are the same. Remember from Chapter
2 that estimates of variation in a model often assume that all observed varia-
tion is due to the environment. We have made that assumption here. While
the Helmeted Honeyeater population may be sufficiently large and well
known that sampling error and demographic stochasticity are negligible,
these sources of variation usually are present-and ideally should be removed
from the estimates of environmental variation,

Table 4.3. Standard deviation of age-specific vital rates in
the Helmeted Honeyeater model.

Age Standard deviation Standard deviation
(x} of survival rate of fecundity

0 0.0364 0.0

1 0.0338 0.0075

2 0.0631 0.0075

i+ 0.1233 0.0075

5 2

) 2 ; w2 : =
How .do we use these standard deviations in a inatrix-model? At gvery «

time step, Béforemaki'ng the matrix mulfiplib?tion we discussed above, we

“-sample the elethents’ ® the matrix (survival rates and fecundities) from

random distributions. We specify this random selection process such that in
the long run the sampted survival rate of, for example, zero-year olds will
have an average of (.703 and a standard deviation of 0.0364. Because the
sampled values change at each time step, the population growth will show
some variation (as we demonstrated in Chapter 2). Of course, since the sur-
vival rates and fecundities are chosen at random, we would have little
confidence that any one simulated trajectory would actually occur. This is
because the trajectory would probably be different if we did the simulation
again. To get a prediction out of these simulations, we need to repeat them
many times. Then, even though we do not trust any particular trajectory to
represent the future closely, we could argue that the set of many trajectories
describe some statistical features of the population’s future behavior. For
instance, we can estimate a mean trend in abundance. And we can predict
the magnitude of year-to-year fluctuations that the population may exhibit
even if we cannot say confidently which years will have highs and which
will have lows.
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An important point about how these random survival rates and fecundi-
ties are selected is whether they are correlated or not. A positive correlation
between survival rates means that if there is a low survival rate for zero-year
olds in a particular year, it is likely that there will also be a low survival rate
for other age classes. We will talk about correlations in a later chapter in
another context, but for now we will just make a simplifying assumption. In
RAMAS Ecolab, we assume that all vital rates (survivals and fecundities)
are perfectly correlated. In other words, a "bad" year means that all survivals
and fecundities are lower than their respective averages, and a "good" year
means they are all higher than average. It is possible to make other assump-
tions, or to specify how exactly they should be correlated, but this
complicates the models considerably. '

4.6 Life Tables

Suppose we identified 1,000 newborn individuals, followed them through
their lifetimes, until all of them died, and at each time step (for example, each
year) recorded the number of these individuals that were still alive, and the
number of offspring they produced. This is possible to do if organisms can
be individually identified, if there is no emigration, if the parents of all off-
spring can be identified, and there is ne immigration. An example would be
to sow 1,000 seeds of a perennial plant in a plot where we are reasonably
sure that there are no other seeds to start with. We would then tag each
seedling that comes up-the following year, and every year we would count
the number of plants, and the number of seeds they produce. We would
assume that all plants develop seeds at the same time, and That we census the
population every year immediately after seed production. We also need to
be sure that all seeds germinate or die before the second census (i.e., there is
no "seed bank”). Such a data set would look like Table 4.4.

This is called a cohort life table. A cohort is a group of individuals born at
the same time (or within a short interval of time, for example in the same
breeding season). A cohort life table describes the demography of a single
cohort. It is also called a dynamic life table, since it follows individuals
through time. In the table, the first column shows the age (in years, denoted
by the symbol x), and the second column shows the number alive at the
beginning of that age {N,). The first age is age zero, and the number alive is
1,000, since this is the starting number of individuals. The third column
shows the number of offspring they produced at a given age (B,). These are
all the data; the rest of the table shows various variables calculated from
these data.
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Table 4.4. Life table for a plant species.
1 @ G @ 5) (6) (7) (8) %)

x N, B, L 35, m, lm xlem e™Im,
1000 0 1.000 0.186 0.00 0.000 0.000 0
186 0 0186 0.312 0.00 0.000 0.000 0

58 690 0.058 0586 11%0 0690 1380 04730
34 465 0034 0647 1368 0465 1395 0.2639
314 0022 0545 1427 0314 1256 0.1475
2 201 0.012 0417 1675 0201 1005 0.0782
5 87 0.005 0400 1740 0.087 0522 0.0280
1(2) 35 0002 0000 1750 0035 0245 0.0093

00 1 S o W k=D
™2
ha

0 0.000 0 0 0 0 0
Total = Ry = 1.792 5803 1.0000

T = 3238

Te = 0.180

r= 0189

R = 1208

4.6.1 The Survivorship Schedule

Thg fOI:lrth column of the table (labeled [) gives the survivorship schedule,
which is the Qroportion of the"originabruumber. of individuals 4a the cohort
that are still alive at the beginning of age x, Survivorship for agd is6y defi-

nition equal to one. The survivorship to age x is calculated by.dividing the =~

number alive at age x«d,; the sécond column) by the sfirting number.&f
individuals #1000 in this case): : .8

I
&=

Be careful not to confuse survivorship (I,) with the survival rate (S;
columnE:i in the table) that we used in the Leslie matrix, although both ariz
age-specific rates, and both can be expressed as probabilities. Survival rate is
-the probability of surviving from a given age to the next, whereas survivorship
is the probability of surviving from birth to a given age. For example, survi-
vorship to age 2 is calculated as
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whereas the survival rate for age 2 (from age 2 to age 3) is calculated as

N, 34
== =—=10586
_ §, N, "% 0.5
To calculate survival rate for age x from survivorship, divide the survivor-
ship for age x+1 with the survivorship for age x:

lx+l

S =
x [x

To calculate survivorship (to age x) from survival rates, you need to multiply
all survival rates up to, but excluding, x:

lx = SU Sl t Sx—-]

This is because the survivorship is the probability of surviving from birth to
the beginning of age x, for which the individual must have survived from
age 0 (birth) to age 1 (S;), then from age 1 to age 2 (5,), etc., and finally, from
agex-ltoagex(S,. ).

The survivorship schedule is a monotonically decreasing function, which
means that as you increase ¥, [, either decreases or stays the same, but does
not increase. (Can you explain why?). The plot.of ; as a function of xis called
a survivorship curve; its shape characterizes the life-history of a species. For
example, consider the curves in Figure 4.6 (note that the survivorships are in

logarithmic,scale). ' ) £ Py
The shape of the survivorship curve is a function of the distribution of

mortality among age classes. If mortality is quite low for most of a species’

life, and gets high only at the end, the result is a Typel survivorship curve,
which is typical of human populations. In some species, the mortality is
much higher in younger age classes, and lower in older classes, giving a
Type Il curve. If mortality is constant throughout a species’ lifetime (i.e., all
age classes have approximately the same survival rate), the result is a Type Il
curve. All three of these curves are simplifications. In reality, most species
have survivorship curves that are intermediate between, or a mixture of, two
or three of these types. For example, the survivorship curve for Orchesella
cincta, a forest insect (the dotted curve; van Straalen 1985) indicates that this
species has a relatively high mortality in the youngest age class (the curve
starts with a steep decline, as in the Type IIT curve), relatively low mortality
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Figur.e 46. Three idealized types of survivorship (/) curves as a
function of age, x (solid curves), and gurvivorship curve for Crehesella
- cincta, a forest insect, with %g_gin weeks (dotted curve; data from van
- Straalen 1985). v S T
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‘in middle ages (the curve Tevels off, as in the. Type T curve), and relatively

high but constant mortafity in older ages (the curve ends as’in a Typell
curve).

4.6.2 The Maternity (Fertility) Schedule

The third column in Table 4.4 gives the total number of seeds produced by
plants in each age class. To calculate fertility, we divide these numbers with
the corresponding number of individual plants in each age class. The results
are in column 6, labeled m,, and gives the average number of seeds produced
by a plant of age x.

It is important to note the difference between fertility (m,) and fecundity
(F,) that we use in a Leslie matrix. Fertility gives the number of offspring
{e.g., seeds) produced by an individual in a given breeding season. The
fecundity, F,, is the average number, per individual of age x alive at a given
.time step, of offspring censused at the next time step. Fecundity values
Incorporate two kinds of mortality over the time step. Some of the individ-
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uals {plants) that were alive during the last census die before reproducing,
and some of the offspring (seeds) that are produced die before they can be
counted in the next census. The difference will become clearer when we con-
sider how to construct a Leslie matrix from life table data, later in this

chapter.

4.6.3 Life History Parameters

There are a number of other life history parameters that can be calculated
based on the survivorship schedule I, and the fertility schedule m, One of
these is the replacement rate, or net reproductive rate (R;). Do not confuse
this with the replacement curve (see Chapter 3), or with the growth rate (R).
Net reproductive rate is a measure of the expected number of offspring pro-
duced by an individual over its lifetime (for a female-only model, it is a
measure of the expected number of daughters produced by a female over her
lifetime).

The net reproductive rate is calculated by summing up the product{, - m,
{which is given in column 7 of Table 4.4) over all age classes:

Rﬂ = E[xmx

In this and the following equations, the sigma symbol (¥) indicates summa-
tion over all age classes. Another useful life history parameter is the
generation time (T;;), which is a measure of the average age of reproduction.
To calculate generation time, first calculate the product x - [, - m,_ (which is
given in column 8 of the table) for ‘each age class, then add these producty™
over all age classes. Finally divide this number by the net reproductive rate.

Yxlm, Txim,
& zlxmx B RU

Generation time and net feproductive rate allow the computation of the
finite rate of increase that we introduced in Chapter 1, and discussed above
for the Leslie matrix. In life table calculations, it is usually another measure
of growth rate that is calculated. This is the "instantaneous rate of growth”
(r), which is approximately related to the finite rate of increase as

r=In{R)

or
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The instantaneous rate of growth (r) is calculated by finding the value of r
that satisfies the following equation (assuming the index for the youngest
age class is 0):

Ye™lm, =

To find r, you start with an estimate r,,, and calculate the above equation. If
the result is greater than 1.0, you increase r.; if it is less than 1.0, you decrease
Tesx- Then you evaluate the equation again, until the sum is 1.0 (this iterative
process may take a long while with a calculator, but it is quite easy to do if
you know how to use spreadsheet software). A good initial estimate for 7, is

_ In(Ry)
Foo = TG

Our table of the plant population shows the calculation of these life history
parameters under column 7 and in column 9.

4.64 Life Table Assumptions

A cohort life table such as the one we have been analyzing makes a very
important assumption. [t assumes that as a cohort ages, the vital rates change
only as a function of age. I, pther words, the observed difference in survi-
vorship and fertility in different time steps 5% because the individuals are
aging. We know from Chapter 2 that they may also be changing because of
changes in the environment, For exainple; according to the table, the survival
rate was 0.586 in year 3 (when the plants were 2 y®ars-old) and 0.647 in year
4 (when the plants were 3 years old). We interpreted this difference as 2-year
olds having a lower survival rate than 3-year olds. Another possibility is that
year 3 was a worse year for survival of these plants than year 4. There is no
way of knowing which explanation is true, unless this was an experiment in
controlled laboratory conditions.

Compare this with the type of data we used for constructing a Leslie
matrix for the Helmeted Honeyeaters earlier in the chapter. Because all age
classes were present in all years, we were able to estimate the survival rates
for multiple years and get an idea of their fluctuations due to the changes in
the environment. In a cohort life table, one age class is present only in one
year, making it difficult (if not impossible) to separate the effects of age
versus environment on the vital rates. Because we do not know the effect of
the environment on survivorship and fertility schedules in a cohort life table,
we cannot trust the various life history statistics (net reproductive rate,
instantaneous rate of increase, etc.} calculated from these schedules. They
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will give a summary of what happened during the lifetime of a particular
cohort, but they may not be representative of the dynarnics of the population
in general.

If this is the case, you may wonder why we spent all this time discussing
life tables. Unfortunately, data are often in short supply in ecology. Often, a
cohort life table may be the only demographic data available for a particular
species. In such a case, it is important to be able to make as much use of such
data as possible, without forgetting the assumptions of models we construct
based on such data. In the next section, we will discuss how. Jife table data
can be used to construct a Leslie matrix, ‘ %8

In the preceding sections, we concentrated on cohort (or, dynamic) life
tables. Another type of table is called a "static life table," and consists of
counts of individuals in different age classes at one time step (ie, like a
snap-shot of the population). To imagine this, replace the N, column of the
cohort life table with one of the columns of Table 4.1 (a Helmeted Honeyeater
census at one particular year). If you calculated the life table statistics of such
a table several times, each time with another year’s census, you would get
different results. There are two reasons for this. First, the survival rates are
changing every year (as we calculated) as a result of environmental fiuctua-
tions. Second, even if the environment did not change, the proportion of
individuals in each age class change because the population is not at its
stable age distribution. So, two conditions are necessary for a static life table
to give results representative of the long term future of the population: the
vital rates (i.e., environment} must stay relatively constant from one year to

_the next, and the population must be at its stable age distribution. These two

* conditions are rarely met in nature, so statig life tables are even less reliable
--than cohort life tables.

4.7 Additional topics

4.7.1 Estimating Survivals and Fecundities

In this chapter, we discussed simple methods of estimating survival rates
and fecundities. In this section, we mention a few more advanced methods
for estimating these vital rates from data.

4.7.1.1 Weighted Average for Survival Rates

In Section 4.3.1 we used a simple arithmetic average of the three consecutive
estimates of §; (the survival rate of zero-year olds). The simple arithmetic
average is the sum of three ratios, divided by three:

-
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N,(1992
S{):%_[ 1(1992)

N(1993)  N,(1994)
N,(1991)

Ny(1992) * Ny1993)

This was justified because all three estimates were based on similar numbers
of individuals (26 to 28). However, if the number of individuals in the
denominators are very different, it is better to use a weighted average. This is
because, in general we want averages to be influenced more by estimates
based on larger sample sizes. To calculate a weighted average, we simply
multiply each number with a weight (W) and divide the sum with the sum of
weights:

- t N,(1992) . N,(1993) N,(1994)
O W+ W+ W) VUONQ1991) T T ON[(1992) T P Ni(1993)

Note that if all weights are equal to one (W, = W, = W, = 1), then this formula
is the same as the previous one.

What should the weights (W) be? The simplest option is to make them
equal to the denominator, i.e., the number of individuals on which the sur-
vival rate is based. If you substitute the appropriate N(t) for each W in the
above formula, and simplify, you get:

e e N(1892) + N(1993) + N,(1994) R
T TRTTO90) + N(1992) + Ny(1993)

-~

o T R S oo -~
In the Helmeted*Hémeyeater example in Table 4.1, the average survival "of

Pt
zero-year olds1s

S=(17+20+20)/(26 +28 +27)=0.704

which is slightly different from the simple average of 0.703. If the differences
among the counts in different years were larger, the difference between the
simple and weighted averages would also be larger.

4.7.1.2 Mark-recapture

Suppose you caught 100 birds from an isolated population, marked them
with bands and released them back to the same population. One year later,
you again catch 100 birds, and observe that 10 of them have bands from last
year (i.e, they are recaptured). This amount of information does not allow
you to estimate a survival rate, because obviously you might not have
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caught all the marked birds that are still alive. In fact, if you come back the
following year, and catch 100 birds, you might recapture some birds that you
have marked in year 1 but did not recapture in year 2.

However, if you continue this study for several years in a row, you can
use this information to estimate survival rates. The statistical methods used
in mark-recapture analyses do this by estimating the probability of recap-
turing a marked animal, in addition to the probability that it is still alive (i.e.,
the survival rate). A detailed discussion of mark-recapture analysis requires
considerable statistical background and is beyond the scope of this book.
However, such analyses are facilitated by specialized software such as CAP-
TURE, JOLLYAGE, and MARK, You can read about the program MARK at
http:/ /www cnr.colostate.edu/ ~gwhite/mark/mark htm. Pollock et al.
(1990) provide an extensive review of the topic; for a summary of more
recent developments, see Burnham and Anderson (1992), and Lebreton et al.
{(1993).

4.7.1.3 Estimating Fecundities with Multiple Regression

If we suspected that different age classes might have different fecundities (in
other words, if we did not want to assume that F, = F, = F, = ... = F, as we did
in the example in Section 4.3.2), then we would need a way to calculate these
different values. We might, for example, do a multiple regression analysis.
Regression is a statistical method for finding a relationship between a
= ~dependent variable (in this case, number of offspring surviving to the next
census), and an independent variable (in this case, number of potential
- breeders). Multiple regression is used when there are several Independent
variables (in this case, number of breeders in each age class). >
In the following hypothetical example, the species has just two adult
breeding ages, 1 and 2.

Year Ny N, N,
0 80 21 14
1 85 11 5
2 45 18 11
3 73 28 18
4 104 15 14
5 90 23 14
6 88 19 9
7 55 17 12
8 52 27 10

Data from field censuses are rearranged as follows
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Year NyD  Nyft-1) Nyt-1)
1 85 7 14 -
2 45 11 5
3 73 18 11
4 104 " 28 18
5 90 15 14
6 88 B 1
7 55 19 9
8 52 w12

The data for breeders (N, and N,) are shifted down one year in relation to the
data for recruits (N,). This is because the ruumnber of recruits this year is
predicted by the number of breeders in the previous year. This relationship
is expressed more formally as a regression model:

No(8) = by + b, N (t-1) + b, N,(1-1) + error

A solution for the coefficients, b, is found that best explains the data. The
first regression coefficient (b,) is the constant term, and should be set to zero,
unless there is evidence of zero-year-old immigrants from outside the pop-
ulation studied. The coefficients &, and b, are the age-specific fecundities F,
and F,. In this example, the regression analysis gives the relatienship:

- N(9) = 0.66 N\(t=1) + L0 N(r-1).

. Pl X ..J' - ]
This relationship explains about 78% of the variation in the number of
recruits at each census. Any such analysis should be tempered by biological
knowledge. For example, tliis 't'es;l;lf shc:u_id. concur with direct and indirect
field observations that two-year olds are much more successful at reproduc-
tion than one-year olds.

Such results are very sensitive to errors in the data. Removing just the
last observation changes the estimate of the coefficients to 0.3 and 5.7,
respectively. That is, the fecundity estimate for one-year olds is halved. A
complete treatment of multiple regression is well outside the scope of this
beok. For more information, see Sckal and Rohlf (1981).

4.7.2 Estimating a Leslie Matrix from a Life Table

Our focus in this section is using life table data to construct Leslie matrices.
As we discussed above, this may be necessary because in some cases you
may not have the type of census data we used for the Helmeted Honeyeater.
The methods we will discuss below can be useful even if you have such
census data. I some cases, younger age classes may be difficult to census
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because of their size. In other cases, the census method may work only for
the breeding population (for example, only territorial owls respond to calls
by surveyors; juvenile salmon disperse to the ocean and cannet be censused
before they return to rivers to breed). In such cases, fecundities (F,) may need
to be estimated based on measures such as number of chicks fledged per
nest, average litter size, belly counts, or a comparable measure that tallies
newborns. If you have such measures (which we call fertilities or maternities,
), you must modify these vatues to use them in a Leslie matrix. How you
do this depends on the scheduling of censuses in relation to mortality and
reproduction, and on the definition of age of an individual. In other words,
when using life table data to construct a Leslie matrix, you need to be aware
of the timing of the census in relation to the breeding seasor. In Figure 4.7,
the large black dots represent breeding, Remember that we are assuming a
birth-pulse population, in which all breeding takes place in a short period of
time. The dotted lines represent reproduction, and the Solid lines represent
the survival of each cohort.

ge ®
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Pre-breeding Census

Post-breeding Census

Figure 4.7. The scheduling of census in an age-structured population.

Assume that we are studying an animal species that breeds once a year,
and lives for three years; in other words, individuals die after reaching their
third birthday but before reaching their fourth birthday. We will define "age"
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as follows. Individuals within the first year of life are "zero-year olds."” These
individuals become "one-year olds" immediately after the next breeding
season. This is represented by the solid arrow that goes down from N, before
the census (on the left side of the vertical line) to N, after the census (on the
right side of the vertical line).

It is important to be clear about how age is defined: In some studies,
individuals that have survived their first winter are often called one year old,
even if it is before their actual first birthday. Thus newborns become one-
year olds just before the next breeding season. Here we call such an
individual zero-year old until after the breeding season. The two definitions
of age do not make any difference to the numerical values of the elements of
the resulting Leslie matrix, as long as one definition is consistently followed.
Keep in mind that as a result of the definition we adopted, m, does not refer
to the fertility of newborns; it refers to the fertility of individuals that have
lived for almost a year.

The definitions of various parameters are the same as earlier in this
chapter: The age-specific parameter S, is the survival rate from age x to age
x+1, 50 Sy is the proportion of newborns that survive to become one-year
olds. The age-specific parameter m, is the maternity (fertility) rate, which is
the number of offspring per individual of age x. If only females are modeled,
it is number of daughters per mother (see the section Sex rativ above). The
abundance of x-year olds is represented by N,, and f denotes the time step.

et ‘W will now cohsider two separate cases. For the firsPtase, assume tHat -

we census the population just before the annual reproduction (a "pre-

breeding" census)eand concentrate on the two columns to the left of the two-

" —breeding points at times -1 dnd ¢. We assufne that there is no mortality
between the census and the subsequent breeding. Note that in this census the
youngest animals we'll census will be almost (but not quite) 12 months old.
According to our definition of age classes, this first age class is zero-year
olds, the second age class is one-year olds, etc. At time ¢, the number of one-
year olds will be the number of zero-year olds in the previous census, times
the survivai rate of oneyear olds during the past 12 months:
N(£) = Ni(t-1)-5,. So, the first survival we use in our Leslie matrix (second
row, first column) should be §,.

Next, we need to compute fecundities for the Leslie matrix (this is the
tricky part). Remember the definition of fecundity from Section 43.2: The
fecundity, F,, is the average number, per individual of age x alive at a given
time step, of offspring censused at the next time step. So, fecundity of, say,
two-year olds is the number of zero-years olds at time ¢ praduced by indi-
viduals who were two years old at time #-1. Look at the two-year olds at
time (-1 in the figure. There are two "N,"s for time {-1. Look at the one on the
left, because we are now working on the pre-breeding census case. How
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many of their offspring become one-year olds at the next time step? Follow i
the arrows between "N, for time -1 and "N," for time ¢. There are two
arrows, labeled "m," and "S;". This is because an average two-year-old pro-
duces m, newborns {m is fertility), of which m, - 5, are censused as zero-year
olds at the next census. So, the fecundity of two-year olds is their fertility ‘
multiplied by the survival rate of zero-year olds; l

Fi=my-§

and similarly for other are classes:

Combining these formulas, we get a Leslie matrix for pre-breeding census,
which is multiplied by the vector N(t-1) to give N(#):

No(t) meSy mySy mySy|[ Nyt -1)
N =] § 0 0 [|N(E~1)
N, () 0 S, 0 || N(z-1)

For the second case, assumdthat we census the population just-after thig
annual reproduction (a "post-breeding” census). In Figure 4.7, concentrateon
the columns of N, to the right of the breeding points. A pest-breeding census
model assumes that there is no mortality between breeding and the subse- «
quent census. Note that in this census, the youngest animals censused will be”
newborns, so the first age class {zero-year olds)} in this case refers to a
different set of individuals than in the previous case. The number of one-
year olds will be the number of zero-year olds in the previous census times
the survival rate of zero-year olds during the past 12 months:
Ny(t) = Ny(#-1)-5;. So, the first survival we use in our Leslie matrix (second
row, first column) should be S, This is different from the previous (pre-
breeding census) case.

Next, we have to compute fecundities. The abundance of the first age
class is Ny. The fecundity of, say, two-year-olds is the number of newborns at
time ¢ produced by individuals who were two years old at time -1, Look at
the two-year olds at time -1 in the figure. There are two "N,'s for time ¢-1.
Look at the one on the right, because we are now working on the post-
breeding census case. How many of newborns did these individuals produce
at the next time step? Follow the arrows between "N," for time t-1 and “N,"
for time t. There are two arrows, labeled "S,” and "m,". This is because on
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average 5, of these individuals survive until the next breeding season, and
those who survive produce m, newborns (m is fertility). So, the fecundity of
two-year olds is their survival rate from age 2 to age 3 (5;) multiplied by their
fertility (m,):

F,=8-m
and in general,

F.=8m,

The Leslie matrix for post-breeding census, multiplied by Nit-1) gives:

No()] [Some Simy Samy O] Nyt - 1)
Noyl | s o o o me-1
volsl o s, o oflme-1
Mol 1o o s, oflme-1

-

Note that this matrix has one more row and column than the matrix for pre-
breeding census, since three-year olds are also observed. Note also that even
though the last column is all zeros, we still keep it to tally the three-year olds.
For example, assume that we have estimated the following maternities
(sty from observations of fledglings per nest) and survival rates (say from a
mark-recapture study) and tha’c we are modeling only thefemale popula-
tion. _ PR o -~ .,
rgy mg—OS 5,=03 & S
m=25 5, =08 . !
m,=3.0 5,=05

Now, if the initial abundances have been estimated in a pre-breeding census,
then the Leslie matrix will become

0.5x03 25x0.3 3.0x03 0.15 075 09
0.8 0 0 =08 0O 0
0 0.5 0 0 05 0

This matrix will predict, for each time step, the population size and structure
just before breeding. You should keep this in mind when interpreting
results, and also when deciding on a quasi-extinction threshold.

}_

Additional topics 141

If, on the other hand, the initial abundances are estimated in a post-
breeding census, the Leslie matrix becomes

03x05 08x25 05x30 0] [015 20 1.5 0
0.3 0 0 0o/ |03 0 0 ©
0 0.8 0 0"l 0 08 0 O
0 0 05 0 0 0 05 0

This matrix will predict, for each time step, the population size and structure
right after breeding. This matrix is reducible as a result of a zero fecundity in
the last element of the first row (see Caswell 1989}, If you delete the last row
and column the matrix becomes

015 20 15
03 0 0
0 08 0O

which has the same finite rate of increase as the two other matrices above.
The difference is that, this will not allow the model fo include the last age
class (three-year olds) in the total population abundance. You may or may
not want this; in this example, the three-year olds do not breed after they are
counted in a post-breeding census, so it may be okay to exclude them from
the total abundance.

4.7.3 Estimating _Variation -

Given a time series of estimates for a particular vital rate (say, zero-year-old
survival rate), we can estimate the standard deviation of this vital rate using
built-in functions in a calculator or spreadsheet software. However, this
seemingly simple procedure may have many complications. In this section,
we discuss two of these.

4.7.3.1 Variance Components

As we mentioned in Chapter 2 and again here in Chapter 4, elements repre-
senting the uncertainty in a population model must be estimated from data.
In many instances, a single estimate of variation is available for each
parameter. We know that this variation has several sources, but rarely are
corrections made to identify the sources of the various components of the
total variation. The total variance (var,,,) in each parameter may be decom-
posed as:

-
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Vartotal = Val.gyironment + Varsmnple + vardemngmphy + varspac:

where var, ..., represents variation from year to year {or census to
census} that is the result of the population’s response to environmental vari-
ation, Var,yy. represents measurement error, Valgumegmphy 15 Variance due to
demographic stochasticity, and var,,., is the spatial variance among
estimates that is due to measurements taken at different places. To these
terms we could add covariances between each combination of sources.

If measurements from one year to the next are always taken in the same
place, then var,,,., may be ignored. The act of sampling itself may affect the
values that are likely to be recorded next time (the development of trap shy-
ness in animals, for instance). For survival rates the term VAT gemography 15 €QUAL
to the binomial variance, p(1-p}/N, where p is the survival rate and N is the
number of individuals, so that if N is large (more than about 20), usually the
term may be ignored. Sometimes, estimates of numbers come with an esti-
mate of the associated measurement error. Assuming no covariance between
sources, this would provide the means of reducing the total variance to its
individual components.

4.7.3.2 Variance of Sums and Products

Often data will involve the sum of independent components, each of which
has a variance associated with it. Such circumstances occur when creating
composite classes, of ‘when estimating abundance from spatially separate
areas. Then, the variance (var,,) of the sum of two numbers is the sum of
their respective variapces plus 2 times their covariance (cov.,):

-

Var,, = Var, + van, + 2 covy,

In some circumstances, it may be necessary to estimate the variance of the
product of two numbers, each of which has a variance associated with it. For
example, when the data come in the form of maternities and survivorships,
fecundity is given by

F=m-§
The variance of the product of two values {1 and 2) is given by

vary, = var(mean,)” + var, {mean,}* + 2 mean, mear, cov,,

sasimmen
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4.8 Exercises

Before you begin this set of exercises, you need to know a few things about
RAMAS EcoLab. For age- and stage-structured models, click on the icon for
"Age and stage structure” from the RAMAS EcoLab main program (shell).
This program works just like the previous program (Single population
models), except for the larger number of parameters, See the Appendix at the
end of the book for an overview of RAMAS EcoLab. For on-line help, press
(1, double click on “Getting started” and then on "Using RAMAS EcoLab."
You can also press Fl) anytime to get help about the particular window (or,
dialog box) you are in at that time. To erase all parameters and start a new
model, select "New" under the Model menu (or, press [CieiN)).

Note that the same program is used for both age-structured models and
stage-structured models. In RAMAS EcoLab, the Leslie matrix of an age-
structured model is entered in the Stage matrix (under the Model menu).
The matrix is called a "Stage matrix,” and the classes are called "stages" in
RAMAS EcolLab, even if the classification is actually based on the age of
organisms. This is because "stage” is a more general concept, and age-
structured models can be considered as a special case of stage-structured
models {we will discuss this in the next chapter). Therefore, many parts of
the program refer to "stages,” which you should assume to be "ages” for the
exercises of this chapter. For example, in various windows, the classes are
labeled by default as "Stage1," "Stage 2," etc.; however, the actual meaning of
stages depends on the particular model. For example, if the model is age-
structured, "Stage 1" (i.e,, the first age class) may refer to zero-year-old or
one-year-old individuals, depending on the way your rolel is structured.
Therefore, you should change the default labels to fit your model. This is
done in the Stages dialog box, which is selected from the Model menu,
Before you can enter the elements of the matrix, you must first decide on the
number of age classes and enter each age class in the Stages diatog box
{click the Help button for more information). There are two constraints that
apply to age-structured models: all matrix elements must be nonnegative,
and survival rates must be less than one. RAMAS Ecolab checks both of
these, as long as the box for lgnore constraints in General information, also
under the Model menu, is clear {not checked). This option should always be
cleared for age-structured models.

When entering data for an age-structured model, make sure that the
matrix in the Stage matrix (under the Model menu) has the structure of a
Leslie matrix; fecundities should be entered in the top row, survival rates
should be in the subdiagonal, and all other numbers should be zero. Make
sure that survival rates are not on the diagonal by mistake.
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Exercise 4.1: Building the Helmeted Honeyeater Model

This exercise is designed to familiarize you with the program and to review
the various concepts introduced in this chapter. We will begin by entering
the basic parameters for the Helmeted Honeyeater matrix model we have
discussed above.

Step 1. Start RAMAS EcoLab and select the program "Age and stage
structure” by clicking on its icon.

Step 2. Start a new model. This will open the General information
window. Type in appropriate title and comments {which should include
your name if you are going to submit this work for assessment).

Enter the following parameters of the model. Remember that setting the
niurnber of replications to 0 is a convenient way of making the program run a
deterministic simulation.

Replications: o
Duration: 50
[]Ignore constraints (clear)

Note that the parameter related to demographic stochasticity is ignored.
This is because when the number of replications is specified as 0, the pro-
gram assumes a deterministic simulation. This parameter is ignored because
it is relevant only for stochastic models. After editing the screen, click the
"OK" button. (Note: Don't click "Cancel" or press to close an input
window, unless you want to. undo’ the changes you have made, in this
window.) ’ -

Next, select Stages (again, under the Model menu). Click the "Add”

button to increase the number of stiges to 4. Click on thé top cell under
"Name." Change the default name, "Stage 1," by typing "Age 0." For the other
rows, type "Age 1," "Age 2" and "Age 3+". The window should now look like

E Stages

-
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Click OK. Select Stage matrix. Click on the matrix element in the first
column and second row, and type 0.703 {the survival rate of zero-year olds).
Type the other elements of the matrix (survivals and fecundities) as esti-
mated in Section4.4, and displayed at the end of Section4.4.1. When
finished, the matrix should look like

* Stage Matrix

Click OK.
Step 3. Next, select Initial abundances and enter the abundances in
1994, Don't forget to combine the counts for ages 3 and above into a single

age class (the numbers should be 29, 20, 14, 34). When finished, click OK, and
save the model in a file.

Step 4. Select Run to run a simulation. The simulation will run for 50
time steps, and you will see "Simulation complete” at the bottom of the
window when it's finished. For a deterministic simulation, this will be quite

quick. Close the Simulation window, and select “Trajectory summary" from

the Results menu. You will see an exponentially increasing poptHation tra-
jectory. Click on the second button from left ("show numbers"} on top of the
window to see the results as a table of numbers. The first column shows the
time step, the others show five numbers that summarize the total abundance
{of all age classes} for each time step: (1) minimum, (2) mean - standard
deviation, (3) mean, (4) mean + standard deviation, and (5) maximum. All
five numbers should be the same (because this is a deterministic simulation).
Make a note of the last two, i.e., N(49) and N(50). Calculate the growth rate
from year 49 to year 50:

N(S0)

R(49) = N@9) s :

!
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This is an estimate of the finite rate of increase (A) because (1) the model
does not have any type of stochasticity or density dependence, and (2) the
simulated time (50 years) is long enough that we can assume that the pop-
ulation has reached its stable age distribution. Now, let’s check this last
assumption.

Step 5. In RAMAS EcoLab, you can cutput the final age distribution after
a simulation. This is the abundance of individuals in each age class at the end
of the simulated time period. From the Results menu, select "Final age/stage
abundances” and click the "show numbers” button. This table gives the
abundance in each age class at the end of the simulation. Write down the
numbers in each class, and then compute the proportion of individuals in
each age class:

_ Nf50)
0T NGO T

tow

Note that N,(50} is the number of x-year olds in year 50, and N{50) is the
number of all individuals in year 50. If the population has reached its stable
age distribution, these numbers should be the same as the stable age distri-
bution calculated based on the matrix. Let’s check if this is the case. Close the
result window and select Stage matrix from the Model menu. Click the
"Display” button, and select "Finite rate of increase” by clicking on it. The
program will display various statistics about this Leslie matrix in numerical
form. Scroll down the window to see the value of the finite rate of increase
{(1). Below that, various variables are tabled numerically. In addition to the
stable age distribution and reproductive value distribution, here you can see
the initial age distribution {i.e., the proportion of individuals in different age
classes at the beginning of the simulation), and average residence times (we
will discuss the average residence times in the next chapter). Notice that the
initial age distribution is different from the stable age distribution.

Step 6. Compare the stable age distribution with the final age distribu-
tion you calculated, and the finite rate of increase with the growth rate from
year 49 to year 50.

o e e
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Step 7. Repeat steps 3 through 6 with a different age structure. Fnter the
initial abundances as 67, 10, 10, and 10 for the four age classes. Note that the
total initial abundance is the same as in the previous case, but with more
zero-year olds and fewer individuals in other age classes. Does the popula-
tion reach stable age distribution in 50 years? Is the growth rate from year 49
to 50 close to the finite rate of increase? Now compare the final population
size at year 50 for the two cases. [s the final abundance different when the
initial distribution is skewed towards zero-year olds?

Step 8. Now we will add demographic stochasticity to the model. Load
the file you saved in Step 3 and select General information..Notice that the
number of replications is 0 {specifying a deterministic simulation). Change
the number of replications to 50, and check the demographic stochasticity
box. Run the model again. Note that each trajectory simulated by the pro-
gram is different. If the simulation takes a very long time, you can speed it
up by dicking on the first button on the toolbar of the simulation window.
This button displays simulation text, instead of each trajectory (you can also
stop a simulation by pressing {Esg) or clicking the "Cancel” button). After the
simulation is over, select Trajectory summary from the Results menu.
Although the only source of stochasticity is demographic, and the initial
population size is 100, the expected future trajectory of the population shows
considerable variation. Make a note of the variation in abundance, For
example, for year 50, record the (1) minimum, (2) mean - standard devi-
ation, (3) mean, (4) mean + standard deviation, and (5) maximum
abundances.

Step 9. Now we will add environmental stochasticity to the model. Select
Standard deviation matrix from the Model menu, and enter the numbers
we calculated in Section 4.5.2. In this window, the standard deviation of each -
matrix element (survival and fecundity) is entered at the same position as in
the Stage matrix screen. Thus, type in the standard deviation of zero-
year-old survival (0.0364) in the second row, first column; type in the
standard deviation of one-year-old fecundity {0.0075) in the first row, second
column, etc. {Note that we arrange the standard deviations in the form of a
matrix only for visual convenience; we don’t do operations such as matrix
multiplication with this matrix.)

When finished, click OK, and save the model in another file. Now, run a
simulation. How does the variation compare with Step 8 (when we consid-
ered only demographic stochasticity)?

Step 10. The population abundance increased from 97 to over 1000 in 50
years. Considering the discussions in Chapter 3, what ate some of the factors
that might prevent such an increase? {Hint: See the beginning of Section 4.3.)
One way to model such factors is to add density dependence to the model.
Select Density dependence from the Model menu, and specify the type of
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density dependence as "Ceiling." This requires an additional parameter, the
carrying capacity (K). Assume that Kis 150. Click OK, and run another sim-
ulation. What does the population trajectory look like now? What is the
long-term predicted abundance of the poputation? Does the finite rate of
increase (based on the Leslie matrix) say anything about the population’s
future in the presence of stochasticity and density dependence?

Exercise 4.2: Human Demography

In earlier chapters, we discussed the exponential nature of human popula-
tion growth, and the capacity of earth to support the human population. In
this exercise, we will demonstrate some of the difficulties in dealing with
human population growth,

Step 1. Load the file Human.ST, which is a model of the human popula-
tion in a typical developing country. (The abundances and rates in this
modet are loosely based on the population of the Philippines in 1975.) The
time step in this model is a decade, and the age structure is based on 10-year
age classes. For example, the first dass ("Stage 1") is ages 0-10, the second
class ("Stage 2") is ages 10-20, etc. This is very important to remember
during this exercise. Select Stage matrix, and click "Display” to investigate
the vital rates. What is the finite rate of increase of this population? (Note
that a finite rate of increase must be specified together with the time unit for
which it was estimated.) Compare the initial age distribution with the stable
age distribution, Are they the same?

Step 2. Simulate the growth of this population for 100 ygﬁrs How: many
time steps does this take? What is the expected population size in year 20757
How much did the population, increase (in absolute terms and as a per-
centage) in 100 years? Note that irr this step we assumed that the 1975
fecundities and survivals remain unchanged for 100 years.

Step 3. Simulate the effects of a family planning program, for example
one that makes birth control available free, and gives incentives for small
farnilies. Assume that the effect of this program is very strong and imme-
diate; decrease the fecundity of each age class by the same percentage so that
the finite rate of increase is equal to 1.000. What percentage decline in
fecundity was necessary to make the long-term population growth zero (fi-
nite rate of increase = 1)? Save the model in another file.

Step 4. Simulate the population growth with the reduced fecundities
until 2075, What will be the expected population size in year 2075? How
much will the population increase (in absolute terms and as a percentage) in
100 years under the reduced fecundities? Why did the model predict that
the population will continue to increase even though the finite rate of
increase is equal to 1.00007
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Step 5. Repeat Step 3, but reduce fecundities in another way. Instead of
reducing fecundities of all age classes by the same amount, begin with the
youngest reproductive age class (ages 10~20). Decrease its fecundity until
the finite rate of increase is equal to 1.0000. If the finite rate of increase is
above 1.0 even when the fecundity of 10-20-year-old individuals is zero,
start decreasing the fecundity of the next age class. Save the file under a new
name. What percentage did you have to decrease the fecundity of each age
class? Describe what this means in terms of the reproductive behavior of the
people in this example? How is this sort of reductlon in fecundities different
from the one in Step 37 -

Step 6. Repeat Step 4 with the new set of fecundities. Compare the
results with those of Step 47 Which method results in a lower population
size?

Step 7. How realistic is our assumption that the family planning pro-
gram we simulated will decrease the finite rate of increase to 1.0
immediately? If this decrease takes a number of years (or decades), how
would this affect the final population size? How might social factors (such
as education of, and economic independence of women, and increased social
security for older people) affect the rate with which fecundities decrease?

Step 8. Remermnber from Chapter 1 that per capita energy consumption in
industrial countries is about 9.3 times that in developing countries, If in the
next 100 years, the per capita energy consumption in the developing country
in this example reached the level of consumption in the industrialized world,

- . how much would the total annual energy consumption in that country..

increase by 2075:
{a} if there is no change in fecundities?
{b} if fecundities change as in Step 3?
(c) if fecundities change as in Step 52 *.

Exercise 4.3: Leslie Matrix for Brook Trout

Brook Trout (Salvelinus fontinalis) is a freshwater fish that is popular with
anglers. Table 4.5 gives the number of brook trout in Hunt Creek (in Mich-
igan), taken from a paper by McFadden et al. (1967). The data in this and the
next table are provided on the distribution disk of RAMAS EcoLab in three
spreadsheet formats (for Lotus 1-2-3, Quattro Pro, and Excel).

Step 1. Calculate the survival rates for each age group (5, 5, S5 and §;)
in each year. For example, §; for 1949 is 2013/4471, or (.4502. Note that you
cannot calculate the survival rates for 1962 (because there is no data for
1963). Also note that 5, = 0, because no five-year olds were observed. If you
know how to use spreadsheet software, see below before you begin this step.

Step 2. Calculate the average survival rate for each age class.

-
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Table 4.5. Abundance of Brook Trout in Hunt Creek by

age classes.
Year Age classes Total
0 1 2 3 4
1949 4471 2036 287 14 0 6,808
1950 3541 2013 304 13 0 6,271
1951 4287 1,851 265 16 1 6,420
1952 5033 L1763 261 16 0 7073
1953 5387 1637 175 13 0 7212
1954 6325 2035 234 13 0 8,607
1955 4235 2,325 383 24 0 6,967
1956 4949 1,612 392 51 1 7,005
1957 6703 1,796 39 33 1 8,842
1958 5097 2653 355 26 2 8,133
1959 4038 2,395 685 68 0 7,186
1960 5057 2217 473 47 1 7,793
1961 2809 2,017 409 23 0 5,258
1962 5052 1,589 448 52 2 7,143

From McFadden et al. (1967).

Step 3. Calculate the standard deviation of each survival rate. You can do
this in three different ways. Any one of the three is acceptable (although they
may give slightly different results). ‘ _

(a) If you have (and know how to use) any one of the three spreadsheet
software mentioned above, first load the file BTROUT.WKt (for Lotus 1-2-3),
BTROUT.WQ1 (for Quattro Pro), or BTROUT.XLS (for Excel). You can then
calculate the survival rates (Step 1) by dividing the appropriate numbers (be
careful with the years). After calculating the survival rates for each age and
year, calculate their averages (Step 2) and their standard deviations {Step 3)
using the built-in function of the software to calculate averages and standard
deviations. Read the manual of the software you have for more information.
If the software gives an option of either "population,” or "sample” standard
deviation, use the "sample standard deviation."

(b) If you have a calculator that performs standard deviation calcula-
tions, you can use it. Note also that the Calculator program that comes with
Microsoft Windows also allows the calculation of standard deviations (when
you select "View /Scientific"}. Use the help facility of this program to learn
how to use it.

[P —
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(¢) You can also use a short-cut that allows an approximate estimation of
standard deviation from a range of observations. Range is the difference
between the maximum and minimum of a set of numbers. To use this
method, first calculate the range for each survival rate, by subtracting the
minimum ever observed over the 13 years, from the maximum, Then divide
this number by 3.336. This number is valid only for samples of 13 data points
(as is the case here). For samples of different sizes, the constant used to
divide the range is different (see Sokal and Rohlf 1981, page 58).

Step 4. Calculate the fecundities of each age class, and each year. For
example, to calculate the fecundity of one-year olds (F,) in 1949, you need to
divide the number of zero-year olds alive in 1950 that were produced by
one-year olds, with the number of one-year olds in 1949. From the above
table, we know the number of one-year olds in 1949 (2,036), and the total
number of zero-year olds alive in 1950 (3,941), but we need to know how
many of these zero-year olds were the offspring of individuals that were one
year old in 1949, We can obtain this information from the Table 4.6, which
gives, for each year, the proportion of young produced by each age class (the
sum of each row is 1.0). For example, in 1949, 64.7% of the young were pro-
duced by one-year olds. Thus the number of young (that were alive in 1950}
that were produced by one-year olds in 1949 was 0.647 multiplied by 3,941,
or 2,550. The fecundity of one-year olds in 1949 was

s 0.6471 x 3941 .
F(1949) = o 1.2525
The fecundity of two-year clds in 1949 was o

0.3193 x 3941
Fy(1949) = —ﬁ—zm 4 = 4385

Note that both fecundities use the same total number of zero-year olds in
1950 (3,941). Calculate the rest of the fecundities. There should be a total of
52 fecundities (4 age classes, 13 years). Note that you cannot calculate the
fecundity for 1962 (because there is no data for one-year olds in 1963), and
that the fecundity of the first age class, F, =0, i.e., this year’s young cannot
produce young that are counted in the next census. Also note that in § out of
13 years, the abundance was zero in age class 4. For these years you cannot
calculate F, (it is not zero; it is unknown).

The data in this and the previous table are provided on the distribution
disk of RAMAS EcoLab in three spreadsheet formats (for Lotus 1-2-3,
Quattro Pro, and Excel). If you have (and know how to use) any one of these
software, you can make these calculations much faster.
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Table 4.6. Proportion of all young produced
by different age classes of Brook Trout in Hunt

Creek.
Year Age classes
1 2 3 4
1949 06471 0.3193 0.0336 0
1950 06417 03333 0.0250 0

1951  0.63% 03003 0.0450 0.0090
1952 0.6275 03333 0.0392
1953 06750 02750 0.0500
1954  0.6827 02885 0.0288
1955  0.6096 03425 0.0479
1956  0.5000 03731 0.1269
1957 05726 03333  0.0940
1958 06358 02980 0.0596 0.0066

o000 o oo

1959  0.4%06 04151 0.0943 0
1960 05422 03675 0.0904 0
1961 05833 03681 0.0486 0

1962 04823 04043 01064 0.0071
From McFadden et al. (1967).

Step 5. Calculate the average fecundity for each age class. Calculate F, as
the average of fivénumbers (three of which are zero), and other fecundities
as averages of 13 numbers,

Step 6. Calculate the standard deviation of each fecunidity. You can do

- this in three different ways {5ee above). Be careful when calculating the stan-

dard deviation of F,. You should calculate the standard deviation of five
numbers. For example, if you use the range approximation, divide the range
of F, with 2.326 {(because the sample size is 5, not 13}.

Step 7. Combine the average survival rates and average fecundities into
a Leslie matrix. Make another matrix with the corresponding standard devi-
ations.

Exercise 4.4: Fishery Management

In this exercise, you are asked to manage a fishery. Your goal is to maximize
the harvest, while minimizing the risk of decline. This fishery exercise is
based on the brook trout model you developed in the previous exercise.
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Step 1. Start RAMAS Ecolab, select the "age and stage structure” pro-
gram. Select "New" from the File menu (this will open General
information). Enter an appropriate title {and if you wish, comments), and
enter the following parameters of the model:

Replications: 0
Duration: 20
(] ignore constraints (clear)

Click OK. Select Stages, and click "Add." Rename the stages as "Age 0,"
"Age 1," etc. Click OK. o

Step 2. Select Stage matrix, and enter the Leslie matrix you calculated in
the previous exercise. Select Standard deviation matrix, and enter the
numbers you calculated in the previous exercise. Select Initial abundances,
and enter the abundance of each age class in 1962, from the table in the pre-
vious exercise. In each window, click OK after entering the parameters. Save
the model in a file.

Step 3. Run a deterministic simulation of this model. Record the final
population size {Trajectory summary; total abundance at year 20).

Step 4. Now, we will add harvesting. Two types of harvesting can be
simulated with the program. Both are specified in Management & Migra-
tion under the Model menu. Cn the left side, there is list of management
actions. Click the "Add" button under this list once to add a new
management action. A new action will be added to the list on the left of this
dialog box. The newly added action is assumed to be a "harvest/emigration.”

First, we will simulate proportional harvest. On the right side of the--

window, under "Quantity" select "Proportion of individuals” by clicking on
it. Then enter a number between 0 and 1 (say, 0.1) in the edit box next to The
label "Proportion of individuals." This is the proportion of each age class
harvested. Next, you need to select the age classes to which this harvest rate
applies. We will assume that the zero-year-cld fish are too small to be of
commercial value, so we skip this first age class. The abundance of the last
age class is too low to experiment with, so we will not harvest this class
either. We will assume that the same proportion of other age classes are har-
vested. This may not be a valid assumption in most cases, but it does
simplify the exercise. Click on the little arrow next to "In Stages,” and select
"Age 1." Click on the little arrow next to "Through,” and select "Age 3." Click
OK.

Step 5. Now change the harvest rate (i.e,, the "Proportion of individuals”)
in such a way that the abundances in the last 10 years are as close to each
other as possible (i.e., the population is stationary). You will probably have
to run several simulations before you can find the correct number that keeps
the population sizes stationary. What is the harvest rate you found? Save

b
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this model in a different file (such as TROUT-PH.ST, for proportional har-
vest). Record the number of fish in each age class at the end of the simulation
(Final stage age/stage abundances).

Step 6. We will now repeat Steps 4 and 5 with constant harvest for the
same age classes. Constant harvest refers to a fixed number of individuals
harvested at each time step. But we don't want this number to be the same
for all age classes {because there are many more younger fish than older
fish). To guess these constant numbers, multiply the number of fish in each
age class at the end of the simulation (from the previous step) with k/(1 - k),
where I is the proportional harvest rate you found, then round to the nearest
integer. For example, suppose the abundance of the second stage ("Age 17) at
the end of the simulation in Step 5 was 2,000, and the harvest rate was (.06.
In this case use a constant harvest of 2, 000x 0.06/(1 - 0.06), or 128 fish for this
age class. Select "Management & Migration” and click on "Number of indi-
viduals" (under "Quantity"). Type "128" as the number. Make sure that this
number applies only to "Age 1." Thus, click on the little arrow next to
“Through,” and select "Age 1." Thus this management action refers to har-
vesting 128 individuals in stages "Age 1" through "Age 1."

Calculate the number to be harvested for the other two age classes in the
same way. To enter the number for "Age 2," click the "Add" button. This
adds a new management action to the list, also named "Harvest/Emigra-
tion.” Click on the newly added "Harvest/Emigration." The numbers on the
right side of the window now refer to this new action. Enter the number you
calculated as the "Number of individuals,” and change "In stages ... through

" to refer to "Age 2. Repeat for "Age 3." Thus, you should have three
managament actions, all of the "harvest/emigration” type, and each refering
*to a single age class. Click OK.

Run a deterministic simulation, and check the final abundance. If the
population is increasing or declining, adjust the constant harvest numbers
{proportionaily) until the abundances in the last 10 years are as close to each
other as possible (i.e., the population is stationary). You probably won't have
to make any adjustments to the initial guesses.

What are the harvest amounts you found? Save this model in a different
file (such as TROUT-CH.ST, for constant harvest).

Step 7. Now run stochastic simulations (by changing the number of rep-
lications to 1000, and making sure demographic stochasticity is used) with
each of the three models (no harvest, proportional harvest, and constant
harvest) you have developed and saved. Check the risk of falling below 1000
individuals for each simulation. (It might be difficult to read the precise
value of the probability from the screen plot. See Exercise 2.4 for an example
of getting the exact probability value.)
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Compare the three results. Explain the differences in the light of the dis-
cussion on "Harvesting and density dependence” in Chapter 3.

4.9 Further reading

Jenkins, S. H. 1988. Use and abuse of demographic models of population
growth. Bulletin of the Ecological Society of America 69:201-202.

Keyfitz, N. and W. Flieger. 1990. World population growth and aging: demo-
graphic trends in the late twentieth century. Umver31ty of Chicago Press,
Chicago. e

Leslie, P. H. 1945. On the use of matrices in certain populatlon mathematics.
Biometrika 33: 183-212.

McFadden, . T., G. R. Alexander and . S. Shetter. 1967. Numerical changes
and population regulation in brook trout Salvelinus fontinalis. ]oumal of
the Fisheries Research Board of Canada 24: 1425-1459.

U.S. Bureau of the Census home page. http:/ /www.census.gov/

Includes demographic data on the population of the US. and other
countries.
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Chapter 5
Stage Structure

5.1 Introduction

The basic assumption of age-structured models is that the demographic
characteristics of individuals {such as fertilitties and survival chances) are
related to their age, and among individuals of the same age, there is little
variation with respect to these demographic characteristics. This assumption
is not appropriate for all species; age is not always a good indicator of
demography. In some plants, survival and reproduction depend on the size
of the individual. Larger individuals produce more seeds and are more
likely to survive. Such a species could be modeled with an age-structured
model, only if individuals in the same age class were more or less the same
size. Usually this is not true; plant growth is often plastic, meaning that the
rate with which individual plants grow in size depends on environmental
conditions. Those seeds that happened to land on a favorable spot will grow
faster and reproduce at an earlier age than those that were less lucky. Forest
trees, for example, can spend years suppressed in the understory before an
opening in the canopy allows them to grow and begin preducing seeds.
Openings in the canopy occur when canopy trees die due to chance events
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such as wind, disease, and fire. As a result, the age of a tree that has been
waiting in the understory may have nothing to do with its chance to begin
growing to the canopy.

In such a case, it may be better to use a stage-structured model, in which
the individuals are grouped into stages defined by their physiological, mor-
phological, or other characteristics that have an important effect on their
probability of survival and reproduction. For the above example, the stages
may include seeds, seedlings, saplings, understory trees, and canopy trees.

Animal species may also be better modeled using a stage-structured
approach. For example, survival rates and fecundities may depend on the
physiological stages—such as egg, larva, pupa, and adult for insects, or
juvenile and adult for birds. Again, such species could also be modeled with
a Leslie matrix, but only if individuals took the same length of time to reach
these stages (in other words, if each individual spent the same length of time
in each stage). Otherwise, age structure will not capture the differences
among individuals in terms of their survival and reproduction.

There might also be practical reasons for using stage structure instead of
age structure. For example, it may be impossible to determine the age of
individuals, hence impossible to estimate age-specific vital rates. In such
cases, a stage-structured model may be more appropriate.

5.2 Assumptions of stage-structured models

The basic assumption of stage-structured models is that the demographic
characteristics of individuals are related to their developmental stage. The
assumption is that there is little variation among individuals in the same
stage with respect to their demographic characteristics such & chance of
surviving, chance of reproducing, and the number of offspring they produce.

This assumption is quite important. It means that what an organism will
do depends only on the stage it is in now, and not on what stage it was in the
previous time steps, or how long it remained in each stage. For example, a
stage-structured model of forest trees (mentioned above) based on size
would assume that the chances of survival and growth of an individual sap-
ling depend on its size, but not on how long it has waited in the understory,
or whether it was a seed or seedling in the previous time step.

Other than this basic assumption, stage-structured models may also
assume that (1) the population is closed, i.e., there is no immigration or emi-
gration; (2) the vital rates are constant, i.e., there is no demographic or
environmental stochasticity; (3) the vital rates are not dependent on
abundance, i.e, there is no density dependence. However, it is quite easy to
dispense with these assumptions and add migration, stochasticity, and den-
sity dependence to a stage-structured model.
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5.3 Stage structure based on size

The most important difference between an age-structured and a stage-
structured model involves the type of transitions; in other words, the
number and type of transitions possible for an individual in a given age or
stage class. In an age-structured model, there are only two types of trans-
itions: an individual may get older (i.e., move to the next class), and/or it
may produce offspring (i.e., contribute to the first age class). If neither of
these happens, the model assumes that the individual died. These two types
of transitions are represented by the two types of nonzero elements of the
Leslie matrix: those at the subdiagonal (i.e., elements one bel6w the diagonal
going from the upper left of the matrix to the lower-right), representing sur-
vival, and those in the first row, representing fecundities. Below is the Leslie
matrix we discussed in the previous chapter, with the assumption that Fy =0,
i.e., the youngest individuals do not reproduce (which is often the case). We
can depict this age-structured model with a diagram (Figure 5.1} in which
boxes represent age classes and arrows represent transitions (survivals and
fecundities) from one age class to another.

0 F F, F
5 0 0 0
L =
6 § 0 O
6 0§ 0
0 year | . So J year 5 2 year 5 3 year
old old old oid

Figure 5.1. Diagram for an age-structured model.

We discussed one modification of the Leslie matrix in the previous
chapter involving a third type of transition. When we combined three-
year-old and older individuals into a composite class, their survival rate was
represented by the matrix element at the lower-right corner of the matrix
below. We will use the symbol S;, for the survival of three-plus-year-old
individuals. When these individuals survive for another year, they are still
counted in the same class. This is represented by the loop around the box for
"3+ year old" in Figure 5.2. The rest of the figure is the same as Figure 5.1.
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Figure 5.2, _Diagram for an age-siructured model with a compasite
age class for individuals three-years-old and older.

Now c.onsider a model in which individuals in any class (not just the last
one) can either move to the next class or stay where they are. Obvicusly this
cannot happen in an age-structured model. If there is an age class for two-
year-olds, then a one-year-old individual will either die, or survive to
beco¥ne two years old. However, if the classes are based not on age, but on
the size of the individuals, then a "medium-sized" individual can grt;w to be

"large-sized,” or stay as "medium-sized.” Such a model may be represented -

by adi i ;
Hz’am xl_agram with loops for each stage (Figure 5.3), or by the following stage
Sq¢ Fa Fur Fiqy
5 8 S5 0 0

0 SSM SMM 0

0 0 S ML SLL

q Q MM LL
§ . A Q m

: TS S
——- Small | — | Medium My

ll-.‘

Figure 5.3. Diagram for a stage-structured model.
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In this matrix, the subscripts T, 5, M, and L refer to "tiny," "small,” "me-
dium,” and "large." All survival rates now have a subscript with two letters,
indicating the beginning and ending stages referred to by the survival rate.
For example, Sy is the proportion of "medium" individuals who became
"large” in the next time step, and Sy is the proportion of "medium" individ-
uals who remained as "medium” in the next time step. The overall survival
rate of "medium” individuals is

Su = Swm + 5w

and their fecundity is Fy;p, because fecundity is a transition fromi one stage (in
this case "medium") to the stage in which individuals start their lives. In this
mode! we assumed that all offspring start their lives as "tiny" individuals.
This is not necessarily the case for all species. There may be small and big
offspring (seedlings, for example), and you might want to model them in
separate classes. We also assumed that a "small" individual can become a
“large” individual in two time steps, because it must first become & "medium”
individual. If it were possible for a "small” individual to become "large” in a
single time step, then (1) there would be a nonzero element S, in the second
column, last row of the matrix, and (2) there would be an arrow going
directly from "small" to "large" in Figure 5.3. Note that, in these diagrams,
each element of the matrix is represented by an arrow; the number of arrows
ina diagram is equal to the number of nonzero elements of the matrix.

5.4 A stage model for an Alder

A stage-structured model based on size was developed by Huenneke and
Marks (1987) for the Speckled Alder (Alnus incana). This is a common shrub
of eastern North America. It forms dense thickets in which alder seedlings
have a very low survival rate; thus most of the reproduction is vegeta tive, in
the form of sprout production.

Huenneke and Marks (1987) censused and measured alders from 1979 to
1982. They classified alders in their study populations with respect to the
diameter of their stems at breast height {dbh; diameter at 1.4 m above the
ground), a common measure of size for trees and shrubs. They grouped
stems into the following five size classes:

Stage 1: 0 cm dbh (i.e., stems shorter than 1.4 m}

Stage 2: .1 to 0.9 cm dbh

Stage 3: 1.0to 1.9 cm dbh

Stage 4: 2.0 to 2.9 cm dbh

Stage 5: 3.0to 3.9 cm dbh
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Because the census was repeated every year from 1979 to 1982, Huen-
neke and Marks (1987, Table 2) estimated three stage matrices, each
representing a transition from one year to the next {1979 to 1980, 1980 to
1981, and 1981 to 1982). We combined these three matrices and obtained the
following mean matrix.

1 2 3 4 5
1 C.637 0.033 0.100 0.163 0.230
2 0.107 0.5%0 0.0 0.0 0.0
3 9.0 0.353 0.763 0.0 0.0
4 0.0 0.0 0.237 0.867 0.0
5 0.0 0.0 0.0 0.277 0.737

In this matrix, the first row (except for the first element, 0.637) refers to
vegetative production of new sprouts, the diagonal elements (0.637, 0.59, ...,
0.737) refer to the proportion of stems that survive and remain in the same
size class, and the subdiagonal elements (0.107, ..., 0.277) refer to the propor-
tion of stems that survive and increase in size to the next class. For example,
the fates of individuals in stage 2 are given by the numbers in the second
column of the matrix: on average, 59% of stems in stage 2 remain in the same
stage after a year, and 353% of them increase in size. The rest
(1-0.59 - 0353 =5.7% ) die. The first number in this column indicates that
on average each stem in this class produces 0.033 sprouts. This means that
many stems do not produce any sprouts, and the total number of sprouts
produced by stage 2 stems, divided by the number of stems in this stage s,
on average, 0.033.

For stage 5, there is a single number for survival. All stage 5 stems that
survive remain as $tage 5 stems, beeause this is the stage for the largest
stems. The largest stems happened to have the largest fecundity (an average
of 0.23 sprouts per stem).

As we mentioned above, Huenneke and Marks estimated three matrices
for three years. We calculated the above mean matrix as follows. For each
element, we calculated the arithmetic average of the corresponding matrix
elements from the three matrices {Huenneke and Marks discuss other
methods of combining data from three years). For example, the survival rate
of stems in stage 5 was estimated as

0.83 from 1979 to 1980
0.71 from 1980 to 1981
0.67 from 1981 to 1982

The average of these numbers is 0.737 (the number in the above matrix),
and their standard deviation is 0.068. We can calculate a standard deviation
for each element of the matrix, because we have three estimates {from three
years) for each element. We can arrange the standard deviations we have
calculated in the form of a matrix, so that the standard deviations will corre-
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spond to the means in the above matrix. (Note that, as we discussed in the
previous chapter, we do this only for visual convenience; one cannot do
operations such as matrix multiplication with this matrix}. The result is the
following matrix of standard deviations.

1 2 3 4 5
1 ¢.118 0.C0% 0.02% 0.046  0.067
2 0.066 0.133 0.0 0.0 0.0
3 0.0 0.188 ©6.071 0.C 0.0
4 0.9 0.0 0.071  0.08&e 0.0 .-«
5 0.0 0.0 0.9 0.078 0.068

Given a mean stage matrix and the corresponding standard deviations,
the calculations needed to make projections for a population are very similar
to the calculations we discussed in the previous chapter. As in the age-
structured models, we also need to know the initial number of individuals in
each stage, arranged in the form of a vector (a column of numbers, one
number for each stage). To make a projection, we multiply a stage matrix
with this vector, as we did for the age-structured model of Helmeted
Honeyeater in the previous chapter. In a stochastic model, the matrix we use
for this projection is not the mean matrix, but a different matrix at every time
step. We select the elements of this matrix from random distributions with
the means and standard deviations given in the two matrices above. We then
make the matrix multiplication

N(r+1)=M(r) - N9
—r
where M(f) is the stage matrix for year ¢, and N(¢) is the vector of stage

abundances in year f .

5.5 Building stage-structured models

When biologists build stage-structured models for the species they study,
they often start by deciding how to divide the population into stages. In the
previous sections, we discussed models based on size of individuals. In a
stage-structured model, individuals in a population may be grouped into
classes based on characteristics other than size. This may be the physiolog-
ical, morphological, or developmental state of the individuals, or a
combination of one of these with size or weight. How the population is
divided into stages depends on several factors. The most important factor is
what the demography of the species depends on. If survival rates or fecun-
dities have nothing to do with the size of an individual, then there is no point
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in building a size-structured model. Other factors may involve more
practical considerations such as the ease of identifying different life stages or
measuring other characteristics, and the amount of data available.

For an insect species, 2 matrix model might group individuals into
developmental stages such as egg, larva, pupa, and adult. For a bird species,
the stages might be juveniles (or fledglings), non-breeding adults, and
breeding adults.

The difference between age-based and stage-based matrix models is that
in a stage matrix, any element can be greater than zero (though stage
matrices with all elements greater than zero are quite rare). The element at
the ith row and jth column of a stage matrix represents the rate of transition
from stage j to stage i. Rate of transition in general means the proportion of
individuals that were in stage j at time ¢ that "become” stage i individuals at
time #+1, or “contribute to" the number of stage { individuals at time ++1
through reproduction. Thus, each element can describe reproduction, sur-
vival, or both,

Consider the following stage-structured model of Jack-in-the-pulpit
(Arisaerng triphyllum), a perennial herb of deciduous forests (Bierzychudek

1982, Table 2: the matrix shows the transitions in the Fall Creek population
from 1977 to 1978).

1 2 3 4 5 & 7
1 0 0 0.07 1.82 4.69 6.51 7.00
2 0.20 1.17 0.56 0.49 0.47 0.47 0.47
3 0 0.10 0.80 0.06 0.06 0.13
4 0 0 0.04 0.68 0 0.07 0
5 0 G 0.03 0.09 0.12 o0 0.14
6 0 0 0.01 0.09 0.29 0.27 ©0.14
7 g 0 0.01 0.04 0.41 0.53 0.71

The stages are seeds (stage 1) plus six size classes based on leaf area
(stages 2 through 7). The first row of this matrix represents the fecundity
(seed production) of plants in different stages, and the first column gives the
survival rate of seeds. There is only one number in this column, thus sur-
viving seeds (20% of all seeds) become the smallest plants. In the second
colurnn, we have two numbers, just as we did in the size-structured model of
the previous section. The second number (0.10) is the rate of transition from
stage 2 to stage 3. Note, however, that the rate of transition from stage 2 to
stage 2 is greater than 1.0 (unlike in the previous section’s model). Thus, it
cannot refer only to the proportion of stage 2 plants that remain as stage 2
plants (this would be less than or equal to 1.0). The reason itis preater than
1.0 is that this number also includes vegetative reproduction by stage 2
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plants. When there is vegetative reproduction, the "offspring” (ie., the
recruits to the population) are plants rather than seeds. In this case these new
individuals enter the population in stage 2.

How about the third column? This column shows what happens to
stage 3 individuals. The first number in this column (0.07) is again the seed
production. The second number is, again, the sum of two numbers: vegeta-
tive reproduction by stage3 individuals, and the proportion of stage3
individuals that become stage 2 individuals in the next time step. Because
the stages are defined in terms of plant size, this means that some part of this
number (0.56) represents plants that become smaller in size. This is not
unusual in models based on size. This column shows that Jack-in-the-pulpit
may have very plastic growth. While some plants may decrease in size,
others (about 1% of stage 3 plants) may grow a lot, to reach the largest size
class in just one year.

5.5.1 Residence Times, Stable Distribution, and Reproductive
Value

Another property of stage-structured models that is different from those
with age structure concerns the average time individuals spend in each
stage. In an age-structured model this is the same for all age classes. If age is
defined in years, each individual spends exactly one year in each age class
{the only exception is the composite age class, if there is one). In a stage-
structured model, individuals may spend different amounts of time in
different stages. The average time individuals spend in a stage is given by the
reciprocal of one minus the diagonal element:

. L , 1
Residence time in stage | = TS
This assumes that the diagonal element does not include reproductive trans-
itions. If it does, the reproductive rate must be subtracted before the above
formula is used. If the diagonal element is zero, then residence time is 1 time
step (as is the case for age-structured models). If the diagonal element is 0.5,
then this means that half the individuals remain in the same stage, and the
average residence time becomes 2 time steps.

In the previous chapter on age-structured models, we discussed three
variables that are based on the Leslie matrix: the finite rate of increase (1),
the stable age distribution, and the reproductive value distribution. These
variables have the same meaning (and are calculated in the same way) for
stage-structured models. The stable stage distribution gives the proportion
of individuals in each stage that all initial distributions converge to, if given
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enough time (assuming no stochasticity, migration, or density dependence).
The finite rate of increase (A) is the rate with which the population grows
once it reaches the stable distribution. Reproductive value gives the number
of offspring an individual in a given stage will produce, relative to those
produced by an individual in the first stage.

5.5.2 Constraints

In an age-structured model, elements of the first row of the matrix represent
fecundities, and elements in the other rows represent survival rates. Most
stage-structured models have a similar characteristic. Usually, there is only
one (often, the first) stage that represents new recruits to the population
(such as stage 1, for "sprouts,” in the Speckled Alder model discussed above).
This means that only the first-row elements represent fecundities; elements
in the other rows are survival rates (either surviving and moving to another
stage or surviving in the same stage). If this is the case, the sum of all ele-
ments in a given column, excluding the first row, is the total proportion of
survivors from that stage, and cannot exceed 1.0. (Note that the
Jack-in-the-pulpit example provides an exception, which we will discuss
below.}

For example, in the Speckled Alder model, 66.7% of stage 4 plants in a
given year remain in the same size class in the following year, and 27.7%
grow to the next size class (stage 5). Thus, a total of 94.4% of stage 4 plants
survive and the rest {(5.6%) die. Obviously, the total of these two transitions
{stage 4-to-stage 4 and stage 4-to-stage 5) in this model must be less than or
equal to 100%. This is especially important in stochastic models, where sam-
pling the transition rates from random distributions may result in column
sums of above 1.0, even if the mean values were restricted to be between 0
and 1.

In RAMAS Ecolab, you can specify whether you want to impose con-

straints on matrix elements to ensure that column sums {excluding the first,

row) are always between 0 and 1. As a default, the first row of the matrix is
assumed to represent reproduction, and all other rows are assumed to rep-
resent survival rate. The program checks both the average matrix (specified
in Stage matrix under the Model menu) during editing, and each sampled
stage matrix during a simulation, to make sure that (1) all elements are non-
negative, (2) for each column, all elements except the one in the first row add
up to less than or equal to 1.0. If the first check fails, negative elements are set
to zero. If the second check fails, the program makes automatic corrections,
by proportionally decreasing each nonzero element (except the first element)
of the column until the sum equals 1.
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In some cases, this constraint is invalid because there is recruitment to
stages other than the first one. This means that elements in rows other than
the first one also represent reproduction (perhaps vegetative reproduction),
and therefore should not be restricted to add up to 1.0 (for example, the
Jack-in-the-pulpit wodel). If this is the case, you must check the box labeled
Ignore constraints in General information. The program then will ignore the
second check discussed above; and any element, as well as any column sum,
may be above 1.0 {although all elements are still constrained to be nonnega-
tive). '

5.5.3 Adding Density Dependence

When we added various types of density dependence to our models in
Chapter 3, the models did not have age or stage structure. The population
growth was determined by the growth rate (R ) and its variation. We mod-
eled density dependence by making the average value of R a function of
abundance.

In the previous chapter, the only density dependence we added to an
age-structured model was of the ceiling type. This type of density depen-
dence is simple to add to any model, because it works in a similar way
whether there is age/stage structure or not. In either case, if population
abundance increases above the ceiling { K), then it is decreased back to K.
The only difference in the case of models with age or stage structure is to
decide which age or stage class abundance to decrease. One option is to
decrease abundances of all ages or stages proportionally (this is what
RAMAS Ecolab does). For example if K=1,000, and N = 1,040, then abun-
dance in each age class or stage is decreased by 40,/1040, or by 3.8%. As long
as the abundance is below the ceiling, the population grows (or declines, or
fluctuates) according to the stage matrix and the standard deviations.

When density dependence is of the scramble or contest type (such as the
models in Section 3.8.1), then the model becomes more complicated. In this
case, we want the population’s average growth rate to be a function of
abundance. But in an age- or stage-structured model, the growth rate is nota
specific parameter; it is a result of various parameters (survivals, fecundities)
that make up the Leslie matrix or the stage matrix. Abundance is also not a
single variable; it is made up of the abundances of the different age classes or
stages. Because of multiple parameters (fecundities and survivals) that might
be affected by the abundance, and because of different measures of abun-
dance, there are many different ways of modeling density dependence in an
age- or stage-structured model. What we use in RAMAS EcoLab is one of the
simplest ways: the total abundance (of all ages/stages) affects all elements
of the stage matrix (fecundities and survivals) proportionally.

sl




168  Chapter 5 Stage Structure

This density dependence is implemented in RAMAS Ecolab in such a
way that the result is the same as in the simpler density-dependent models
we discussed in Chapter 3. When the total abundance (of all ages/stages) is
equal to K (when the population is at its carrying capacity), then the growth
rate of the population (determined by the stage matrix) is 1.0; when the pop-
ulation is above its carrying capacity (N > K), the growth rate becomes less
than 1.0, and when the population is below its carrying capacity ( N < K ), the
growth rate increases above 1.0. When the population abundance is so low
that the effects of density dependence are negligible, then the average
growth rate is equal to R_,,, the maximum rate of increase. R, is a required
parameter (in addition to K) if the density dependence is of the scramble or
contest type.

5.6 Sensitivity analysis

An important question that comes up in studies involving stage-structured
models is the contribution of each matrix element to the dynamics of the
population. In other words, how sensitively does the population’s future
depend on each element of the stage matrix. There may be several reasons
for asking this question. Two of the common reasons involve planning of
future field research and evaluating management options.

5.6.1 Planning Field Research

Because of lack of sufficient data and measurement errors, parameters of a
model are often known as ranges instead of single estimates. For example,
we may know that the average juvenile survival is between 0.30 and 0.60,
and the average adult survival is between 0.85 and 0.9, but may not know
exactly what the averages are. In such cases, collecting more data makes
these ranges narrower, and consequently the results become more certain.
But if there are many parameters (transitions among many stages) that are
known with such uncertainty, which should we try to estimate better first?
Given that there is a cost associated with additional field work, it makes
sense t0 know whether our research meney is better spent collecting data for,
say, juvenile survival or adult survival.

There are three considerations in making such a decision. The first one is
the contribution of each parameter (each matrix element) to population
growth. There are various methods for making this calculation. Some of
these methods, such as "sensitivities" and “elasticities," are based on the
effect of each vital rate on the eigenvalue of (finite rate of increase given by)
the stage matrix. These measures are reported in RAMAS EcoLab (click
"Display” in Stage matrix, select "Sensitivities and elasticities," and scroll
down the window; press for additional information). However, these
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measures ignore variability, density dependence and the initial distribution
of individuals to stages (the program gives a warning about the relevant fac-
tors ignored by these measures). In addition, they focus on the deterministic
growth rate, rather than the more relevant results such as the risk of
extinction.

Another method of calculating sensitivities involves calculating the
effect of each matrix element on the risk of extinction or chance of recovery
of the population. This is similar to the sensitivity analysis described in
Exercise 2.4 (Chapter 2), in which we changed each parameter by plus.and
minus 10%, and checked the difference in the probability of anincrease with
the low and the high value of each parameter. The advantage of this method
is that it incorporates all the factors in the model (including density depen-
dence and variability), and it focuses on probabilistic results (extinction risk
or recovery chance).

The second consideration in deciding which parameters are more
important to estimate more precisely is the uncertainty in each parameter.
For example, if we are very uncertain about juvenile survival (e.g., the esti-
mated range is 0.3 to 0.6) and reasonably certain about adult survival (e.g.,
the estimated range is 0.85 to 0.90), then it would make sense to spend more
time and money for additional data on juvenile survival. With the risk-based
method described above, we can take this consideration into account by
changing each parameter to the lower and upper values of its estimated
range (i.e., 0.3 and 0.6 for juvenile survival; 0.85 and 0.90 for adult survival),
instead of changing them plus and minus a fixed percentage. This way, a
parameter with a wider range will contribute more to uncertainty about the
risk of extinction (other things being equal).

With the deterministic methods (such as elasticities}, it is not always
possible to take this consideration into account, because those methods are
based on linear approximations, which means they assume that growth rate
changes linearly with changes in vital rates. This is often a good approxima-
tion for small changes, but may not be valid for large ones (e.g., when a
survival rate is known as a wide range).

Another disadvantage of the deterministic methods is that they are often
applied only to matrix elements. However, as we saw in the last chapter,
some matrix elements may have to be estimated as products of two vital
rates. For example, fecundity may be estimated as the product of maternity
{e.g., number of fedglings per adult) and survival of the juveniles until the
next census. If we want to decide whether the field work should focus on
maternity or juvenile survival (which may require different types of study
design), then the sensitivity of the population growth rate to their product
{fecundity} is not very useful. In an exercise below, we will explore the sen-
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sttivity of the risk of decline of a spotted owl population to uncertainties in
two different vital rates (each of which contribute to two stage matrix
elements).

The third consideration is the relative cost of obtaining enough data for
different parameters, For example, if it requires much more money to reduce
the estimated range in, say, survival by a certain amount, than to reduce the
range in fecundity by the same amount, it makes sense to focus on fecundity
instead of survival. This consideration can be taken into account by first cal-
culating the expected decrease in uncertainty in each parameter with a fixed
amount of research money, and then using these ranges in the analysis. For
example, we might guess that if we spend a certain amount of money
obtaining more data on juvenile survival, we might reduce its range from
[.3-0.6] to [0.4-0.5], and with the same amount of money, we might reduce
the range in adult survival from [0.85-0.90} to [0.86-0.89]. Obviously, such a
guess would be apprgximate at best. Also, once a certain amount of data is
collected, and new parameters are calculated, the relative contributions of
each parameter will change. At that point, we will need to recalculate our
strategy.

These considerations can also be extended to parameters other than
those in the stage matrix (average vital rates). Often, the variabilities of vital
rates are known even more poorly than their averages. We may be uncertain
about the type of density dependence, or the number of stages to use in the
model. In addition, factors such as density dependence may have strong
effects on extinction risks. The risk-based sensitivity analysis that we first
explored in Exercise 2.4 is suitable for incorporating parameters of a model
other than the stage matrix elements. In each of these instances the strategy is
the same: change model values or model structure to their alternatives and
measure the importance of the change by the effect it has on the risks of
decline.

5.6.2 Evaluating Management Options

Another application of sensitivity analysis involves decisions about which
vital rates to focus on in management and conservation efforts. For example,
protecting nests of Loggerhead Sea Turtles may increase the average fecun-
dity, whereas installing escape hatches in shrimp trawl nets reduces the
mortality of larger turtles (see Exercise 5.3 below). The decision about which
conservation measure to invest in, is partly a question of whether it is better
to increase fecundity or survival.

The evaluation of management options requires considerations similar to
those for planning field research. The first is the contribution of each vital
rate to the expected growth rate, and the chances of decline or recovery of
the population. Thus, a formal sensitivity analysis of a model can provide
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some insight info how best to manage a population. If competition, for
example, affects juveniles but juvenile survival contributes little to the
growth rate or decline risk, then controlling species that compete with juve-
niles is unlikely to be of much help.

The second consideration is how much each vital rate (or other model
parameter) can be changed with management. For some species, it may be
possible to increase fecundity by, say, 10%, but adult survival (being already
high) can perhaps be increased only by 5%. For some species, it may not be
possible or practical to increase certain vital rates at all. Further complicating
this issue is the fact that each management or conservation action may affect
more than one vital rate. For example, protecting nest locations of a bird
species may improve fecundity, and to a lesser extent sarvival rates, whereas
restoring dispersal habitat may improve dispersal rates, juvenile survival,
and to a lesser extent adult survival In these cases, a parameter-by-
parameter analysis of sensitivity does not make sense, because the
parameters cannot be changed independently (or in isolation from others). It
is much better to do a whole-model sensitivity analysis and compare man-
agement options instead of single parameters. This can be done by
developing models for each management or conservation alternative. Each
model incorporates changes to all the parameters affected by that particular
alternative. The results of these models than can be compared to each other,
as well as to a "no-action” scenario.

The third consideration is the relative cost of each management action.
Even if, say, increasing adult survival by 5% results in a lower extinction risk
than increasing fecundity by 10%, if the former is so expensive that, with the
available resources, it can be carried out in fewer populations or for fewer
threatened species than the latter, then perhaps the latter is the better option.
In an exercise in Chapter 7, we will further explore the effect of cost on eval-
uating management options for an endangered bird species.

5.7 Additional topic

5.7.1 Estimation of Stage Matrix

Estimation of a stage mafrix from data is similar to that of a Leslie matrix,
with a few important differences.

The first step in determining the stage matrix is to decide on what the
stages are. This mostly depends on the life history of species studied. If the
stages are defined on the basis of the size of organisms, then the number of
stages, and the size limits for each stage must also be decided. This may be a
complicated problem. On the one hand, it is necessary to define a sufficiently
large number of stages so that the demographic characteristics of individuals
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within a given stage are similar. On the other hand, it is necessary to have a
sufficiently large number of individuals in each stage so that the transition
probabilities can be calculated with reasonable accuracy (see Vandermeer
1975 and Moloney 1986}.

Once the stages are defined, the estimation of the stage matrix elements
depends on the type of data available. If individuals can be followed through
at least two time steps, and their stage at each time step recorded, these data
can be used in estimation by the following method, discussed by Caswell
{1989}. At each time step, individuals are identified by their stage. Since each
individual’s stage in the previous time step is also known, it can be assigned
to a particular cell in the table below. The numbers in the cells represent the
number of individuals making such a transition. Suppose such tallying for a
particular time step yielded the following hypothetical table.

At time t-1, individuals that were in stage:

1 2 3 4
At time ¢, 1 3
individuals 2 4 15
that are now | 3 8 12
in stage: 4 1 3 4
Deaths 3 6 5 12
Total 10 30 20 16

According to this example, out of the 10 individuals that were in stage 1
last year, 3 of them are still in stage 1 this year, 4 of them are now in stage 2
and the remaining 3 died. After all the individuals are thus tallied, non-
reproductive transitions are calculated by dividing each stage-by-stage cell
by the column total (which includes deaths). For example, 4 out of 10 in the
above example corresponds to a transition rate of 0.4 from stage 1 to stage 2
per year. This calculation yields a four-by-four matrix. For this case, we get

030 0 0 0
040 050 O 0
60 027 060 O

0 003 015 025

Note that if there are no individuals in a particular stage at time ¢-1, trans-
ition rates from that stage (i.e., the elements in the corresponding column of
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the stage matrix} cannot be estimated. In such a case, data from several time
steps must be used to ensure that all colrmns have at least one positive ele-
ment. )

The calculation so far is based on following individuals, which allows
estimation of transition from one stage to another. But a stage matrix also
includes reproduction. To estimate fecundities with the same method, we
need data on the number of new individuals added to each stage. Often new
individuals are added only to the first stage (such as "seeds” or "fledglings"),
but in some models they may be added to more than one stage (such as
"small juveniles” and "large juveniles'). In addition to the number of such
new individuals, we need data on the stage their parents belonged to. If we
have such data, we can construct a table comparable to the one above. In this
table, the number of recruits to stage i that are born of parents in stage f are
recorded in cell i;j (ie, row i, column j). For this example, suppose there
were 40 recruits (to stage 1) at time f, all produced by parents who were in
stage 4 at time {-1. Thus, all reproduction in this case is recorded in row 1
column 4 of the matrix. The number of offspring (40) is divided by the
number of individuals in stage 4 at time t-1 (in this case, 16). The matrix of
reproductive transition rates is therefore

0 0 0 2.50
0 0 0 0
0 0 0 0
0 0 0 0

The nonreproductive transitions and reproductive transitions are then
added together element-wise to obtain the following stage matrix for time
=1
030 © 0 250
040 050 0 0
0 027 060 O
0 003 015 0325

There will be a different matrix estimated for each time step, and means and
standard deviations can be estimated for each matrix element. If the sample
sizes differ greatly for different time steps, it might be necessary to calculate
weighted averages for the transition probabilities (see Additional topics in
Chapter 4).

Another way of estimating parameters for a stage matrix involves cen-
susing the population at several time steps. At each census, all individuals
are counted, and classified according to stage. This method does not require
following each individual, but requires more years of data. It involves a

. M e o dh d g e A, gh AR, AR, AR AR, an, AR AN Al A AR AR am, AR A A A g o dR A, e A A -




A‘AA‘-‘AA‘-“-A--‘----“‘-‘-"A‘-ﬂ

174  Chapter 5 Stage Structure

multiple regression analysis for each stage (see Additional topics in
Chapter 4 for multiple regression for age 0). For more information on
methods of estimating the stage matrix, see Caswell (1989).

5.8 Exercises

The use of RAMAS EcolLab to build a stage-structured model is very similar
to its use for age-structured models. For both, we use the same program
{("Age and Stage Structure”). The main differences are: (1) in Stage matrix
and Standard deviation matrix, any number can be greater than zero, and
(2) in General Information, the option Ignore constraints may be either
checked or unchecked (clear), depending on the model (see Section 552
above).

Exercise 5.1: Reverse Transitions

The diagram for a stage structured model was provided in Figure 5.3. Con-
sider the situation in which you observe an individual decrease in size
between one census and the next. The change in size is sufficient that the
individuals should be classified into a smaller size class. Such events may
result from herbivory, or wind damage (in plants), or from loss of condition
in animals. This would require new arrows going {(say) from large to
medium, or from medium to small. Assume that transitions of this kind were
observed in Alder. Assume that 5% of all individuals in stage 3 were classi-
fied in the next census as stage 2 instead of stage 3 (in other words, instead of
staying in the same stage, they moved to a smaller stage). The proportion
that became larger did not change. Make the same assumptions for individ-
uals in stages4 and 5. Rewrite the matrix for Alder in Section 5.4,
incorporating these new rates.

Exercise 5.2: Modeling a Perennial Plant

The following matrix is a stage-structured model of the Teasel (Dipsacus syl-
vestris), which is a perennial plant that is found mostly in disturbed habitats
(Werner and Caswell 1977; Caswell 1989). The time step of the model is one
year, and the stages in the model are

(1) first-year dormant seeds (51)

{2) second-year dormant seeds (52)

(3) small rosettes (R1)

(4) medium rosettes (R2)

(5) large rosettes (R3)

(6) flowering plants (FP)
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81 82 Rl R2 R3 FP
sl 0 0 -0 0 0 322.380
82 G.g66 0 0 0 0 g.oco
R1 0.013 0.010 ©0.125 0 0 3.4438
R2 0.007 0 0.125 0.238 O 36.170
R3 0.008 0 0 0.245 0.167 0.862
FFP 0 0 0 0.023 0.750C 0.000

Notice that there are transitions from flowering plants to. first-year dor-
mant seeds, and all three classes of vegetative rosettes. In-this case, these
transitions do not represent vegetative reproduction, but the fact that seeds
produced by flowering plants in one year may germinate to produce rosettes
in the following year. This requires a transition from flowering plants to
rosettes. (A transition from flowering plants to seeds, and seeds to rosettes
would take two years instead of one year.) Because of this characteristic of
the model, the constraint of keeping column sums less than or equal to 1.0
does not apply. Thus, in General information, Ignore constraints must be
checked. This matrix was estimated from an experimental study in which
each field in the study area was seeded with 3,900 teasel seeds in the winter.
Thus the initial population consisted of 3,900 individuals {dormant seeds) in
the first stage, and none in other stages. The experiment lasted for 5 years.
We will use this as the simulation duration. This is appropriate because this
species is often found in ephemeral habitats.

Step 1. Draw a diagram of this model.

Step 2. Enter the model into RAMAS EcoLab. In Stage matrix, click
"Display” and select each type of graph, to answer the following questions.
(a) What is the most abundant stage at the stable stage distribution?

(b) Which stage has the highest reproductive value?

(c) On average, in which stage do individuals spend the most time?

{d) Is the initial distribution similar to the stable distribution?

(e) What is the annual rate of increase?

(f) Calculate the number of individuals you would expect in the population
in one year and in two years, based only on this growth rate, and the initial
abundance of 3,900.

Step 3. Run a deterministic simulation for 5 years. What is the popula-
tion size in year 27 How does it compare with your prediction {in Step 2)
based only on the growth rate? Why is there a difference?

Step 4. We do not know the variation in stage matrix elements, so in this
exercise we will assume that there is only demographic stochasticity.
Remember that demographic stochasticity is especially important in small
populations. Do you think that this model will give very different results
when you add demographic stochasticity?
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Step 5. Run a simulation {using demographic stochasticity} with 1,000
replications. How do population projections compare to the deterministic
projection?

Step 6. What is the probability that this population will exceed 20,000
individuals (including dormant seeds) anytime within the next 5 years?

Exercise 5.3: Sea Turtle Conservation

Loggerhead Sea Turtle (Caretfa caretta) is a threatened marine reptile. It is a
long-lived iteroparous species. Determining the age of Loggerhead Sea Tur-
tles is very difficult due to their fast juvenile growth and their brittle shell
that cannot hold marking tags. The following stage matrix is from a study by
Crowder et al. {1994). In this matrix, the time step is one year, and the stages
are defined as follows:

(1) hatchlings

(2) small juveniles

(3) large juveniles

(4) subadults
(5) adults
1 2 3 4 5

1 0 5} 0 4.665 61.896
2 0.675 0.703 0 4 0 0

3 0 0.047 0.657 0 0
4 0 0 0.019 0.682 0
5 0 0 0 0.061 0.8091

In this matrix, the two numbers in the first row represent the fecundity of
subadults and adults. The diagenal elements (for example, 0.703 for small
juveniles) specify the proportion of the individuals in a stage this year that
will be in the same stage in the following year. The subdiagonal elements
specify the proportion of individuals in that stage that grow to the next stage
in the following year (for example, 4.7% of the small juveniles become large
juveniles each year). The sum of diagonal and subdiagonal elements give the
total rate of survival for individuals in that stage (e.g., 75% of small juveniles
survive per year). Thus, in General information, Ignare constraints must be
unchecked (which is the default). We will make the following assumptions
about this model:

(1) The initial abundance is 100,000 turtles, distributed among stages as
30,000 hatchlings, 50,000 small juveniles, 18,000 large juveniles, and 2,000
subadults (no adults).
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(2) The standard deviation of each vital rate (each element of the matrix) is
10% of its mean value.

(3) The density dependence is Ceiling type, and the carrying capacity is
500,000 turtles.

Step 1. Enter the model into RAMAS Ecolab, and save it in a file. Run a
simulation {with both demographic and environmental stochasticity) for 30
years, and report the following:

(a) Probability of increasing to more than 200,000 turtles sometime in

the next 30 years. -
{b) Probability of falling below 20,000 turtles sometime in the next 30
years.

1t might be difficult to read the precise value of the probability from the
screen plot. See Exercise 2.4 for an example of getting the exact probability
value.

Step 2. One of the threats the Loggerhead Sea Turtle faces is accidental
capture and drowning in shrimp trawls. One way to prevent these accidents
is to install escape hatches in shrimp trawl nets. These are called turtle
exclusion devices (TED); they can drastically reduce the mortality of larger
turtles (i.e, large juveniles, subadults, and adults). The following matrix
shows what might happen to the stage matrix if TEDs were widely installed
in existing trawl nets.

1 2 3 4 5
1 ¢ 0 0 5.448 69.33
2 G.675 0.703 0 0 0
3 it 0.047 0.767 0 0
4 ¢ 0 0.022 0.765 0
5 ¢ 0 0 0.068 0.B76

The numbers in bold show the vital rates that are assumed to increase as
a result of TEDs. Both the proportion remaining in the stage and the propor-
tion growing to the next stage are higher for the three stages affected. In
addition, the fecundities are slightly higher. This is because the fecundities
give the number of hatchlings this year, per subadult/adult turtle in the
previous year. Thus fecundities incorporate both fertility, and the survival
rate of subadults and adulis. If subadults and adults survive better, then
fecundity is also higher.

Enter the mode! with TEDs into RAMAS Ecolab, and save it in a dif-
ferent file. Keep all other parameters (including the standard deviations) the
same. Repeat the simulation as in Step 1, and report the following;

-
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(a) Probability of increasing over 200,000 turtles sometime in the next 30
years

(b) Probability of falling below 20,000 turtles sometime in the next 30
years

How would TEDs change the prospects for this species?

Step 3. Another important source of mortality for most marine turtles
occurs in the very beginning of their lives, between the time the eggs are laid
in a nest in the beach, and the time they hatch and are able to reach a safe
distance into the sea. Most turtle conservation efforts in the past have con-
centrated on enhancing egg survival by protecting nests cn beaches or
removing eggs to protected hatcheries (Crowder et al. 1994). We will assume
that the effect of such an effort is an increase in the fecundity values.

Load the first turtle model you created (without the effect of TEDs). Your
goal is to find out how much the fecundities must increase to give the same
probability of increasing over 200,000 turtles as the model with TEDs (in
Step 2). Increase the two fecundities by the same proportion (any propor-
tion}, and run a simulation (do not change the standard deviations). Check
the probability of increasing over 200,000 turtles sometime in the next 30
years. If it is less than what you found in Step 2, increase them some more
{again, in proportion). If it is more, decrease the fecundities. You don’t need
to get exactly the same answer. If the two probabilities (with TEDs and with
beach protection}) are within 0.1 of each other, you can stop.

How much must the beach protection increase fecundity in order to offer
the same protection to turtles as offered by TEDs? (In other words, What is
the ratio of the final fecundity to the unchanged fecundity?) Which method
seems more effective?

Exercise 5.4: Sensitivity Analysis

Northern Spotted Owl (Strix occidentalis caurina) is a threatened species
inhabiting the old-growth forests of the northwestern United States. Demo-
graphic studies on various populations of this subspecies have been
sumnmarized by Burnham et al. (1996). The following stage-structured model
is based on data from one of these studies (in Willow Creek study area in
northwest California; "CAL" in Burnham et al. 1996}.

This model assumes a birth-pulse population and a post-reproductive
census (see the section on "Estimating a Leslie matrix from a life table” in the
previous chapter). In this model, there are three stages: juveniles are newly
fledged owls, subadults are one year old, and adults are all older owls. The
following are the model parameters.
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5, juvenile survival rate; the proportion of fledglings that survive to
become one-year old subadults

S, : subadult survival rate, proportion of one-year old subadult owls
that become two-year olds

5, : adult survival rate, proportion of clder owls that survive one year

my, my, and m, : maternities (number of fledglings preduced per owt) of
juveniles, subadults, and adults, respectively

Note that because of the assumption of post-reproductive census, m;
refers to the number of fledglings produced by an owl that has fledged in the
previous census, almost a year ago. Thus m is the maternity of owls that are
almost 12 months old, and 5; is the survival of fledglings to become sub-
adults. The product §; - is the number of fledglings produced by each
juvenile that was counted in the last year's census {see Figure4.7 in the
previous chapter). Thus, the stage matrix is

-m;  S,-m,

j R

w

ot

S
0 0
S 5

@

2

The following table gives the values of these parameters for the study area
"CAL," together with their standard error (Burnham et al. 1996). Standard
error {S.E.} is a measure of the measurement or sampling error associated
with the estimation of each parameter.

m, m, 1, Sj 5, S
Mean 0.094 0205 0333 033 0.868 (.868
S.E. 0.067 0077 0029 0043 0012 0012

In this exercise, we will use the standard errors as measures of parameter
uncertainty (i.e., measurement error). In addition to this uncertainty due to
measurement errors, the parameters also have natural variability due to
environmental fluctuations. We will model environmental stochasticity with
the following standard deviations:

0.0294 0.0437 0.0711
0.01%0 0 0
0 0.0499 0.0459

The method of calculating the standard deviations for this model is based on
Akcakaya and Raphael (1998}.
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In this exercise, we will perform a sensitivity analysis, with the aim. of
deciding on which parameters to concentrate in future demographic .studles.
We will do this by analyzing how much the uncertainty in each survival rate
contributes to the uncertainty of the results. In other words, which parame-
ters are important in terms of the reducing the uncertainty in the model?

Step 1. In General information of RAMAS Ecolab ("Age and Stage
Structure”), specify 1,000 replications and 50 time steps (years). Also, make
sure that (1) "Use demographic stochasticity” is checked and (2) "Ignore con-
straints” is clear (not checked). In Stages name three stages as "Tuveniles,”
*Subadults," and "Adults" In Standard deviation matrix, enter the
standard deviations given above. In Initial abundances, enter 46, 41, and
313 for juveniles, subadults and adults, respectively. .

Step 2. Calculate the stage matrix given above using the average esti-
mates of the parameters, enter in Stage matrix and save in a file (e.g., named
"NSOaverage").

Step 3. Create four additional models, with plus or minus 1 standar.d
error of juvenile and adult survival. The four models will differ only in their
stage matrix. For each model, calculate the stage matrix as described below
(note that each survival contributes to two elements of the stage matrix). Do
not change the mean maternity vatues.

(1) Juvenile survival = average minus cne standard error. For all other
parameters, use the average values.

(2} Juvenile survival = average plus one standard error. For all other
parameters, use the average values.

{3) Adult survival = average minus one standard error. For all other
parameters, use the average values.

(4) Adult survival = average plus one standard error. For all other param-
eters, use the average values.

Save each model in a separate file, with descriptive names (such as "HighA-
dultSurv," "LowJuvSurv,” etc.).

Step 4. Run each model. Click the "text” button in the upper-left corner of
the Simulation window to complete the simulations faster. Record the risk of
falling to or betow 50 individuals (i.e., risk of decline at threshold = 50) in the
table below. Calculate the difference in risk with the low and high value of
each parameter.

Probability of declining to 50

Parameter: with low value | with high value difference

Tuvenile survival

Adult survival
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Step 5. Which parameter needs to be estimated more precisely? Open
the file you have saved in Step 2, with average values of all parameters, In
Stage matrix, click first "Display,” then "Sensitivities and elasticities,” scroll
down to the elasticity matrix? "Elasticities” and "Sensitivities' are measures
of the contribution that each matrix element makes toward the dominant
eigenvalue of the stage matrix (see Section 5.6}, According to this result,
which survival rate is more important? Is there a difference in the results of
risk-based sensitivity analysis you performed, and the deterministic elastici-
ties? If so, what might be the reason(s) for the difference?

PR

5.9 Further reading

Caswell, H. 1989. Matrix Population Models: Construction, Analysis, and Inter-
pretation. Sinauer Associates, Sunderland, Massachusetts.

Crowder, L. B, D. T. Crouse, 5. S. Heppell, T. H. Martin. 1994. Predicting the
impact of turtle excluder devices on loggerhead sea turtle populations.
Ecological Applications 4:437-445.

Lefkovitch, L. P. 1965. The study of population growth in organisms
grouped by stages. Biometfrics 21:1-18.

Usher, M. B. 1966. A matrix approach to the management of renewable

resources, with special reference to selection forests. Journal of Applied
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-A‘q-‘q‘AA‘Aﬁquq-qq-q“-‘q“ﬁﬂn--u




‘A‘-‘-““‘--‘-A‘-‘-“AA““-‘-A‘-‘

Chapter 6
Metapopulations

and Spatial Structure

6.1 Introduction

In the previous chapters, we developed models with varying degrees of
complexity. In developing each of these models, we focused on the dynamics
of a single population. This is often sufficient as many of our questions con-
cern populations within confined areas, such as the extinction risk of the
Helmeted Honeyeater in a single nature reserve (Chapter 4), management of
the Brook Trout fishery in a river (Chapter 4), and the growth of the Muskox
population on an island (Chapter 1). In other cases, the population may live
in a large area, but the relative uniformity of its habitat suggests the use of a
single population model, as in the case of the Loggerhead Sea Turtle

183
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(Chapter 5). But often, species exist in a number of populations that are
either isolated from one another or have limited exchange of individuals.
Such a collection of interacting populations of the same species is called a
metapopulation. Each distinct population in a metapopulation may be
referred to as a subpopulation, a local population, or simply as a population.

In developing models for species that live in more than one population,
we need to address the interaction between these populations. For example,
populations of Mountain Sheep (Ovis canadensis) in southern California
inhabit mountain "islands" in a desert (Figure 6.1). These populations live in
15 of these mountain ranges, which are separated by 6 to 20 km of unsuitable
desert habitat (Bleich et al. 1990). Mountain Sheep cannot live for long in the
desert, but they can migrate through it. Bleich et al. (1990) documented
movement of Mountain Sheep between 11 pairs of these mountain ranges,
and concluded that the movement of sheep among mountain patches was
important for their conservation for both genetic and ecological reasons.

Populations of many species like the Mountain Sheep accupy patches of
high-quality habitat and use the intervening habitat only for movement from
one patch to another. Metapopulations both occur naturally as a result of
spatial heterogeneity, and are created as a result of human actions. We wili
discuss these two factors next.

0 50 km

Figure 6.1. Populations of Mountain Sheep in Southem California.
Shaded areas indicate mountain ranges with resident populations,
arrows indicate documented intermountain movements; the dotted
lines show fenced highways (after Bleich et al. 1990).
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6.1.1 Spatial Heterogeneity

Spatial heterogeneity refers to the nonuniform distribution or eccurrence of
environmental variables and events in different parts of the landscape. Many
species naturally exist as metapopulations because the environmental factors
necessary for their survival oceur in patches. For example, Giant Kelp (Ma-
crocystis pyrifera) in the coastal waters off southern California grow in "forest”
patches determined mostly by the properties of the substrate on the ocean
floor, exposure to wave action, and water depth (Burgman and Gerard 1939).
There are numerous other examples of patchy distribution of habitats; you
may think of ponds in a forest, islands in an archipelago, or motintain ranges
ina desert. ;

One of the assumptions we made with the first set of models (Chapter 1)
is that all individuals, no matter where they occur, experience the same
changes in the environment and the same chances of surviving and repro-
ducing. This assumption is not valid for most metapopulations. In addition
to the spatial variation in environmental factors (such as soil conditions,
elevation, vegetation, water depth, etc.), many of the extreme events we dis-
cussed in Chapter 2 (such as fires, droughts, and floods) affect different
populations of a metapopulation to varying degrees. The changes caused by
such events are usually not uniform throughout the landscape, and how an
individual fares will depend on where it happens to be. For example, fires
often burn In mosaics that depend on fuel loads, meisture conditions, land-
scape characteristics, and prevailing winds. Different parts of the habitat
burn at different intensities and with different frequencies, and some parts
escape fire altogether.

Another example of the spatial heterogeneity of environmental factors is
the disturbance pattern that characterizes the dynamics of Furbish's Louse-
wort (Pedicularis furbishiae), an endangered plant endemic to northern Maine
(USA) and adjacent New Brunswick (Canada). It was assumed to be extinct
for 30 years until its rediscovery in 1976 (Menges 1990). It is now known to
exist in 28 populations along a 14(-mile stretch of the St. John River.

The dynamics of the Furbish’s Lousewort metapopulation are character-
ized by frequent extinctions of its populations caused by loca! disturbances
such as ice scour and bank slumping, which are distributed patchily
(Menges 1990). These disturbances also seem to be essential for the species’
survival since they prevent tree and shrub establishment (events which
would depress Lousewort populations}. As a result, individual populations
are short-lived, with fairly rapid increases followed by catastrophic losses.
This natural disturbance pattern makes the viability of the species dependent
on dispersal and establishment of new populations (Menges and Gawler
1986; Menges 1990).

-

-“‘-.“-“q‘q-A““-‘La-qﬁq“-“‘-




A-A--““-A“--“A-‘-““-‘-‘“A"

186 Chapter 6 Metapopulations and Spatial Structure

6.1.2 Habitat Loss and Fragmentation

Loss of habitat is probably the most important cause of species extinction in
recent times. Habitat loss often results not only in an overall decrease in the
amount of habitat, but also in discontinuities in the distribution of the
remaining habitat. Discontinuities can be created by opening land to agri-
culture, and by construction of buildings, dams, roads, power lines, and
utility corridors. The result is the fragmentation of the original habitat that
now exists into disjunct patches. Any population that inhabited the original
habitat will now be reduced to a smaller total size and would be divided into
muitiple populations. Further fragmentation results in a decrease in the
average size of habitat patches and makes them more isolated.

Other effects of fragmentation are manifested through increased edge
effects. When habitat patches decrease in size through fragmentation, the
populations inhabiting them become more vulnerable to adverse environ-
mental conditions that are prevalent at the edges of the habitat patch, but not
in its interjor. For a forest patch embedded in an agricultural or a disturbed
landscape, these environmental changes might include increased light and
temperature or decreased humidity. They might also include biotic factors.

An example for biotic factors is the Brown-headed Cowbird (Molothrus
ater) that parasitizes nests of forest-dwelling bird species. Cowbirds are more
abundant at forest edges. They lay their eggs in the nests of other birds, who
then raise cowbirds instead of their own young. In a study of forest frag-
mentation in the Afnerican Midwest, Robinson et al. (1995) found that
parasitism by cowbirds was higher in more fragmented landscapes. This is
because the proportion of forest that is away from the edges is lower in a
forest that is made up of smaller patches. For example, if the interior of a
forest that was not subject to edge effects such as cowbird parasitism began
at 250 m away from the forest edge, then a hypothetical, circular patch of
forest with a total area of 5km® would have 64% interior forest habitat
(Figure 6.2).

A patch with the same size edge but with an area of 1 km’ would have
31% interior forest habitat, and a patch with 0.5 kin? total area would have
onlty 14% interior forest habitat. A 5 km® patch may seem to have 10 times the
habitat as a 0.5 km" patch, but considering edge effects, it might actually
have 46 times more habitat [ (5 x 0.64)/(0.5 x0.14) = 45.7 ]. Thus a landscape
that has many small patches of habitat may have much less interior habitat
than a similar-sized landscape with larger patches, because of edge effects. If
the patches have shapes different from a perfect circle, or if the edge effects
can penetrate a greater distance into the forest, this ratio would be even
higher.
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Total area = 0.5 km"

Total area = 5 km?

Figure 6.2. Edge effects: circular patches with an edge of 250 m, and
areas of 5, 1, and 0.5 km”. The percentages represent the ratio of the
area of interior forest habitat {darker shaded regions) to the total patch
area.

6.1.3 Island Biogeography

Island biogeography is concerned with the patterns of species richness on
oceanic islands. One of these patterns is related to the size of the island.
Larger islands often have more species than smaller islands. The relationship
between the size of an island and the number of species it has is described by
a species—area curve, which is often plotted on a graph with both axes in
logarithms. The equilibrium theory of island biogeography (MacArthur and
Wilson 1967) attempts to explain this pattern based on two processes:
extinction and colonization. According to this theory, rate of extinction
increases as more species are added to an island (solid line in Figure 6.3).
Note that extinction rate here refers to the number of species that become
extinct per unit time, and not to the extinction risk of any particular species.
Assuming the extinction risks are constant, the number of species becoming
extinct should increase with increased number of species on the island.
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The other process, colonization of the island by new species, is expected
to decrease as the number of species on the island increases {dashed line in
Figure 6.3). Assuming that the rate of immigration is constant, when the
number of species already present on the island is higher, fewer of the
immigrants will belong to new species. Thus the rate of colonization will
decrease, and will reach zero when all the species on the mainiand are
present on the island. The equilibrium theory of island biogeography views
the number of species on an island as an equilibrium between these two
processes. Thus the island in Figure 6.3 has §" number of species at equilib-
rium. According to the theory, the rate of extinction of species is also
determined by the size of the island; larger islands are expected to have
lower rates of extinction (two solid lines in Figure 6.4). Larger islands may
have larger numbers of individuals per species, causing a lower risk of
extinction. If several species have lower risk of extinction on larger islands,
those islands would, in the long term, have a larger number of species.

The other process, colonization of the island by new species, is expected
to be a function of the distance of the island to the mainland. The number of
species immigrating per unit time to islands close to the mainland is
expected to be higher than the number immigrating to islands farther away
(two dashed lines in Figure 6.4). The balance between extinction and coloni-
zation determines the equilibrium number of species on distant and large

islands ( §;, ), distant and small islands ( S5 ), close and large islands (ScL )

and close and small islands ( 85 ).

The pattern of increased number of species on larger islands has also
been observed for habitat islands, i.e., patches of one type of habitat (say,
forest} surrounded by another (e.g., agricultural areas). There are explana-
tions for these patterns other than the equilibrium theory discussed above.
For example, larger islands often have a greater variety of habitats, which
contributes to the larger number of species.

Whether the equilibrium theory of island biogeography correctly deter-
mines the number of species on islands has been the subject of debate (see
Burgman et al. 1988 for a review). Another concern from a conservation
point of view is that the theory cannot be used to determine which species
are likely to become extinct. Extinction risk of a species is determined to a
large extent by factors other than those in the theory. In earlier chapters we
examined some of these factors, such as stochasticity and density depen-
dence. In the rest of this chapter, we will discuss factors that are important
determinants of extinction risk at the metapopulation level.
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Figure 6.3. The rate of extinction and the rate of colonization as a func-
tion of the number of species present on an Island, according to the
equilibrium theory of istand biogeography (MacArthur and Wilson 1867).
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Figure 6.4, The rate of exlinction and the rate of colonization for large,

small, close and distant islands, accerding to the equilibrium theory of
island biogeography {MacArthur and Wilson 1967).
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6.2 Metapopulation dynamics

In previous chapters, we developed several types of models that aimed at
evaluating the risk of extinction of a single population. Because many species
live in more than one population, one of three things might happen after a
single population becomes extinct. First, the population may be colonized by
individuals dispersing from extant populations of the same species (extant
means "surviving," or "not extinct"). Second, the population may remain
extinct; in other words, the habitat patch where the population used to live
remains unoccupied by that species. This might happen if the population
lived in a remote patch of habitat isolated from other habitat patches occu-
pied by the species. Third, the population may be recolonized through
human intervention—by the reintroduction of the spectes to its former
habitat. .

The type of population dynamics that is characterized by frequent local
extinctions and recolonizations is a natural pattern for many species (e.g.,
Andrewartha and Birch 1954). Thus, even though each local population may
exist for only a short period of time, the metapopulation may persist for a
long period, with a constantly changing pattern of occupancy of local pop-
ulations in the metapopulation as patches "blink" off and on.

This dynamic complexity is further enriched by differences among the
populations in terms of their carrying capacities, growth rates, and the mag-
nitudes of environmental fluctuations they experience. In some cases these
differences may be very important for the overall dynamics of the
metapopulation. For example, big differences in productivity of populations
may lead to sinks, which are populations that receive migrants but seldom
produce any offspring or send emigrants to other populations.

When we want to evaluate the extinction risk of a species that exists in
multiple populations, it is necessary to use a metapopulation approach. This
is because in most cases the risk of extinction of the species cannot be
deduced from the extinction risks of its constituent populations. The extinc-
tion risk of a single population is determined by factors such as population
size, life history parameters (fecundity, survivorship, density dependence),
and demographic and environmental stochasticity that cause variation in
these parameters. The extinction risk of a metapopulation or a species
depends not only on the factors that affect the extinction risk of each of its
populations, but also on other factors that characterize interactions among
these populations. The additional factors that operate at the metapopulation
or species level include the number and geographic configuration of habitat
patches that are inhabited by local populations, the similarity of the envi-
ronmental conditions that the populations experience, and dispersal among
populations that may lead to recolonization of locally extinct patches. We
will discuss these factors next.
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6.2.1 Geographic Configuration

When a species lives in several patches, much depends on exactly where
those patches are, i.e., on their spatial arrangement. This determines the dis-
persal rates, as well as the similarity of the environmental conditions in
neighboring patches (we will discuss these factors in the next two sections).

Metapopulation models assume that some parts of the landscape are
habitat patches (that are, or at least can potentially be, occupied by popula-
tions}), and the remainder is unsuitable habitat. In some cases, the species in
question has a specific habitat requirement that has sharp boundaries,
making patch identification quite straightforward. Most examples of patchy
habitats we discussed above (ponds in a forest, islands in an archipelago,
woods in an agricultural landscape, or mountaintops in a desert) fit this
category.

In other cases, habitat quality varies on a continuous scale and designa-
tion of areas as habitat and nonhabitat may be somewhat arbitrary. Cr, the
boundaries may not be clearcut for human observers. What seems to be a
homogeneous landscape may be perceived as a patchy and fragmented hab-
itat by the species living there. If the suitability of habitat for a species
depends on more than one factor, and some of these factors are not easily
observable, the habitat patchiness we observe may differ from the patchiness
from a species’ point of view. An example is the Helmeted Honeyeater (Li-
chenostomus melanops cassidix) that we discussed in Chapter 4. The habitat
requirements of this species include the presence or absence of surface water,
the density of Eucalyptus stems, and the amount of decorticating bark on
these stems (Pearce et al. 1994). In such cases, the information about habitat
requirements may be combined by computer maps of each required habitat
characteristic, using geographic information systems (Akgakaya 1994}, This
allows us, in effect, to see the habitat patches as perceived by the species.
Alkgakaya et al. (1995) used this approach to medel a metapopulation of
Helmeted Honeyeaters.

6.2.2 Spatial Correlation of Environmental Variation

Spatial correlation refers to the similarity of environmental fluctuations in
different parts of the landscape—and, in the case of a metapopulation, in
different populations. By "similarity,” we mean the synchrony of these fluc-
tuations rather than their magnitude. For example a habitat patch may
receive much less rain than another, but some years both may receive above
normal rainfall, and in other years both may receive below-normal rainfall. If
the patches experience the same sequence of wetter-than-usual and drier-
than-usual years, this means that the rainfall is spatially correlated, even
though some parts of the landscape may get much more rain than others.
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The importance of this factor can best be described by a simple example.
Suppose that you need to evaluate the extinction risk of a metapopulation
that consists of two populations. You have modeled each of these popula-
tions separately, and know that each has a 10% risk of becoming extinct in
the next 100 years. You also know that these populations are in such
different places that the environmental fluctuations they experience are not
correlated. If their risks of extinction are mainly due to environmental fluc-
tuations, we can assume that these risks are independent of each other.
“Independent” means that if one population becomes extinct, the other may
or may not become extinct in the same time step; in other words, extinction
of one gives no information about the fate of the other.

Now we want to know the risk of extinction of the metapopulation, ie.,
the risk that both populations become extinct within 100 years. To calculate
this, we use a simple rule of probability, which says that when two events
are independent, the joint probability that both will happen is the product of
their constituent probabilities. Since each probability is 0.1, the joint proba-
bility is 0.1 x0.1=0.01, so the risk that the metapopulation will become
extinct in 100 years is 1%.

Now assume that the populations are in the same environment, and we
know that if one becomes extinct, the other will as well. In other words, their
dynamics are correlated, and their risks of extinction are fully dependent. In
this case, the risk that both populations will become extinct is the same as the
risk that one will become extinct (because they only become extinct
together}. So, the risk of extinction of the metapopulation is 10%, or 10 times
higher than in the previous case of uncorrelated (independent) population
fluctuations.

This aspect of metapopulation dynamics was first pointed out by den
Boer (1968), who noted that when fluctuations were spread over a number of
separate populations, the overall risk faced by the metapopulation was
reduced. If the fluctuations in the environment are at least partially inde-
pendent, so will be the fluctuations in population growth rates. Thus it will
be less likely that all populations become extirct at the same time, compared
to a case where the fluctuations are synchronous.

Correlation among the fluctuations of populations is often a function of
the distance among them. If two populations are close to each other geo-
graphically, they will experience relatively similar environmental patterns,
such as the same sequence of years with good and bad weather. This may
result in a high correlation between the vital rates of the two populations.
For example, Thomas (1991) found that Sitver-studded Butterfly (Plebejus

argus) populations that were geographically close tended to fluctuate in syn-
chrony, whereas populations further apart (>600 m between midpoints)
fluctuated independently of one another. Similarly, Baars and van Dijk
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(1984) found that in two carabid beetles, Pterostichus versicolor and Calathus
melanocephalus, the significance of rank correlation between fluctuations
declined with increasing distance between sites.

When modeling metapopulations, the correlation among population
fluctuations may be modeled as a function of the distance among habitat
patches. This can be done by sampling the growth rates of each population
from random distributions that are correlated, and the degree of correlation
may be based on the distance among populations. (This is quite tedious to do
manually, but very simple to do with a computer program; see Exercise 6.1.)
This approach was used by LaHaye et al. (1994) to model correlated meta-
population dynamics of the California spotted owl (Figure 6.5; see the
sample file owLMP). LaHaye et al. (1994) modeled this spotted owl
metapopulation by making the growth rates of each population correlated
with the growth rates of other populations. They calculated the degree of
correlation based on the similarity of rainfall patterns among the habitat
patches.

6.2.3 Dispersal Patterns

If extinct populations (i.e., empty patches) are recolonized by individuals
dispersing from extant populations, a metapopulation may persist longer
than each of its populations. Therefore, dispersal among local populations
that leads to successful recolonization usually decreases extinction risk of the
species.

in this chapter, we use the terms dispersal and migration interchange-
ably and define them as the movement of organisms from one population to
another. Thus, migration does not mean back-and-forth seasonal movement
between wintering and breeding locations.

The rate of dispersal is measured by the proportion of the individuals in
one population that disperse to another. Suppose there are 100 individuals in
population A; 5 of them disperse to population B, and 10 of them to popula-
tion C; the rest stay in population A. In this case the dispersal rate from A to
B is 5%, and from A to C it is 10%; and the total rate of dispersal from
population A is 15%.

Dispersal rate depends, to a large extent, on species-specific characteris-
tics such as the mode of seed dispersal, motility of individuals, ability and
propensity of juveniles to disperse, etc. These factors will determine the
speed and ease with which individuals search for and colonize empty hab-
itat patches.

Dispersal rate between different populations of the same species may
also differ a lot, depending on the characteristics of the particular meta-
population or of the specific population. For example, the habitat that
separates two populations will affect the rate of dispersal between them.

-
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Figure 6.5. California Spotied Owl metapopulation (after LaHaye et al.
1994).

Two woodland patches with a connecting row of trees (a habitat corridor)
between them may have a higher rate of dispersal than other populations
separated by a highway (a barrier}. Dispersal can also occur at different rates
in two directions between two populations. For instance, individuals from
local populations of a species along a river may migrate mostly or only
downstream, but not upstream. In addition to these factors, human-
mediated dispersal can have significant effects on extinction probabilities
(we will discuss these later in this chapter). Below we discuss four other
factors that affect dispersal rates, including the distance between popula-
tions, the abundance of individuals, their sex and age composition, and
chance events.

6.2.3.1 Distance-dependent dispersal

Dispersing individuals may have a higher chance of ending up in a close
patch rather than a distant patch. Thus dispersal may occur at a higher rate
between populations that are geographically close. The relationship between
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dispersal rate and distance can be described as a declining curve. Such a
function was used to model the dispersal of juvenile California Gnatcatchers
(Polioptila c. californica), a threatened bird species (Figure 6.6).

04 4

0.3 1

02 4

0.1

Proportion of juvenile gnatcatchers

Dispersal distance (k)

Figure 6.6. Proportion of dispersing California Gnatcatcher (Pofioptila
¢. californica) juveniles as a function of distance (after Akgakaya and
Atwood 1997).

The curve that summarized the dispersal-distance relationship is based
on three parameters: average dispersal distance, maximum dispersal dis-
tance, and maximum dispersal rate {the y-intercept). In this case, the average
distance traveled by dispersing juvenile gnatcatchers was about 2.5 km. This
value determines how fast the curve declines as distance increases. The
larger the average dispersal distance, the slower the curve declines. The
maximum dispersal rate was 0.4, which is where the curve intersects the
y-axis. In this figure, the maximum dispersal distance is set to @ kum, which is
why at a distance of 9 km, the curve drops to 0 (no dispersal}.

6.2.3.2 Density-dependent dispersal

In some species, the dependence of dispersal or dispersal rates on popula-
tion abundance is an important aspect of the ecology of the species. For
example, organisms may have a greater tendency to emigrate from their
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population under overcrowded conditions, resulting in not only a larger
number, but also a greater proportion of individuals leaving the population as
density increases. This causes the dispersal rate to be an increasing function
of abundance. A similar effect can also occur in plant populations if, for
example, high density causes an aggregation of frugivorous organisms that
help dispersal, resulting in a higher proportion of seeds dispersed from
larger populations than smaller ones. Under this model of density-
dependent dispersal, the rate of dispersal (and consequently the probability
of recolonization} is an increasing function of the density of the source
population.

Another type of density dependence in dispersal rates is called the step-
ping stone effect. It occurs when smaller populations are used only as a short
stop during dispersal, rather than for settling. In this case, the organisms
have a higher tendency to emigrate from smaliler populations. For example,
the dispersal rates of voles from smaller islands were found to be higher than
dispersal rates from larger islands in an archipelago in Finland (Pokki 1981).

6.2.3.3 Age- and stage-specific dispersal

Dispersal rates can be age- or stage-specific, such as when only immature
individuals or only young males or females disperse to other habitats. In
most plant species, for example, dispersal occurs only in the seed stage.
Female Helmeted Honeyeaters disperse from their natal colony to breed.
And in most territorial bird species {such as the Spotted Owl and the Cali-
fornia Gnatcatcher), juveniles disperse farther away than adults. If the age
and stage structure of the subpopulations (i.e., the proportions of individuals
in different stages) are different from each other, this factor may have a sig-
nificant effect on metapopulation dynamics.

6.2.3.4 Stochasticity

The proportion of individuals migrating from one population to the other
may also change in a random way. Similar to demographic stochasticity in
survival and reproduction discussed in previous chapters, the fact that only
whole numbers of individuals can migrate from a given population to
another will introduce variation. Because of this similarity, if you specify
demographic stochasticity in RAMAS EcoLab, the program will sample the
number of migrants from a binomial distribution.

6.2.4 Interaction Between Dispersal and Correlation

The risk of extinction or decline of a species is determined by the factors dis-
cussed above and by the interrelationships among them. On the one hand,
the extinction probabilities of local populations that are relatively far from
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each other will be largely independent; hence perhaps the metapopulation
will have a lower overall extinction risk. On the other hand, dispersal rates
{and hence recolonization chances) in such a metapopulation will probably
be lower compared to a metapopulation with closer local poputations. Thus
there is always a trade-off between similar environments (and, consequently,
correlated extinctions) and higher dispersal rates for close populations.

Another important aspect of spatial structure is the inferaction between
these two factors. Interaction refers to the changes in the effect of one factor
that depend on another factor. In this case, how much dispersal helps reduce
the extinction risk of the species will depend on the similatity of the envi-
ronments that the populations experience. Consider the extreme case of
perfect correlation of environments. In such a case, populations will almost
always become extinct at the same time period, and whether there is dis-
persal or not before this time will not change the extinction risk. Dispersal
will decrease this risk only if the populations become extinct at different
times so that the extinct patches have a chance of being recolonized by
migrants from extant populations.

The interaction between dispersal and correlation is demonstrated in the
results of a study that compared the extinction risk of a single population,
with that of a metapopulation that consisted of three small populations
{(Figure 6.7). The three populations had the same total initial abundance as
the single large population, and their risk of extinction in the next 500 years
was lower than that of the large population, when correlation was low (the
left end of the curves). In addition, when the correlation was low, higher
rates of dispersal caused lower extinction risks. When correlation was high,
the single large population had a lower risk, and the effect of dispersal rate
was negligible (the four curves get closer towards the right end of the graph).
See Exercise 6.1 for another demonstration of the interaction between corre-
lation and dispersal.

6.2.5 Assumptions of Metapopulation Models

One of the first models developed for metapopulation dynamics was by
Levins (1970). In this model, the proportion of occupied patches (p) is deter-
mined by colonization of empty patches and the extinction of occupied
patches:

dpldt=mp(l-py-Ep

In this differential equation, dp/dt refers to the rate of change in the propor-
tion of occupied patches. The colonization parameter () is defined as the
probability of successful migration from an occupied patch to any other
patch per unit time. The parameter E is the probability of extinction of a
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Figure 6.7. Extinction of a single large population (horizontal line),
and three small populations (curves} as a function of the correlation of
environmental fluctuations. Each curve represents a different simu-
lation of the three-population model with different dispersal rates (0%
ta 1%). After Akgakaya and Ginzburg (1991).

given local population in a unit time interval. Colonization (the first term in
the equation) is assumed to be proportional to the product of occupied
patches p and unoccupied patches 1-p, and extinction (the second, negative
term, Ep) is proportional to the number of occupied patches. This model
predicts that the proportion of occupied patches will reach the equilibrium
number,

p¥=I*E/m

In other words, the species will persist (or, the proportion of occupied
patches will be greater than zero) if the rate of colonization (m) exceeds the
rate of extinction (E ).

This modet predicts the future of the population in terms of the number
of occupied patches, instead of the number of individuals. As a result, it does
not incorporate the within-population factors (such as density dependence)
that we have discussed in previous chapters. Instead, it assumes patches are
either fully occupied (the population is at the carrying capacity) or they are
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empty (population is extinct). It also assumes that all patches are equal in
terms of risk of extinction and chance of being colonized. Further, it assumes
that extinction of each population is independent of others.

Other metapopulation models that were based on Levin’s model make
different assumptions regarding extinction and colonization rates. However,
most make the basic assumption that patches are either occupied or empty.
For this reason, we call these occupancy models.

The models we will develop in the exercises using RAMAS EcoLab make
a different set of assumptions. As in previous chapters, they describe-each
population by its abundance, and they incorporate environmental and
demographic stochasticity. Their two basic assumptions are: (1) there is no
age, stage, sex, or genetic structure (assumption 4 in Chapter 1), and (2) the
dynamics can be approximated by pulses of reproduction and mortality; in
other words, they happen in discrete time steps (assumption 6 in Chapter 1).
In terms of metapopulation-level factors, they assume that the correlation of
environmental fluctuations and the rate of dispersal among populations can
be described as a function of the distance among the populations. The dis-
tances among populations are calculated by the program based on the
coordinates of each population. Thus, in these models, the location of each
population makes a difference in terms of the dynamics of the meta-
population.

6.3 Applications

The existence of a species in a metapopulation necessitates a different
approach than that used for single populations. This is especially true in the
case of applications in population ecology, such as assessing human impact
on threatened and endangered species, and evaluating options for manage-
ment and conservation. Each population of a metapopulation may be
impacted by human actions to a different degree. These effects may be
observed in terms of lower vital rates or carrying capacities. In addition, a
metapopulation can be impacted by human actions in ways that are not
easily noticeable with a single-population approach. For example, logging
can increase the fragmentation of old-growth forests; agricultural expansion
can change the spatial distribution of remaining native habitat; highways
and power lines can decrease dispersal among populations and lead to
increased isolation of the remaining patches. Below, we will discuss types of
management options and impact assessments that are relevant for metapo-
pulations.




200 Chapter 6 Metapopulations and Spatial Stricture

6.3.1 Reintroduction and Translocation

The existence of multiple populations also brings with it new types of man-
agement options that do not exist for single populations. These include
reintroduction and translocation.

The IUCN (1987) defines reintroductions as the “intentional movement of
an organism into part of its native range from which it has disappeared or
become extirpated as a result of human activities or natural catastrophe.”
The intention is to establish a self-maintaining, viable population in an area
that was previously irthabited by the same species. Reintroductions should
be distinguished from translocations, the movement of individuals from one
patch of habitat to another.

Reintroductions are a risky strategy. A provisional survey noted 220
plant reintroduction projects conducted world-wide between 1980 and 1990,
involving 29 different plant families (WCMC 1992, Chapter 34). Preliminary
indications are that many have been unsuccessful because of poor horticul-
tural practice, poor ecological understanding, lack of post-planting
maintenance and monitoring. Griffith et al. (1989) reviewed translocations
and reintroductions around the world, and documented more than 700 cases
per year, mostly in the United States and Canada. They found that translo-
cation of game species constituted 90% of translocations and that they had a
success rate of 86%. Translocations of threatened species made up the
remainder, and their success rate was just 44%. Dodd and Siegel (1991)
found that only 19% of translocations involving reptiles and amphibians
were successful.

There are many reasons for failure, including the quality of habitat into
which the animals are released and whether the individuals are wild or cap-
tive bred. Social structure of the population may interfere with the success of
the captive bred individuals reintroduced to a wild population (e.g., see
Akcakaya 1990). The design of the reintroduction program is also important,
and includes such factors as the number, sex, age composition, and social
structure of the released population, the provision of supplementary food,
and the use of a single release or multiple releases over many years. To
succeed, reintroductions need to be carefully planned, executed, and moni-
tored.

Translocations may augment the natural dispersal rate and can be effec-
tive since they can easily be planned to be density-dependent, by moving
individuals from high-density populations to empty or low-density patches
{see Section 6.2.3.2 on density-dependent dispersal). Whether translocation
will increase the persistence of the metapopulation depends on many fac-
tors; they include both the spatial factors we discussed in this chapter and
others such as the risk of injury or mortality due to handling and transport
by humans.
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Planning of reintroductions and translocations often requires a meta-
population approach. If a species is to be reintroduced, questions such as “Is
it better to reintroduce 100 animals in one patch, or 50 in each of two
patches?" require an understanding of the metapopulation dynamics of the
species. The design of the optimal translocation schedule involves questions
such as "How many?" and "From which population, to which population?”,
suggesting a metapopulation approach.

6.3.2 Corridors and Reserve Design

Dispersal between populations can also be increased by baii:i'mg or pro-
tecting habitat corridors, which are linear strips of habitat that connect larger
patches of habitat. Although corridors for dispersal have long been
recommended as a conservation measure, there is often little reliable data on
how often corridors are used by a given species, and how much they
increase the persistence of the species (Simberloff et al. 1992). Corridors may
increase dispersal rates, but not in all cases; and while increased dispersal
usually decreases extinction risks, models suggest that in some cases the
reverse may happen. Increased dispersal from source populations to sink
populations might increase extinction risks (Akgakaya and Baur 1996). Cor-
ridors may also help the spread of catastrophes such as fires and disease
epidemics, and act as sink populations (because of strong edge effects). In
summary, it is not possible to make a general statement about the effective-
ness of corridors as a conservation measure; this depends on the particular
metapopulation, and the particular landscape it lives in.

Another conservation option that relates to metapopulation dynamics is
the design of nature reserves, which involves selection of habitat patches
that will give the most protection to the species in question. This provides a
practical example of the interactions and trade-offs among components of
spatial structure. One question that occupied conservation biologists for
many years was whether a single large or several small reserves of the same
total area will provide better protection for a species against extinction
(known by the acronym SLOSS, single large or several small). On the one
hand, several small populations may have a lower extinction risk if the rate
of dispersal is high enough and the degree of spatial correlation of environ-
ments is low enough. This is because a single large population will not
benefit from uncorrelated environmental fluctuations; if it becomes extinct, it
cannot be recolonized. On the other hand, compared to a large population,
each of the small populations will be more vulnerable to extinction due to
environmental and demographic stochasticity. Thus if they become extinct at
the same time, or if the extinct ones cannot be recolonized from others, a
metapopulation of several small populations may have a higher extinction
risk than a single large population (see Section 6.2.4).

Form
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Thus there is no general answer to the SLOSS question. The answer
depends not only on these two factors (degree of correlation and chances for
recolonization), but also on other aspects of metapopulation dynamics, such
as the configuration, size and number of populations, their rates of growth,
density dependence, carrying capacities, etc. However, metapopulation
modeling allows us to find an answer to the SLOSS question for specific
cases, and to evaluate different configurations of habitat patches selected as
nature reserves. Actually, conservation biologists are rarely faced with the
question in such simple terms. Often the monetary or political cost of
acquiring a patch for a reserve might not be related to its size; in other cases
the size {or even the carrying capacity) of a patch might not be directly
related to its value in terms of the protection it offers. A small patch that
supports a stable population might contribute more to the persistence of the
species than a large patch that is subject to greater environmental variation
or human disturbances. Thus it is much more productive to evaluate reserve
design options for a specific case, using as much of the available empirical
information as possible, than trying to find generalities that may or may not
apply to specific cases.

6.3.3 Impact Assessment: Fragmentation

It is important to note that the trade-off between large and small reserves we
discussed above only applies to the case where the total area of a single large
reserve is roughly equivalent to the total area of small reserves. If the meta-
population of several small populations in the above example has formed
from a single Jarge one as a result of habitat fragmentation, the answer to the
above question will be much less ambiguous. A fragmented habitat that has
several small patches certainly contains a smaller (and a more extinction-
prone} total population compared to the original nonfragmented habitat.
The reason is that, as a result of fragmentation, (1) the total area of habitat is
reduced; (2) the movement of individuals {migration, dispersal) is restricted;
(3) the resulting habitat fragments are generally no more independent of
each other than they were before fragmentation; {4) populations in frag-
mented habitats may have lower vital rates because of edge effects (see
Section 6.1.2). Each of these point to an increased risk of extinction due to
fragmentation, but they may also have exceptions. For example, while it is
usually true that parts of the habitat would not have more independent (un-
correlated) environmental fluctuations after fragmentation, certain factors,
such as slower spread of fires or diseases may make the habitat fragments
more independent than parts of a single large habitat.
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Another factor to consider in applying metapopulation concepts to the
assessment of fragmentation effects {and reserve design decisions) is the
change in patch sizes over time. In the above discussion about SLOSS, we
assumed that the size of the patches that are selected remains the same :)r at
least, the change in size does not depend on whether one large or séveral
small patches have been selected. [n fact, because of edge effects, the original
habitat in smaller patches may decrease in size faster than in larger patches.
(This effect can be simulated in RAMAS EcoLab by specifying a negative rate
for the Temporal trend in K parameter in Populations; see below.)

Al these interactions and complexities make it impossible to assess spe-
cies extinction risks or address questions about conservation and
management based solely on intuition or simple rules of thumb. When
conservation decisions are based on rules of thumb, a number of assump-
tions are made. Building models forces us to make these assumptions
explicit, and whenever data are available, to replace these assumptions with
model parameters estimated for the specific case at hand.

6.4 Exercises

In these exercises, we will use the "Multiple Populations” component of
RAMAS EcoLab. The following paragraphs describe the special features of
this component.

An Qverview of the Program

The metapopulation models you can build with this program are based on
the unstructured models (models with no age or stage structure) we worked
on in Chapters 1, 2, and 3. In other words, each population is modeled in the
same way we modeled single populations using the "Population growth
(single population medels)” program. The first window under the Model
menu (General information} is the same as in that program; here you can
specify a title, comments, the number of replications and time steps, and
whether to use demographic stochasticity. The second window under the
Model menu (Populations) is also similar to the ones you used in Chapters 2
and 3, but with two differences:

(1) On the left side of the window, there is a list of the populations in the
metapopulation. On the right side, there are the parameters for the popula-
tion that is highlighted on the list. There is one such set of parameters for
each population. So, to edit the parameters of a population, first click on its
na;ne on the list, then click on the appropriate parameter and type in the new
value.
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(2) There are several additional parameters for each population. These
include the name and coordinates of the population, so that each population
comprising the metapopulation can be distinguished from others. Another
new parameter is "Temporal trend in K, which describes how the carrying
capacity of the population changes through time.

The "Display” button in Populations lets you view four graphs related to
the parameters of the population (the one that is highlighted on the list). The
first two graphs are related to density dependence and are the same as in
previous components. The third shows a histogram of the rates of dispersal
from the specified population to each of the other populations (see below).
The fourth graph shows the change in carrying capacity through time. The
"Carrying capacity (K)" parameter determines where the line in this graph
starts from (the y-intercept), and the "Temporal trend in K" parameter deter-
mines how much it increases or decreases per time step (the slope of the
line).

Another feature of this program is the Metapopulation map displayed in
the main window. The relative position of each population is calculated from
the X and Y coordinates specified in Populations screen. The areas of pop-
ulation circles are proportional to their carrying capacities if there is density
dependence; otherwise the initial abundance is used. The brightness (or
"fullness”) of the population circles shows the relative degree of occupancy,
calculated as the ratio of initial abundance to carrying capacity.

If there is dispersal from one population to another, this is indicated by a
line between the two population circles. This line is #ot drawn if the expected
number of migrants (dispersal rate multiplied by the carrying capacity of the
source population) is less than 0.1. The line connects to the source popula-
tion, but, at its other end, there is small gap (not visible in some cases)
between the end of the line and the target population, so that you may
understand the direction of dispersal. If there is dispersal in both directions,
then the two lines will be superimposed, and there will not be any gaps at
either end.

Also drawn on the screen are various geographic features from an ASCII
file (which is specified as the "Map features” parameter in General informa-
tion). The format of this file follows that for RAMAS Metapop and RAMAS
oIS (Akgakaya 1998), but for these exercises, you don’t need to know the
format.

There is also an additional window that is not in the single population
program. The Dispersal and Correlation window can be used to specify the
rate of dispersal between populations and the similarity of their fluctuations,
based on the distance between them. The distances are calculated from the x-
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and y-coordinates specified in Populations. Dispersal rates are specified as a
function of three parameters: average dispersal distance, maximum dis-
persal distance, and maximum dispersal rate (see Section 6.2.3.1).

Correlations are also specified as a similar function of distance. To keep
things simple, only one parameter needs to be specified: the correlation at a
distance of 100 units (a unit depends on the units used to specify the coordi-
nates of populations). If this parameter is 1.0, all populations are fully
correlated; if it is 0.0, all populations are uncorrelated {(have fully
independent fluctuations). If it is 0.5, then fluctuations of two populations
separated by 100 units (say, km} will have a correlation coefficient of 0.5.
Populations closer than 100 km will have a higher correlation, and those far-
ther apart will have a lower correlation. (For the curious: the shape of both
functions is that of the negative exponential function y = a-exp(-d/b), where
d is the distance and 2 and b are parameters. The dispersal function is trun-
cated at the maximum dispersal distance).

In Dispersal and Correlation, click the "View" buttons to view two
graphs that show dispersal rate and correlation as functions of the distance
between two populations. You can also see the rates of dispersal from one
population to all other populations. For this, go to Populations, click "Dis-
play” and select "Dispersal rates." The horizontal line shows the total rate of
dispersal from this population (which is also displayed numerically at the
top of the screen), and the vertical bars show the proportion of individuals
dispersing to other populations.

Exercise 6.1: Spatial Factors and Extinction Risks

This exercise demonstrates the effect of three spatial factors on meta-
population extinction risks: number of populations, correlation among
population growth rates, and rate of dispersal among populations. The
exercise consists of several models of hypothetical metapopulations. These
models are saved in files that are described below. The files may also contain
results. If so, you do not need to run the simulation. If a file does not contain
results, the program will tell you this when you attempt to view a result
screen, and you will need to run a simulation with each model, and save the
results.

Step 1. Single large population

We begin with a single population which has a carrying capacity of 100
individuals. Open the file 1LARGEMP, which contains such a population
model. To review the specifics of the model, you can go through the input
parameters in General information and Populations. Other input windows
do r}ot contain any information since there is only one population. Select
"Trajectory summary" from the Results menu to view the plot of population
size though time.

-

““q““‘-“‘-‘-‘-‘“‘AA--“A‘A‘

\




A-‘-‘-““A“-“-“--““--“-“--‘

206 Chapter 6 Metapopulations and Spatial Structure

For the estimate of extinction risk, select "Extinction/Decline” from the
Results menu. The graph shows the probability that the population will fall
(during the next 30 time periods) below each threshold level in the x-axis.
From the graph, read the risk of falling below 5 individuals, and record this
number.

Step 2. Correlated environments; no dispersal

The file 5SM-G-LMP contains a metapopulation model of five populations,
each with a carrying capacity of 20 individuals. Thus the total size of this
metapopulation is the same as that of the single large population in the pre-
vious example. The other population parameters (such as growth rate, its
standard deviation, survival rate, the duration of the simulation, etc.) are the
same as those of the single population.

Open the file 5sM-C-LMP (the filename summarizes "5 small; correlated;
isolated"). Examine the input parameters in each of the three windows under
the Model menu. Notice the following:

(1) In General information and Populations, all parameters except the initial
population size (N,) and carrying capacity (K) are the same as in the
single large population; N, and K for each of the five populations are
one-fifth of their values for the single large population.

(2) In Dispersal and Correlation, the maximum dispersal rate is (), and corre-
lation at d=100 is 1. The first parameter means that there is no dispersal
among the populations, and the second means that environmental
fluctuations of the populations are fully correlated. Click the two "View"
buttons to see the two functions: the dispersal function is zero for all dis-
tances, and the correlation function is one.

{3) There are no lines among the populations in the Metapopulation map
displayed in the main window (because there is no dispersal}.

Again view the Extinction/Decline risk {do not change the scales). If
you've changed any of the input parameters, the program will give a
warning; in this case load the file again. You will notice that this meta-
population has a higher extinction risk than the single large population, and
the risk curve is above the risk curve of 1LARGEMP. Again, record the risk of
falling below 5 individuais.

As you have noticed from your inspection of the input screens, the
growth rates of the five populations are correlated, and there is no dispersal
among the populations. Hence this metapopulation represents the worst
combination of these two factors: the populations will become extinct at
about the same time, and there will be no chance of recolonization. This
results in a much higher extinction risk compared to the single large popula-
tion, even though the total population sizes are the same.
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To see a visual demonstration of the effect of correlation, start the simu-
lation by selecting Run from the Simulation menu. The program wilt show
the spatial structure of the metapopulation, updated after every time step. If
the map is changing too fast, increment the counter on the top of the window
to change the simulation delay.

At each time step, the abundance of the five populations is used to
update the map. The shading in each population represents how "full” the
patch s, i.e., how close the population is to the carrying capacity of the patch.
Notice that when one patch is completely full, the others are more likely
have a large population than be extinct. This is because of théjligh correla-
tion among population growth rates. However, this is not always the case;
you may notice that sometimes a population becomes” extinct while others
are still extant. This is because demographic stochasticity introduces varia-
tion that is independent for each population.

You can click the left-most button on top of the window to turn off the
map and complete the simulation faster; or you can press to terminate
the simulation (the program will stop running the simulation after the cur-
rent replication is completed). Close the simulation window.

If you turn off demographic stochasticity (by clearing its box in General
information), the population sizes will become fully cerrelated. However,
turning off demographic stochasticity also decreases the risk of extinction, so
you will notice fewer "empty" paiches during the simulation than you did
with demographic stochasticity turned on.

Step 3. Independent environments; no dispersal

The file 55M-U-LMP cortains a similar model, but the populations are
independent: their growth rates have zero correlations. (The filename sum-
marizes "5 small; uncorrelated; isolated”). You can check this by opening this
file and selecting Dispersal and Correfation under the Model menu. The
correlation coefficient {at d = 100) is zero. Click the "View" buttons to see the
dispersal and correlation graphs. Other parameters of this model are the
same as in the previous file.

View the extinction risk curve, and record the risk of falling below 5 _

individuals. The lower extinction risk is a result of the independence of
environmental fluctuations, which cause fewer of the populations to become
extinct at the same time than with the correlated fluctuations in the previous
model.

Now run the simulation to observe the effect of independent fluctua-
tions. You will notice that the sizes of the five populations (represented by
the density of shading in the population circle) change independently; when
one or two populations have high densities, others may have medium or low
densities, or even be extinct. Notice that there are no lines (that represent
dispersal) among the five populations. Thus the decrease in extinction rate
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occurred even though the extinct patchies did not have a chance to be recalo-
nized from extant populations. {You can terminate the simulation by
pressing (Esc), and return to the main menu by pressing any key after the end
of the simulation.)

Step 4. Dispersal; uncorrelated environments

To see the effect of dispersal in decreasing extinction risks, open the file
53M-U-D.MP. This file contains a model of the same metapopulation as the
previous model, but with a moderate rate of dispersal among the popula-
tions. (The filename summarizes "5 small; uncorrelated; with dispersal”).
Open this file, and select Dispersal and Cerrelation. Note that the maximum
dispersal rate {the y-intercept) is now 1.0. Click the "View" button for dis-
persal to see the dispersal-distance function, which gives the proportion of
dispersers as a function of the distance between the source and target
populations. The distances among the populations in this model range from
10 to 20 (which you can calculate from the coordinates). The dispersal-
distance function gives dispersal rates ranging from 0.007 to 0.082 between
any two populations in this model. If you added the rates of dispersal from
one population to 2ll others, you would get about 14 to 18% of the individ-
uals in each population dispersing to the other four populations.

You can also see the rate of dispersal from one population to each other
population. For this, go to Populations screen and select a specific (source)
population (by clicking on the name of the population in the list on the left).
Then click "Display,” and select "Dispersal”. The horizontal line shows the
total rate of dispersal from this populationt (which is alse displayed numer-
ically at the top of the screen), and the vertical bars show the proportion of
individuals dispersing to each other population.

View the Extinction/Decline risk (without changing the scales), and
record the risk of falling below 5 individuals. When you now run the simu-
lation a line will appear between two populations if, at that time period,
there is dispersal between those two populations (in either direction). At
some time steps, you may not see a line between some populations; this is
because if the size of a population gets very small, the number of emigrants
from that population may be rounded-off to zero. If, for example, dispersal
rate from one population to another is 0.05 and the number of individuals in
the source population at a particular time step is 9, the number of migrants
for that time step will be 0.05 x 9 = 0.45, and wiil be truncated to zero. In
addition, when demographic stochasticity is turned on, the number of
migrants is sampled from a binomial distribution (see the section on "Sto-
chasticity" above}.

Step 5. Dispersal; correlated environments
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The last file, 55M-C-D.MP, contains a model of the same metapopulation
as the previcus model, but in a correlated environment {the filename sum-
marizes "5 small; correlated; with dispersal”). View the extinction risk result,
and record the risk of falling below 5 individuals.

Step 6. Summarizing resuits

Combine all the risk results you have recorded into the table below.
Compare the risks of falling below 5 individuals with the five models. Does a

single large population have a lower or higher risk than several small pop-
ulations?

Risk of falling below 5 individuais
with the single population model:

Metapopulation | Risk with no dispersal | Risk with dispersal Reduction in risk
models: due to dispersal

38M-C-I.MP 58M-C-D.MP

Full corretation

58M-U-I._Mp S55M-U-D.MP
No correlation

Step 7. Effect of dispersal in reducing extinction risks

To see how dispersal effects extinction risks, subtract the risk in models
with dispersal from the risk in models without dispersal. There are two
models without dispersal and two with dispersal, so you calculate the effect
of dispersal in reducing risks in two different ways. One of these assumes
full correlation, and the other assumes no correlation. Compare the effec-
tiveness of dispersal in preventing extinctions under these two assumptions.
Explain the difference (see Section 6.2.4),

Exercise 6.2: Habitat Loss

As we mentioned in Section 6.3.3, an important factor in applying the meta-
population concepts to conservation decisions is the change in patch sizes
over time. With RAMAS EcoLab you can simulate the change in the carrying
capacity of a population if the population has density-dependent population
growth.

Step 1. To observe this effect, first load 1LARGE.MP, the single population
model, and select the Extinction/Decline screen from the Results menu.
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Step 2. Select Populations from the Model menu, and _changle the
parameter Temporal trend in K to -3. Click "Apply,” then "Display” afld
select Habitat change. This graph shows the change in the carrying capacity
over the duration of the simulation. The carrying capacity is decreasing by 3
at each time step. Close the window and click "Cancel” {twice). Run a simu-
lation. Notice that the circle representing the population gets smaller at each
time step. The size of the circle is proportional to the carrying capacity.

Step 3. If you want to complete the simulation faster, click the text button
(fist button from left on top of the window) to turn off the map. After the end
of the simulation close the simulation window, and select Extinction/Decline
under the Results menu. How did the risk curve change? What is the risk of
falling below 5 individuals? How does this risk compare with the risk of
falting below 5 individuals when the model did not include any habita? loss.

Step 4. Select Trajectory summary to see the predicted declin_e in t_he
population size over the next 30 years. You can run a similar simulation with
one of the metapopulation models.

The effect of habitat loss will depend, among other things, on the number
of populations for which you specified a negative change in carrying
capacity, and at the rate of loss specified with the value of _ i-:he
Temporal trend in K parameter. This parameter can also have a positive
value representing an increase in habitat. To see a model with l?oth
increasing and decreasing patches, load METAPOPS.MP, and run a simulation.

Exercise 6.3: Designing Reserves for the Spotted Owl

This exercise concerns the metapopulation dynamics of the California
spotted owl (see Section 6.2.2). The model is based on one of the modles used
by LaHaye et al. (1994) to explore the effects of spatial factors on this meta-
population.

Step 1. Start RAMAS EcoLab, select "Multiple population models,” and
load the file OWL.MP. This file contains a metapopulation model of the Cal-
ifornia Spotted Owl discussed above. '

Step 2. The model predicts a fast decline of this metapopulation. For this
exercise, we will assume that the reason for the decline is a decrease in hab-
itat quality in recent years. We will also assume that it is possible to improve
the habitat quality but that it costs a lot of money. How much it costs
depends on the size of the habitat to be improved. As you see on the map,
each population has a different size. The cost of habitat improvement for a
population is $1,000 multiplied by the carrying capacity (K} of the popula-
tion. For example, improving the habitat in the first population (N.
Monterey) would cost $100,000. Your job is to decide in which populations to
improve the habitat. You have a total of $500,000 to spend. Habitat improve-
ment in any patch results in an increase in the growth rate from 0.827 to 1.01.
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Step 3. Select General information, set the number of years to 20, and
number of replications to 1,000 (if your computer is very slow, you can use a
smaller number such as 300 or 500), and run a simulation. The simulation
may run faster if you turn off the display of the map. Save the file with a new
name.

Step 4. Then select as many populations as you can with your $500,000,
and increase the growth rates of the selected populations to 1.01. Keep the
other populations in the model, and leave their growth rates as they are. The
sum of the carrying capacities of the populations you selected should riot
exceed 500. Then save the file under a different name, and run a simulation.
After the simulation is over, save the file again; investigate and record the
results. '

Step 5. Your plan of habitat improvement will probably not prevent the
decline of the metapopulation, but it can slow it down so as to gain some
more time for further conservation actions (or perhaps for raising more
money to improve more habitat). So, your criteria for success should not be
whether the average size of the metapopulation is increasing or decreasing.
Instead, find a probabilistic measure of whether your plan is successful or
not. For example, you can use the risk of falling below 100 individuals as
your measure. Compare this result for the two simulations (in steps 3 and 4
above). How much did the result improyve?

Step 6. Now select different combinations of populations to improve
(again, the sum of the carrying capacities of the populations with growth
rate equal to 1.01 cannot exceed 500). Run more simulations and compare the
results.

Step 7. Describe which populations you selected in each case and how
you made your selection of populations. Random selection is acceptable.
Other criteria may include: few largest populations, many small popula-
tions, most geographicaily spread subset of populations, all populations in
the north, or south or the center, all populations away from the shore, etc.

Step 8. Describe which selection was the most successful. If two or more
selections give similar risks of falling below 100 owls, compare them with
respect to the risk of falling below 200 owls.

NOTES:

Given the parameters and assumptions of the model, there is probably a
single best solution to this exercise. However, the number of combinations is
quite large, and you are not expected to try all possible subsets. If this were a
real case, then you’d probably want to cover ali possible options before you
spend your half-a-million dollars.
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When you find out that a particular combination gives much better
results than others, do not be tempted to generalize. The point of this exer-
cise is that when populations are distributed in space, where they are makes
a difference. But the rule of selection that is best will probably be different in
each case.

6.5 Further reading

Askins, R. A. 1995. Hostile landscapes and the decline of migratory song-
birds. Science 267:1956-1957.

Gilpin, M. E. 1987, Spatial structure and population vulnerability. In Viable
Populations for Conservation, M.E. Soulé (Ed.), pp 126-139. Cambridge
University Press.

Hanski, I. 1989. Metapopulation dynamics: does it help to have more of the
same? Trends in Ecology and Evelution 4113-114.

Harrison, 5. 1991. Local extinction in a metapopulation context: an empirical
evaluation. Biological Journal of the Linnean Society 42:73-88.

Simberloff, D., ]. A. Farr, ]. Cox, D. W, Mehlman. 1992, Movement corridors:
conservation bargains or poor investments? Conservation Biology
6:493-504.

Chapter 7
Population Viability Analysis

7.1 Introduction

So_ far, we have dealt with topics that are general in populaticn ecology. In
thl-S and the next chapter, we will concentrate on two specific areas where the
principles of population ecology may be applied. One specific area to apply
t}.le methods and concepts discussed in previous chapters is population
vu-ibi_]jty analysis (frequently abbreviated to PVA). Population viability anal-
ysis is a process of identifying the threats faced by a species and evaluating
the likelihood that the species will persist for a given time into the future
{Shaffer 1981, 1987, 1990; Gilpin and Soulé 1986; Boyce 1992). The process of
PVA is closely related to determining the minimum viable population
(MVP), which is defined as the minimum number of individuals that ensures
a population’s persistence. As we have demonstrated in previous chapters
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and will discuss below, the size of a population is only one of the character-
istics that determine the chances of persistence; thus PVA can be thought of
as a generalization of the MVE concept.

Population viability analysis is often oriented towards the management
of rare and threatened species; by applying the principles of population
ecology, PYA seeks to improve the species’ chances of survival, Threatened
species management has two broad objectives. The short-term objective is to
minimize the risk of extinction. The longer-term objective is to promote con-
ditions in which species retain their potential for evolutionary change
without intensive management. Within this context, PVA may be used to

address three aspects of threatened species management {Possingham et al.

1993):

(1) Planning research and dat collection. PVA may reveal that population
viability is insensitive to particular parameters. Research may be guided
by targeting factors that may have an important effect on extinction

probabilities.

(2) Assessing vulnerability. PVA may be used to estimate the relative vulner-

ability of species to extinction. Together with cultural priorities,
economic imperatives, and taxonomic uniqueness, these results may be
used to set policies and priorities for allocating scarce conservation

resources.

(3) Ranking management options.
responses of species to reintroduction, ca
burning, weed control, habitat rehabilitation,
nature reserves or corridor networks.

You have already applied principles and methods of population ecology
to these aspects of PVA. For example, in Exercise 2.4, you analyzed the sen-
sitivity of Muskox population viability to the parameters of a simple model.
[n Exercise 5.3, you compared the effects of two conservation measures on
the viability of sea turtles, and in Exercise 6.3, you tried to find the reserve
design option that maximizes the viability of a California spotted owl meta-
population. In this chapter, we will discuss population viability analysis in

more detail, beginning with a review of extinctions.

PVA may be used to predict the likely
ptive breeding, prescribed
or different designs for

7.2 Extinction

Population viability analysis deals with one aspect of population dynamics,
namely the decline and extinction of populations. It is therefore relevant to
review briefly what we know about extinction so that we understand the

motivation behind PVA’s methods and concepts.
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7.2.1 Extinction in Geological Time

More than 9%% of species that have ever existed are now extinct, and most
species have a lifetime of around 1 to 12 million years. Many of the species
tha.t existed in the past were not eliminated in the sense that we think of
extinction today. Rather, natural selection and mwtation have essentially
t%-ansfc_srmed many species, a process known as phyletic evolution (or evolu-
tion within a single lineage, without speciation). In addition, there have been
a number of events in the geological past in which substantial propertions of
the biota then existing were lost. These are termed mass extinction events.
'ljhe most severe extinction event for marine families occurred 245 mya (mil-
lion years ago) during the late Permian period, at which time more than half
of the families of marine animals and tetrapods and nearly half of the
numl:{er of fish families were lost. About 95% of all species were lost. The late
Pgrquan event is generally accepted to have occurred over a period of 5-8
million years, and appears to have been associated with global physical
changes including climate change and volcanic activity.

The most recent mass extinction, which marks the boundary between the
Cretacecus and Tertiary periods 65 mya, is the best documented. There is
some evidence that it was associated with an extra-terrestrial impact
falthough the cause remains controversial. The late Cretaceous event resulted
in a decline of about 15% of marine families and 40% of tetrapod families in
the fossil record. The loss of plant species was unusually high compared to
other mass extinction events. More than 70% of all species were lost.

Another interesting type of information from the fossil record concemns
length of time each species existed. The lifetimes of species (i.e., times to
extinction after the initial radiation) are usually distributed asymmetrically;
t1_1e3_r are strongly skewed to the right (Figure 7.1} with most species per:
sisting for time periods less than the average within any one taxon, and a few
species persisting for much longer times.

. In this kind of statistical distribution, the median time to extinction (the
time at which half the species within a taxon have become extinct} is less
than the average time to extinction. In the fossil record, the average rate of
loss of species globally (both by species extinction in the usual sense of the
wqrd, al"ld by phyletic evolution) has been of the order of 1 species per year.
This estimate was first made by Charles Lyell and several more recent esti-
mates have resulted in approximately the same nuimber.
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Figure 7.1. The time to extinction of species in planktoric foraminifera
during the Paleogene radiation (after Levinton and Ginzburg 1984),

7.2.2 Current Extinction Rates

Most recorded extinctions over the last few hundred years are from mam-
mals, birds, and terrestrial snails because the taxonomy of these groups is
relatively complete. For most other vertebrates and almost all other
invertebrates there is no information on extinction rates in recent history.
The main difficulty is that most taxa have not been deseribed or named. T.he
vast majority of even the described species are not monitored, and species
may be locally or globally eliminated without our knowledge of the event.
Only named species are recorded as extinct. Species are presumed to be
extinct when a specific search has not located them, when they have not been
recorded for several decades, or when expert opinion suggests they have
been eliminated. These rules strongly suggest that our knowledge of extinc-
tion rates, even in relatively well known groups, will tend to underestimate
the true rate. Nevertheless, there have been a total of about 450 animal
extinctions recorded globally since 1600 (WCMC 1992; see Figure 7.2 and
Table7.1).

There has been a preponderance of extinctions on islands compared to
rates on continents, For example, 75% of recorded anima! extinctions since
1600 (about 370 extinctions out of 490) have been of species inhabiting
islands, even though islands support a small fraction of the number of
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Figure 7.2. The number of recorded animal extinctions in recent his-
tory (after Jenkins 1992). The values represent the number of
extinctions recorded within the 30-year period up to the date labeling
the class.

animal species found on continents. The apparent decline in extinctions in
the last 30 years to 1990 (Figure 7.2) is at least partly due to the fact that there
is a time lag between extinction events and their detection and recording. A
number of species are likely to have become extinct recently without yet
having been recorded as such. Tt is also possible that conservation efforts
over the last 30 years have slowed the rate of extinctions. Attention usually is
focused on high-profile species (such as mammals and birds) and many
recent recovery efforts have been successful, at least in the short term.

There 1s little doubt that current extinction rates are considerably higher
than those observed globally over the last 50 million years. Some simple cal-
culations serve to illustrate the point. Assume an average life-span for a
species of about 4 million years and a total of about 10 million species. If an
average species lives for 4 million years, we may assume it has an average
probability of extinction of 1/4,000,000 per year. Multiplying this number
with the total number of species (10 million) gives the rate of 2.5 species per
year. Thus, we should expect an average of between 2 and 3 extinction
events per year. Various people have estimated the background rate of
extinction in geological time to be between 1 and 5 species globally per year,
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Table 7.1.  Species in major plant and animal taxa that are known to

have become extinct since 1600 or are currently listed as threatened by

IUCN.

Taxon No.of  No.of Total number %
extinct threatened  ofrecorded  extinct
species  species  species (x1000)

All animals 485 3565 1400 0.04
Molluscs 191 354 100 02
Crustaceans 4 126 40 0.01
Insects 6l 873 1000 0.006
Vertebrates 229 212 47 05
Fish 29 452 24 0.1
Amphibians 2 59 3 0.1
Reptiles 23 167 ) 0.4
Birds 116 1029 9.5 1
Mammals 59 505 45 1
All plants 584 22137 240 0.2
Gymnosperms 2 242 0.8 0.3
Dicotyledons 120 17474 190 0.06
Monocotyledons 462 4421 52 09

After Smith et al. {1993},

50 the approximation seems reasonable. Extinctions have been recorded over
the last 400 years with some degree of reliability. With the background
extinction rate of 5/year, we should expect about 2,000 extinctions in 400
years. Assuming the total number of species is 10 million, and that the
extinction rates are no higher than the background rate, we can calculate the
expected number of extinctions for various taxonomic groups (Table 7.2).
For example, among 9,500 birds, we would expect about 2 extinctions in 400
years (9,500/10,000,000-2000 = 1.9), whereas the observed number of extinc-
tions is 116. The table was limited to three taxa, mammals, birds and
molluscs, for which there is good data.

Obviously, looking at Table 7.2, we have observed many more extinc-
tions than expected, if the simple assumptions embodied in the calculations
are correct. The calculations for the expected number assume that the current
extinction rate is approximately the same as the background rate of extinc-
tion in geological time (between 1 and 5 species globally per year), that
extinctions occur with more or less equal frequency among different taxa,
and that there are 10 million extant species. It is worth noting that many
uncertainties in the number of observed extinctions suggest that these values
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Table 7.2. Observed number of extinctions globally in the last 400 years
(from Table 7.1) and predicted number of extinctions in the same period,
assurning a total of 10 million species and that the current rates are equal to
background rates in geological time.

Taxon Number of Expected number of Expected number of Observed
species  extinctions if back- extinctions if back- number of
(x1000)  ground rate = 1/year qround rate = 5fyear extinctions
Mammals 45 <1 1 -5
Birds 9.5 <1 2 e 116
Molluscs 100 4 20 | 191

are likely to be underestimates; there is no doubt that we will not have
noticed the loss of at least some taxa, even among the best studied groups.
The result would be an even greater disparity between the observed and
predicted number of extinctions, were they to be corrected.

There are two explanations for the disparity. Either extinctions in the last
400 years have occurred almost exclusively in the three taxa for which we
have good data, namely mammals, birds, and molluscs. Or, the cwrrent
extinction rate is at least two orders of magnitude higher than background.
Other evidence for elevated extinction rates was examined by Smith and
colleagues in 1993. They found that any taxonomic group or geographic
region that is poorly studied will appear to be in good health because
extinctions are difficult to observe and known extinctions will be few. For
example, almost all the vascular plant extinctions recorded in Africa have
been recorded in South Africa. However, it is difficult to know just how
much of the difference between countries is because of different taxonomic
and monitoring effort, and how much is due to the impact of developed
economies on their environment. Records from the Indonesian island of
Sulawesi indicated that the Caerulean butterfly {Eutrichomyias rowleyi) had
not been seen for several decades, there were no recent records for many of
the endemic species of the fish family Adrianichtyidae, and at least seven
endemic bird species had not been observed for more than a decade. Yet
none of these species were recorded in international threatened species lists.
Only one bird species is listed in international data bases as extinct on the
Solomon Islands, but Diamond and colleagues reported that 12 species have
no definite records since 1953 and islanders report that several of these have
been eliminated by cats. Similarly, there are no recorded extinctions of fishes
on the Malay Peninsula, but only 122 out of a total of 266 previously
described species of freshwater fish were found over a four-year period.
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Even if we make the very conservative assumption there have been no
unobserved extinctions of mammals, birds, or molluscs in the last 4300 years,
current rates in these three groups are still substantially above background.
We are likely to be in the midst of an mass extinction event of a magnitude
matched only by five other such events in geological time.

Given the kinds of uncertainties described above, it is unlikely that we
can estimate the rate of species extinctions accurately. Different attempts to
estimate the rate have resulted in quite similar vatues, but it is not possible to
know how independent they are of one another. Only a very small propor-
tion of recorded extinction events since 1600 are from continental tropical
forest ecosystems. Most recent projections for future species loss take into
account expected loss of tropical forest. Such estimates are uncertain mostly
because the necessary information on numbers of species, population sizes,
distribution, and the kinds of impacts are themselves uncertain.

7.2.3 The Causes of Extinction

The loss of the last few individuals of a species, while regrettable, is of less
interest than establishing the causes that lead the species to become so
reduced in the first place. In very small populations, it is likely that demo-
graphic and genetic processes play a major role in determining the fate of a
species, together with enviromnmental variation and other stochastic and
deterministic factors. It is clear in many instances that the direct, ultimate
cause of population decline has been the activities of humans. These activi-
ties include:

habitat destruction and fragmentation
overexploitation (overharvesting)
pollution

introduction of exotic species (that frequently become competitors or
predators of native species)

global climate change

The ecology of certain species makes them more vulnerable to extinction
{Pimm et al. 1988; Pimm 1991). Species that are locally rare, geographically
restricted, or limited to a narrow niche may be prone to decline. Species that
are variable within their range, or are variable in time, may likewise be sus-
ceptible to global, permanent reductions in population size. Short-lived
species (with a short generation time) may have a higher risk of extinction
per year, although they may have similar per-generation extinction risks as
longer-lived species. Species with slower growth rates may take longer to
recover from population reductions.
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In addition to these general characteristics, there are several properties
that may make a species especially susceptible to human impacts.

Habitat cverlap: Species may be threatened because they are tied to the
same types of habitat that are preferred by people. The biota of relatively
accessible areas with fertile soils and benign climates are subjected to agri-
cultural and urban development. Similarly, the biota of coastlines, major
rivers, and streams are subject to waste disposal, urban development, and
the impacts of transportation. The consequences of human use of freshwater
systems are especially important in arid environments such as Australia. .

Harvesting: Species that are palatable or otherwise valuablé to humans
are susceptible. The most spectacular examples of animal species’ declines
and extinctions usuatly involve at least some harvesting pressure. Whenever
species are harvested at levels above the maximum sustained yield, the spe-
cies will be driven to extinction by systematic (deterministic) pressure, quite
apart from increased risks that result from chance events. Species inhabiting
small oceanic islands have been relatively susceptible to hunting pressure.

Home range requirements: Animals with extensive home ranges frequently
occur at low densities, and they are likely to be susceptible to the changes in
human dominated landscapes, including reduction in the area of available
habitat and fragmentation of the remainder into a large number of relatively
small patches (see Chapter 6).

Limited adaptability and resifience: If a species has limited dispersal capa-
bilities, limited reproductive capacity, or narrow and inflexible habitat
requirements, then it is unlikely to be capable of rapid recovery from
disturbance and is likely to be relatively prone to extinction in human modi-
fied landscapes.

Nore of these characteristics are perfect predictors of a species’ vulner-
ability to extinction. Species with similar ecological characteristics may
survive for very different lengths of time. This is because extinction risks
depend on all these general characteristics, as well as several others that are
specific to particular populations and landscapes. We analyzed many of
these in previous chapters: density dependence, age and sex distribution of
individuals within a population, correlation of environmental variation, dis-
persal barriers, and habitat corridors are some of the factors that interact
with species-specific factors. Population viability analysis can be described
as the use of models to combine all relevant factors in the evaluation of
extinction risks. )

Given that you have built a reasonable model and estimated extinction
risks of a species, how do you interpret the results? If your model predicted
a 10% risk of extinction in 100 years, is this bad, or is it acceptable? Some
scientists believe that the interpretation of results at this level is a political
process that requires criteria imposed by society rather than by the scientific
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Even with a set of universally accepted categories of threat, assigning
species to categories based on their biology and demography remains a dif-
ficult task, especially for species about which we have little information. In
addition to the above risk-based criteria for threat categories, Mace and
Lande (1991) proposed a set of criteria based on population size, subdivision,
variability, and recent declines. Which type of criteria should be used for
assigning a particular species to threat categories depends on which type of
criteria is more reliable, which in turn depends on what is known about the
species. When quantitative information about a species is available, then
population viability analysis provides a reliable tool for using the risk-based
criteria.

7.3 Components of population viability analysis

There is no single recipe to follow when doing a PVA, because each case is
different in so many respects. In this section, we will discuss some of the
main compenents that a PVA might have. Not all PVAs will have all these
components, and some will have others that are not discussed here.

7.3.1 Identification of the Question and
Estimation of Parameters

Any scientific inquiry starts with a question, and population viability anal-
ysis is no exception. Although the question or problem to be addressed
might seem to be obvious, it is nevertheless important to state it explicitly.
This is because the question is likely to change in the course of a PVA. Ini-
tially, the question might be very general, such as "Is this species threatened,
and if so, why?" The less we know about the species, the more general the
questions will be. At this step (Step 1 in Figure 7.4) a PVA should concen-
trate on the identification of factors (including natural factors and human
impacts) that are important in dynamics of the specific populations under
study, as well as conservation and management options. The methods to be
used for this depend on the specific case at hand, and might include statis-
tical analysis of historical data, comparison of populations that are declining
with those that are stable, and correlating recent changes in the environment
{climatic or habitat changes, introduced species, changing harvest patterns,
etc.) with changes in the species.

After the available information about the ecology of the species and its
recent history is collated and reviewed, the questions are likely to become
more specific. Examples of such questions include:

What is the chance of recovery of the Spotted Owl from its current threat-
ened status?
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* Coliate existing data
* |dentify problem
* List options
Step 2: Step 3: Step 4:
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(long-term) agement plan optimal management pian

Figure 7.4, Components of a population viability analysis.

What is the risk of extinction of the Florida Panther in the next 50 years?

Is it better to prohibit hunting or to provide more habitat for elephants?

Is captive breeding and reintroduction to natural habitat patches a viable
strategy for conserving Black-footed Ferrets? If so, is it better to reintro-
duce 100 Black-footed Ferrets to one habitat patch or 50 each to two
habitat patches?

Would translocation of Helmeted Honeyeaters from their current popula-
tions to empty habitat patches minimize the extinction risk?

Is it better to preserve one large fragment of old-growth forest, or several
smaller fragments of the same total area?

Is adding a habitat patch to the reserve system better than enhancing hab-
itat corridors to increase dispersal among existing patches?
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We will discuss the components of PVA with a hypothetical example based
on the metapopulation dynamics of the California Gnatcatcher (Polioptila c.
californica), which is a threatened bird species. The California Gnatcatcher
has declined due to extensive agricultural and urban development of coastal
sage scrub, the species’ primary habitat type in southern California and
northwestern Baja California (Atwood 1993). It was listed as threatened
under the US. Endangered Species Act in 1993. For our hypothetical
example, let's evaluate the effectiveness of 2 specific conservation measure.
This might be, for example, increasing the amount of suitable habitat by
removing exotic (introduced) species of plants. So, we want to know how
much effort should be spent to increase the persistence chance of the species
over the next 50 years, and where (in which habitat patches) these efforts
should be concentrated.

The identification of the problem and the specific management options
determine the model structure to use (Step 2 in Figure 7.4). The most appro-
priate model structure for a population viability analysis depends on the
availability of data, the essential features of the ecology of the species or
population, and the kinds of questions that the managers of the population
need to answer.

In our case, the question concerned which habitat patches to improve,
and the available data showed that the species lives in several habitat
patches. These suggest a metapopulation approach. The question also sug-
gests that we need to know how the parameters of the mode! will change
with improved habitat. Let’s assume that improved habitat will both
increase the growth rate of the population, and its carrying capacity.

The next step is to estimate the model parameters with field studies (and
sometimes experiments). The kind of parameters that need to be estimated
will depend on the model structure, and the type of data already available.
In our example, we need to first determine the geographic configuration of
habitat patches (Figure 7.5) and their carrying capacities. We also need to
know the growth rate and its variation, the correlation of environmental
fluctuations and the rate of dispersal among populations. In addition, we
need to find a way to relate the amount of management effort (e.g., the area
from which the introduced plants are removed) to improvements in the
population parameters (growth rate and carrying capacity).

For most PVA studies, this is the limiting step, because data are often
insufficient. However, if a decision will be made no matter what, it is better if
the decision-maker has some input from a PVA, even if the data are not per-
fect. If a parameter is not known very well, then a range of numbers can be
used for that parameter instead of a single number. For example, if the
average dispersal distance of California Gnatcatchers is about 3 km, but is
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Pacific Ocean

Figure 7.5. The spatial structure of a California Gnatcatcher (Pofiop-
tila c. californica) metapopulation in Orange County, based on the
distribution of suitable habitat (after Akgakaya and Atwood 1997).

not known accurately, we can use a range of 2 km to 4 km. These ranges can
be used in a sensitivity analysis (see below), similar to the one you did in
Exercise 2.4 (in Chapter 2).

When there is not enough data for a particular rare or threatened species,
some studies use data from a more common (thus better studied) species in
the same genus or family. In some cases this may be reasonable, but only if
the "borrowed" data are limited to general life history characteristics, such as
whether to use age or stage structure. It does not make sense if the data
include vital rates or numerical values of any other parameter. If the two
species were so similar that you could use vital rates from one species to
model the other, it is unlikely that one would be rare or threatened and the
other one common.
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7.3.2 Modeling, Risk Assessment, Sensitivity Analysis

Building a model combines the existing information into predictions about
the persistence of species under different assumptions of environmental
conditions and under different conservation and management options (Steps
4 and 5 in Figure 7.4). When building a model, it is important to keep a list of
assumptions made. Models that look very similar may have different
assumptions. Suppose, for example, that a model uses an observed distribu-
tion of individuals among age classes that happens to be close to the stable
age distribution (Chapter4). Another model assumes a stable age
distribution. Although the result is the same, it is still important to remember
that the first model’s age distribution was based on data, and the second’s on
an assumption.

The structure of the model and the questions addressed usually deter-
mine how the results will be presented. In most cases, the model will include
random variation (stochasticity), which means that the results must be
presented in probabilistic terms, ie., in terms of risks, probabilities, or likeli-
hoods. For example, the risk curves that we have been using in previous
chapters provide a convenient way of presenting results of a simulation.
Often, the model must be run many times, with different combinations of the
low and high values of each parameter to make sure that all uncertainty in
parameter values is accounted for. This provides a way to measure the sen-
sitivity of results to each parameter. Sensitivity analysis (Step 6 in Figure 7.4)
is useful for determining which parameters need to be estimated more
carefully. If, for example, the risk of decline is very different with the low
value and high value of adult survival rate (Figure 7.6), then the results are
sensitive to this parameter, and we can conclude that future field studies
should concentrate on adult survival rate in order to estimate it more accu-
rately. This feedback from modeling to field work is represented by an arrow
from Step 6 to Step 3 in Figure 7.4.

7.3.3 Cost-benefit Analysis

When simulations include those with different management options, sensi-
tivity analysis also gives information about the effectiveness of these options.
For example, if we identified 3 patches where habitat for the California
Gnatcatcher could be improved by human intervention, we could simulate
the effect of improving habitat at each of these patches, plus at each pair of
them, plus at all three. This would give us 7 alternative management actions,
in addition to the option of no action. We could then rank them in order of
increasing effectiveness. For this example, we might expect that the larger
the area where habitat is improved, the lower the extinction risk of the gnat-
catchers. The obvious choice is to improve the habitat in all three patches. In
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Figure 7.6. Sensitivity of the risk of decline of the California Gnatcatcher
metapopulation to adult survival (S,). The curves show the probability of
falling below the threshold within the next 206 years with low and high esti-
mates of S,. The vertical line shows the largest difference between the two
risk curves (based on Akgakaya and Atwood 1997).

reality the choices are much less obvious, because improving all three
patches may cost more than what is available for California Gnatcatcher
habitat management; this means we need to consider the costs as well. We
could rank the 8 options with respect to both their benefit {reduction in risk
of extinction) and with respect to their cost (Figure 7.7).

It is impottant to note that, in this graph, the cost of each management
option (in units of currency) and its benefit (in units of risk) are in different
axes. If, instead of analyzing the effect of habitat management on a threat-
ened species, we were analyzing the expected return from different
investrments, both cost (investment) and benefit (expected return) could be
expressed in monetary units (after perhaps some modification to account for
uncertainties, inflation, etc.). We could then divide the benefit by the cost for
each investment option and find the option with the highest benefit:cost
ratio. This approach might also be applicable in the management of natural
resources where the extinction of the resource is not likely (we will discuss
such cases further in the next chapter). We cannot do this in the present case,
because it is not possible to put a monetary value on the existence (or extinc-
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Figure 7.7. Risk of extinction of a hypothetical metapopulation will_'l no
management ('no action” option}, and under 7 management options
(which invalve improving the habitat in one, two, or all three of the
three habitat patches, A, B, and C). The oplions are in order of
increasing cost from left to right.

tion) of a species, much as it is not possible to put a monetary value on
human life. Although there are attempts to do just that, it is obviously‘a
matter of value judgment, and each person will make the judgment in a dif-
ferent way. The way we used the benefit and cost information in Fi.gt.lre 77
(by keeping the units separate) sidesteps this problem of subjectivity by
deferring it (as we shall discuss below).

A cost-benefit plot such as Figure 7.7 can be used in two different ways.
First, the maximum amount of money that could be spent might be fixed
(represented by the vertical dotted line). In this case the analysis could be
used o select the option that gives the lowest risk. Conversely, the risk level
that is targeted might be fixed {represented by the horizontal lines that cor-
respond to IUCN's risk-based criteria). In this case, the analysis could be
used to select the least costly option that meets the target The target might
be, for example, to move the species from the "endangered” category to
"lower risk” category. In either case, the results of modeling are used to select
the optimal management plan (Step 7 in Figure 7.4}, under the particular set
of conditions.
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Different types of management might be represented by different curves.
For example, we might also have the option of decreasing the risk faced by
the gnatcatchers by reducing the cowbird populations that parasitize their
nests, As we discussed in the previous chapter, cowbirds lay their eggs in the
nests of other birds, which then raise cowbirds instead of their own young. If
we had the option of removing cowbirds from a number of patches, we
would end up with a different cost-benefit curve. These curves might inter-
sect, which means that the best management option (habitat improvement,
cowbird removal, or a combination) might differ depending on the .total
amount of resources available for management. We will explore this further
in the exercises.

As you might have noticed, the selection of the management option car-
ries subjective value judgments, even though we tried to avoid them.
Somebody still must decide how much money to spend to reduce the risk
faced by gnatcatchers (as opposed to other species, or, say, as opposed to
improving water quality for human consumption). Or, somebody has to
decide what the target risk level will be. However, these questions are clearly
outside the scope of PVA, or any other scientific and technical analysis. Pop-
ulation viability analysis can be used to inform the decision-makers,
politicians, and the public about the consequences of various actions and
nonactions, but cannot (and should not) be used alone to make these societal
decisions.

7.3.4 Implementation, Monitoring, Evaluation

With the selection of the best course of action under a given set of conditions
(Step 7 Figure 7.4), the function of modeling is completed, but only tempo-
rarily. The next step is the implementation of the plan (Step 8). It is important
that the field studies continue during and after the implementation to
monitor the species (Step 9). The results of monitoring can give valuable
information about the response of the species to management, as well as
provide more data to refine model parameters and improve the model
(Step 10). For example, we might discover, upon evaluation of demographic
data after the implementation of the plan, that gnatcatcher vital rates
increase faster than predicted in response to removal of cowbirds, but the
carrying capacity responds slower than expected to the improvement of the
habitat. Such a finding would definitely require modifying the model,
refining its parameters, and re-estimating the extinction risks under different
management options.
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7.4 The limits of population viability analysis

Managing risks for natural populations is concerned with allocating
resources to wildlife conservation. These resources are scarce because com-
mitment of resources to conservation results in economic trade-offs to the
rest of society. If our decisions are emotive, we face the possibility of
inefficiency in using resources with the consequent loss of species that might
otherwise have been avoided. The best way to address this problem is to
apply methods that result in quantitative evaluation of risks for natural pop-
ulations. We can use these results to underpin management decisions.

Thus we might, by consensus, define an acceptable level of risk for the
extinction of species. We could then use this benchmark to help allocate con-
servation resources. An assessment of the risks faced by species will tell us if
they are above or below the acceptable level of risk and if the risks are too
high, we will manage the population in such a way as to reduce the risks.

As we discussed above, decisions involving "an acceptable level of risk"
or "benchmark risk” are outside the scope of PVA. Population viability anal-
ysis can, for example, inform the public about the risk faced by the northern
spotted owl if the logging of old-growth forests continues, versus the risk if
the logging is stopped. But it cannot be used to compare the trade-off
between the long-term persistence of a species and the loss of logging jobs,
or to compare the responsibilities of the society to those who loose logging
jobs versus those laid off by an airline, telephone or computer company.
However, other methods (related to modeling harvested populations) we
explored in previous chapters might be used to explore whether the logging
jobs would be lost even with continued logging, albeit 5 or 10 years later. We
will further explore decisions involving the management of natural
resources in the next chapter.

Mark Shaffer, in a thesis published in 1981 that is one of the foundations
of modern conservation biology, distinguished between "systematic pres-
sure” and "stochastic perturbation” as causes of population extinction.
Graham Caughley in 1994 differentiated between the "small-population
paradigm” dealing with stochastic influences on small populations, and the
"declining-population paradigm" dealing with the (largely determuinistic)
ecological causes and cures of population decline. He suggested that the
principal contribution of the small-population paradigm is the theoretical
underpinning it provides to conservation biology, even though the theory
bears tenuous relevance to the problem of aiding a species in trouble.

This claim has been used to suggest that population viability analysis is
limited to modeling stochastic influences on small populations, and ignores

the ecological causes of most systematic declines by assuming constant or
stationary conditions. Mark Boyce in 1992 noted that the distinction between
deterministic and stochastic processes is artificial because all ecological pro-
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cesses are stochastic. Both processes can and should be included in models.
The processes of systematic pressure, thought of as "deterministic,” can be
modeled in the stochastic models we have developed in previous chapters,
with a growth rate that is less than 1.0, or a carrying capacity that is declining
in time, or both.

Obviously models can and do incorporate deterministic decline, human
caused factors, external influences and the effects of habitat loss. The chal-
lenge that population ecologists take when they build a model is to express
all these effects in terms of the viability of the species, expressed for example
as the risk of extinction. The set of ecological factors that can be included ina
model is limited only by data and by one’s imagination. If an ecologist has
ideas concerning the forces that govern the chances of persistence of a pop-
ulation, then they can and should be included in the model, irrespective of
their origin, and irrespective of their deterministic or stochastic nature
(Akgakaya and Burgman 1995).

As Caughley (1994) correctly pointed out, no modeling effort by itself
can determine why a population is declining or why it has declined in the
past. For modeling to be successful in evaluating options for management of
species, it must be part of a larger process of PVA, which must incorporate
other methods, including study of natural history, field observations and
experiments, analysis of historical and current data, and long-term moni-
toring. Any model entails assumptions about the ecology of a species. A
model may assume that some or all of the mechanisms generating historical
data remain unchanged in the future. If the model structure is incorrect or
inappropriate for the species in question, serious errors in prediction are
likely. Errors, together with uncertainties, are magnified into the future with
each time step, so usually only a few time intervals can be predicted with
any certainty. The omission of an important process such as loss of habitat,
competition, or predation from introduced species, impacts of disease or
parasites, or the impacts of rare catastrophic events, may substantially affect
what is best to do to manage a population to avoid extinction. The ecology of
species and the role of management should be, in the words of Mark Boyce
(1992), the nuts and bolts of modeling exercises.

Of course, such considerations raise the issue of data availability. Data
deficiencies plague attempts at building models aimed at solving real-world
problems. Even the simplest models require more parameters than are usu-
ally available. On the other hand, frequently we need to incorporate a
multitude of factors (related to, for example, the behavior of and future
changes in human populations and their effects on habitat). We will never
have a “complete” data set for any species. However, incomplete information
does not mean that meaningful results are impossible to obtain. For there is
very significant value in building a model for its own sake. It clarifies
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assumptions, integrates knowledge from all available sources, ar_ld forces us
to be explicit and rigorous in our reasoning. It allows us to identify, through
sensitivity analyses, which model structures and parameters matter, and
which do not. It results in a set of logical statements that are internally con-
sistent, and it allows us to explore the consequerices of what we believe tobe
true, even in the absence of relevant, complete data. The only rule is that
people who use a model (whether computer—implemente.d or not} should be
aware of its assumptions and limitations, and communicate these together
with the results. -

The human population makes itself felt largely through the destruc’a.on
of habitat of other species. The consequent decrease in natural population
sizes adds to the other factors that tend to drive species to extinction such as
competition, predation, disease, extreme environmental conditions, and the
deleterious effects of inbreeding in small populations. Risk assessment and
PVA are essential if we are to allocate scarce resources to conservation and
wildlife management as efficiently as possible, thereby minimizing the
number of species that will become extinct.

7.5 Exercises

Exercise 7.1: Habitat Management for Gnatcatchers

In this exercise, you will analyze the effectiveness of a management option
for the California Gnatcatcher metapopulation we discussed in this chapter.
The exercise is based on a model that is simplified from Akgakaya and
Atwood (1997); it does not include several features of the original mm‘iel,
such as stage structure, catastrophes (fires and harsh winters), density-
dependent dispersal, and Allee effects. The exercise is meant only as a
demonstration of the concepts and methods explored in this chapter.

Step 1. Start RAMAS EcoLab, select the “Multiple populations” program,
and open the file CalGnat MP. Inspect the parameters for each population
and the map of the metapopulation. Notice that most of the gna'tcatchers are
in two large patches, #5 and #10. Run the model. The simulation may run
faster if you turn off the display of the map. If you have a very slow com-
puter, you can stop at 300 or 500 replications. .

Save the model and results (you can use the same filename). Investigate
the results and record the risk of falling to 100 individuals within the next 50
years.

It might be difficult to read the precise value of the risk from the screen
plot. Do the following to record this number precisely:
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Click the "show numbers" button (the second button from left on top of
the window), and scroll down the window to where you see "100" in the first
column. Record the probability that corresponds to this threshold level. If
"100" is not in this table, then click the third button on top of the window
("scale”). You will see a window with various plotting parameters (the exact
numbers may be different in your simulation).

Title: Extinction/Decline
] Autoscale (checked)
X-Axis Label: Threshold
Minimum: 0
Maximum: 762
Y-Axis Label: Prabability
Minimum: 0.00
Maximum: 1.00

First, uncheck the box next to "Autoscale” by clicking on it. (This makes
the program use the values entered in this screen instead of automatically
rescaling the axes.) Second, change the maximum value of the x-axis to the
threshold {in this case, 100). Third, click OK.

Scroll down the table. The last line of the table will give the threshold
(100), and the probability of reaching or exceeding that threshold. Record
this probability {risk of falling to 100 individuals). This is the risk without
any management.

Step 2. California Gnatcatcher has declined due to the loss of coastal sage
scrub, its primary habitat type in southern California. As we discussed in the
previous chapter, habitat loss usually results in discontinuities in the distri-
bution of the remaining habitat. Often, one of the consequences of this
fragmentation is increased edge effects. In this exercise, we will assume that
increased edge effects cause increased parasitism of gnatcatcher nests by
cowbirds (see Section 6.1.2}, which causes a decrease in gnatcatcher popula-
tion growth rate. The management option we will explore in this exercise is
based on the possibility of increasing growth rate by the removal of
cowbirds. How much increase in growth rate can be achieved depends on
the amount of effort, which in turn determines the funds necessary for this
management project. We will assume that the management effort is focused
on the two largest patches, and the cost of the management program to
achieve three levels of increase in growth rate in these populations is given

by Table 7.3 below.
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For each of the three options, estimate the risk of falling to 10¢ individ-
uals within the next 50 years. To do this for each option,
{1) Start with the model you saved in the previous step.
{2) Select Populations from the Model menu.
(3) In the list on the left of the window, click on "Pop 5.
{4) Increase its growth rate (see table below).
(5) Select population 10, and increase its growth rate.
{6) Save the model under a different filename.
(7) Run the model and save the model again, this time with results.
(8) Estimate the risk of a decline to 100 individuals (see Step 1).
(9) Enter the risk in the table befow.

Table7.3. Cost of each management action and its effect on

growth rates
Option Growth rates of Cost Risk
pop-5and 10 {=$1000)
(no action) 0.98 0
A 1.0% 100
B 1.04 200
C 1.07 300

Step 3. Based on your estimates in the previous step, which of these three
options would you recommend:

(a) if the target of the management plan is to decrease the risk to less than or
equal to 0.6 (Le., 60%) with minimum cost?

(b) if the target of the management plan is to decrease the risk to less than or
equal to 0.37

() if the target of the management plan is to decrease the risk to less than or
equal to 0.1?

Exercise 7.2: Comparing Management Options

In this exercise, we will use the gnatcatcher model we used above to com-
pare the results of the previous exercise with those for another type of
management. We will assume that this management plan divides the
available resources between two types of management activities. First, it
involves habitat improvement, which results in an increase in carrying
capacities every year. We will model this using the "Temporal trend in K"
parameter in the Populations screen (click the "Help” button for information

—
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on this parameter). Second, it involves cowbird removal as above, but only
in years of high cowbird densities. The strategy is based on the assumption
that the average growth rate is most effectively increased by preventing the
lowest growth rates. Becuase it does not change all growth rates, this
strategy cannot increase the average growth rate as much as the previous
type of management, but it can also decrease the standard deviation of the
growth rate. We will model this by increasing R and decreasing the standard
deviation of R in Populations. All three types of changes are again restricted
to the two largest populations. Table 7.4 gives the cost of this management
plan at three levels of effort. P

Table 7.4. Cost of each management action and its effect on
dynamics of population 5 and 10.

Changes in parameters Cost
Option of population 5 and 10 (x$1000) Risk

Growth Standard Temporal
rate (R) deviation trend inK

of R
D 1.00 0.30 2% of K 100
E 1.01 0.28 3% of K 200
F 1.02 0.26 4% of K 300

Step 1. For each of the three options, estimate the risk of falling to 100
individuals within the next 50 years. To do this for each option,
(1) Start with the model in CalGnat.MP.
(2) Select Populations.
(3) Select (highlight) population 5.
(4) Increase its growth rate, decrease the standard deviation of R, and calcu-
late and enter 2%, 3%, or 4% (see table above) of its carrying capacity for the
parameter "Temporal trend in K" {e.g., for option D, calculate 2% of the
carrying capacity, and type that numbes; don’t type "0.02" or "2%").
{5} Select population 10, and make the corresponding changes (for "Tem-
poral trend in K," use the same percentage, which should give a different
number).
{6) Save the model under a different filename,
{7) Run the model, and save again, this time with results.
{8) Eestimate the risk of a decline to 100 individuals (see Step 1).
{9) Enter the risk in the table above.
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Step 2. Use the following graph to plot the cost and the estimatt'ad risk for
each of the 6 options (including the three options from the previous exer-
cise). Connect the options A, B, and C with a solid line, and connect options

D, E, and F with a dotted line.
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Step 3. Considering all 6 options, which would you recommend:

(a) if the target of the management plan is to decrease the risk to less than or
equal to 0.6 (i.e, 60%) with minimum cost?

' (b) if the target of the management plan is to decrease the risk to less than or
equal to 0.3?

(c) if the target of the management plan is to decrease the risk to less than or
equal to 0.17

(d) if there is only $100,000 available for the management of gnatcatchers?
(e) if there is only $300,000 available for the management of gnatcatchers?

Exercise 7.3: Habitat Loss and Fragmentation

In this exercise, we will explore various ways the effects of habitat loss and
fragmentation can be modeled in a PVA. The two-population metapopula-
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tion depicted in the left figure ("before") is fragmented by the construction of
a road and becomes a three-population metapopulation (right figure,
"after").

BEFORE AFTER

Step 1. Start RAMAS EcoLab, select the "Multiple populations” program,
and open the file 2-Pop.MP. Inspect the input parameters (under the Model
menu) and the map of the metapopulation. Run a simulation, and record the
risk of declining to 20 individuals (4% of total initial abundance). Save the
file.

Step 2. Open the file 3-Pop MP. Compare the input parameters and the
map of the metapopulation to those of 2-Pop.MP. What are the differences?
Run a simulation, and record the risk of declining to 20 individuals. Save the
file.

Step 3. In the model in 3-Pop.MP, the sum of the initial abundances of
the two new fragments is the same as before the fragmentation. The sum of
their carrying capacities is also the same as before. However, this is not very

_realistic. The road construction does not just make two populations out of

one population, it also reduces available habitat. Model the habitat loss as a
20% reduction in the carrying capacity and the initial abundance of the two
fragments. Run a simulation, and record the risk of declining to 20 individ-
uals, Save the model in a new file (i.e., use "Save As™}. ‘

Step 4. Fragmentation can also cause a reduction in survival and fecun-
dity of populations, because of edge effects. Model these as a reduction in
population growth rate from 1.04 to 1.00 for the two fragments. Run a
simulation, and record the risk of declining to 20 individuals. Save the model
ina new file (i.e., use "Save As").

-
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Step 5. What is the total increas
when all the factors are incorporate
comparion based only on the number of pop
that we did not consider might be involved
rated into a PVA?

7.6 Further reading

» Boyce, M. 5. 1992. Population viability analysis. Annual Review of Ecology and

Systematics 23:481-506.

Caughley, G. 1994. Directions in conservation biology. Journal of Animal

Ecology 63:215-244.

Shaffer, M. L. 1981. Minimum population sizes for species conservation.

Bioscience 31:131-134.
. Shaffer, M. L. 1990. Population viability analysis. Conservation Bio

39-40.

o in the risk of decline to 20 individuals,
d? How different is this result from a
ulations? What other factors
? How could these be incorpo-
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Chapter 8
Decision-making and Natural

Resource Management

8.1 Introduction

This chapter, like the previous one, deals with aspects of applied pepulation
ecology that benefit from the application of population modeling and risk
assessment. Our focus here is the role of uncertainty in environmental
decision-making, and the management of natural resources. Population
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ecology is coming to terms with the fact tk.lat uncertainty a'nd natura_l vari-
ability place a veil over all of our predictions. S(?me of ﬂ'LlS‘ uncertainty is
reducible and some is not, either because of practical constraints or because
the source of the uncertainty is such that it is inherently umemo‘vab-le. The
community of people who make day-to-day decisions a})out w11c!11fe a_nd
natural resource management are, by the nature of the environment in Wth'}’l
they work, involved in risk assessment and ri.sk management, Ir.l_rtnl}gg
chapter, we discuss how variability and uncertainty ‘may affect decisions
about environmental impacts and the E@{l_aggggg_r_ltzl gf“natural'resour?eg,‘a_nd
the importance of dealing with economic and social factors in making nat-
ural resource management decisions.

8.2 Detecting impact

In this section, we consider issues related to the detection of environmer}tal
impacts. These issues have a slightly different focu_ls than the ‘modelmg
approach of the earlier chapters. Nevertheless, these issues have 1rflportant
implications for many problems addressed by applied ecoIoglsts: For
example, if we want to model the viability of a species und“arl a pa.rtacular
human activity, we need to know if the survival rates, fecundltlfesi dispersal
rates, or other model parameters are affected by this activity. Thls- is done t':y
analyzing data from impacted and nonimpacted areas and looking for dif-
ferences. Such analyses often involve testing h)fpothe_ses. When an
explanation for a phenomenon is proposed, a study is designed to test its
veracity. For example, suppose that the cause of low egg count {a measure of
fertility) in a fish population is thought to be poliution from a fa'ctory. A
study designed to test this hypothesis might involve sampling fish from
polluted and unpolluted rivers and counting their eges. Suppo_se tl'qe mean
egg count is lower in the polluted river. One possibility is that th;s'dlffeljence
is due to chance. These data are likely to show variation due to individual
differences, so there will be some overlap between the measurements from
the two rivers. The higher the variation {compared to differe.nce between tk:le
means) the less reliable will be our conclusions. Thus, we might get two @f:
ferent means just by chance. We call this possibility the "r_ujlll hypot]}esw:.

The other possibility is that pollution actually lowers fgrtﬂ:ty, ”and flSh.]Il
polluted rivers have lower fertility. We call this explanation the "alternative
hypothesis.”

Because uncontrolled variation is present in the natural world, we apply
an arbitrary criterion for such tests. If the chance of ohserving a result as
extreme or more extreme than the results of the experiment is less than 5%,
we accept that the results are "unlikely" to be the product of chance alone.. In
such cases, we are prepared to accept that the explanation (the alternative
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hypothesis) is true, and take a risk of up to 5% that the explanation is
actually wrong. For example, the above study may conclude that there is less
than 5% chance that the difference is due to chance, and not due to pollution.
By considering this result to be "significant” in a statistical sense (i.e,,
accepting the hypothesis that fertility is lower in the polluted river), we are
accepting a 5% risk of making the wrong conclusion.

Thus, one time in 20, we will accept the alternative hypothesis even
though it is false, because one time in 20 the results we observe will be
extreme by chance alone (this is called a Type I error). We could make the
acceptance criterion more stringent, say, 1% or 0.1%. The reason that we are
prepared to accept 5% is that we don’t want to throw the baby out with the
bathwater. If we set the acceptance level at 0.1%, we would reject many
explanations that are in fact correct. Natural variation masks the effect of the
explanation so that it is often difficult to substantiate something at small
probabilities. For example, we may assume that fertility is not lower in the
polluted river, even though it actually is. This kind of mistake is called a
Typell error (Table 8.1). The "power” of an experiment to detect a given
impact is inversely related to the probability of committing a Type II error;
the more powerful the test, the less likely it is to erroneously conclude that
there is no impact, when there actually is.

Table 8.1. TypelIand II errors in an environmental impact assessment.
State of the world

Impact No impact

Significant correct Typel
Result impact detected error

of test  No significant Type Il correct
impact error

Decisions about the management, regulation, and conservation of pop-
ulations frequently are based on statistical tests. For example, we test the
hypothesis that the effluent from a factory has a detrimental impact on a fish
population, or that imber harvesting adversely effects the survival rates in a
bird population. If we accept the explanation (that there is an impact asso-
ciated with the industry), it may result in the closure of the factory and a loss
of jobs, or a change to more expensive harvesting practices with consequent
costs for individual operators. If the conclusion was wrong (a Type I error),
the curtailment of these productive activities may have been unwarranted.
The local economic and social hardship that follows such decisions may have
been avoided. On the other hand, we may reject the explanation and con-
clude that there is no impact. Life would go on and there may even be tacit
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approval for further development in the form of factory enlargement or
more extensive harvesting. If this conclusion was wrong {a Type Il error),
there will be environmental degradation before the impact is detected.

In questions of environmental management, failure to reject the null
hypothesis (no impact) is sometimes treated as synonymous with the con-
clusion that there has been no impact. If we fail to detect an impact, it may be
that we haven't performed the appropriate experiments or did not_have
sufficient sample sizes. The result will be a Type II error. Such errors may
involve biologically important outcomes that lead to things such as the col-
lapse of a fishery or a substantial reduction in the natural distribution of a
species that depends on old growth forest. Any erroneous conclusion is
cause for concern, but traditional approaches to statistical inference concern
themselves almost exclusively with Type [ error rates.

The problem with the traditional approach is that it leads to a kind of
blinkered view of environmental management, If we fail to see a problem,
we conclude that there is no problem. The burden of proof lies with regu-
lators such as Environmental Protection Agencies of with thers who have

an Interest in protecting the environment. As a_result, the rate.of
development and environmental impact may largely be determined by the

availability of resources that are devoted to the detection of environmental

problems. If there are more resources, larger studies will be conducted and
more impacts detected. If resources are low, smaller sample sizes and insuf-
ficient monitoring will lead to fewer detections. An industry that undertakes
its own monitoring studies (and there are many that do) will experience
relatively few impediments to development if it does not allocate sufficient
resources to assure a sound experimental protecol.

If an impact is detected, it s also relevant to ask if the impact is impor-
tant, On the one hand, a statistically significant effect may be ecologically
unimportant. In the above example, if the decrease in fertility due to
pollution is small and the dynamics of the population are density-
dependent, it may have no important consequences for either expected
population sizes, or the risks of decline or increase in the population. On the
other hand, a seemingly small effect may have important consequences for
long-term viability. For example, a small decrease in the survival rate of
breeding birds in a harvested forest may substantially increase the risk of

extinction,

8.2.1 Power, Importance, and Significance: An Example

Consider the following example in which a government agency is charged
with ensuring sustainable use of a natural forest. Sustainability is not clearly
defined, but there are a few things that the public view as essential compo-
nents of sustainability. One of these is the maintenance of representative
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populatiops of fauna that depend on the forest. A question is raised by a
conservation group concerning the impact of harvesting on a threatened
arbor.eal mammal. The industry suggests that it will modify its harvesting
practices to accommaodate the species. It plans to retain structural forest ele-
ments in a pattern and at a scale that match what is known about the niche
requirements of the species. The government agency chooses to perform an
experiment in which five areas are harvested using the modified techniques,
anfi five areas are left untouched. Each area includes the territory of a single
pair and each pair produces an average of one offspring per year. There are
no direct estimates of survival rates but based on their body size and
ecology, the animals are unlikely to live longer than 20 years. The investi-
gator returns the following year and counts the number of offspring
produced by the 10 pairs of animals. There is no statistically significant
difference between the average numbers of offspring per territory in the
harvested and unharvested areas. The investigator concludes that the
experiment demonstrates that the new harvesting techniques are compatible
with the conservation of the species in managed, harvested forests.

Is there anything amiss? By choosing to express the cutcome as a "dem-
onstration” of compatibility, the agency has assumed the mantle of the
conventional approach to statistical inference. No impact was detected,
therefore, there is no impact. If your job was to decide whether to permit
harvesting in areas that are suitable habitat for the species, could you con-
clude that the modified harvesting techniques pose no substantial threat to
the species? We can return to models as simple as those developed in
(;hapters 1 and 2 to answer this question. If we take the available informa-
tion, we can assume that the fecundity is 1 offspring per pair and the initial
population size is 5. We will ignore survival as the study is phrased in terms
of fecundities, although we could assume survival is about 0.95. Figure 8.1 is
the probability distribution of the number of offspring from 5 territories,
assuming no adult deaths and no environmental variation.

The model accounts only for demographic uncertainty in the fecundity
rate and ignores all other forms of uncertainty that may contribute to éxper-
imental noise and experimental error. Nevertheless, there is a 4% random
chance that five pairs will produce a total of none or one offspring, There is 2
12% chance that they will produce a total of fewer than 3 offspring. These
probabilities are in the absence of any impact. Assurning that the forest har-
vesting activities affect only the mean fecundity rate, the study is likely to
report a significant difference between the controls (the areas not harvested)
and the treatments (the harvested areas) only if the five pairs in the treated
areas produce a total of fewer than 2 offspring (because the probability of
this event is 4%, which is just below the traditional significance level of 5%}.
If this happened, it would be considered "unlikely" to be the result of charwe
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Figure 8.1. The probabilities of different total numbers of offspring
from a population of five pairs of animals, assuming a mean of 1 off-
spring per pair sampled from a Poisson distribution.

alone, and we could, according to traditional protocol, accept the alternative
hypothesis that the harvesting had affected fecundity. Otherwise, conven-
tion dictates that we should accept the null hypothesis.

The five pairs in the treated areas are likely to produce a total of none or
one offspring, only if their mean fecundity is reduced a lot. In other w'ords,
the test is capable of detecting only the most extreme impacts. E‘.ren if the
fecundity in the treated population were reduced by half, it is unlikely that
the test would detect the impact. But we have seen in many of the models
above that a 50% reduction in fecundity may have very important conse-
quences for the expected population size and the chances of decline of a
population. .

Of course, if we had unlimited funds, we might increase the sample size
in both the treatments and the controls, thereby improving the power of the
test. Given a very large sample, the test may be adequate to detect very small
changes in mean fecundity. The detection of a statistically significant impact
would not imply a biologically important impact. A reduction in the mean
fecundity of, say, 1%, may have no discernable impact on expected popula-
tions or chances of decline. Such an impact may be worth the rewards that
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flow from harvesting the timber, even in terms of nonutilitarian values. For
example, royalties from timber harvesting may fund a program to eradicate
a feral predator, more than outweighing the detrimental impacts of har-
vesting. Thus, a solution to the problem outlined above is complex. It
involves consideration of the practicalities of increasing sample sizes,
collecting further information, and weighing the costs of potential impacts
on a threatened species against the costs of deferred access to a commercial
resource. These have ecological, economic, social, and political ramifications.

Methods have been suggested that allow the joint consideration of Type I
and Type II errors (see, for example, Bernstein and Zalinski 1983, Mapstone

1995). In doing so, we n_la){_sggcify the maximum impact that we are pre-
pared to tolerate, This would, in_turn, determine the experimental and
monitoring effort necessary to determine if there is an impact. The details of
such approaches are beyond the scope of this book. However, if such appli-
cations are to be made, it will be essential to develop ecological models that
encapsulate the dynamics of populations so that the limits of accepfable
impact may be established.

8.2.2 The Precautionary Principle

The above example emphasizes the need for a balanced approach to envi-
ronmental management that accommodates the needs of society and the
potential for damage to the environment. The notion of the cautious use of
the environment is not a recent phenomenon. The precautionary principle
was first defined and applied in West German environmental legislation in
the late 1960s (WCMC 1992). Generally, it may be defined as "Where there
are threats of serious or irreversible environmental damage, lack of full
scientific certainty should not be used as a reason for postponing measures
;d_;;:event environmental degradation” (IGAE 1992). The principle implies a
shift in the onus of proof from regulators and managers to developers pro-
posing an action that may have an adverse impact on the environment, to
demonstrate that the impact is absent, negligible, or worthwhile.

Some commentaries have suggested that obtaining proof that proposals
would cause no damage is logically impossible, and that even the most
ardent regulatory authority would be unlikely to make such a totally unat-
tainable demand on developers. Almost all commentaries on sustainable
environmental use agree that good management practices raise our chances
of coping with unforeseen environmental threats and enhance our ability to
maintain and improve the quality of existing environmental resources. The
idea of the precautionary principle is not that proof be provided that there is
no damage. Rather, the intention is to provide sufficient evidence that any

impacts that do occur are likely to be within acceptable bounds.

-
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8.3 Managing natural resources

In this section, we discuss various ways in which variability and uncertainty
affect decisions about the management of natural resources—specifically,
the management of harvested living resources. You have already dealt with
harvested natural resources in previous chapters. For example, In
Exercise 3.5, you explored the density-dependent effects of harvesting, and
in Exercise 4.4, you simulated management strategies for a Brook Trout
fishery. We begin our discussion with a hypothetical example that follows
one developed by Adam Finkel in 1994.

Extractive reserves have been established in Brazil to promote sustain-
able development and resource conservation. These are natural areas where
the government has granted rights to resident human populations to harvest
such things as latex and Brazil nuts under established guidelines. Suppose
you consider buying one hundred hectares of natural forest in Brazil for a
total investment of $50,000. The area is a designated extractive reserve
wherein you are obliged to harvest forest products sustainably (we will dis-
cuss this requirement later). You wish to hold onto the land for 50 years and
you hope to make a profit. The ‘hundred hectares supports a natural stand of
the commercially valuable palm friartea deltoides, and the stems can be sold
for $10 each. There are 5,000 of these palms on your property. We'll assume
that you will sell all the palms at the end of the 50 years. You also know that
the environment is notoriously variable. While adult plants are more or less
immune from variations in rainfall, the palms produce abundant seedlings
in wet years. In dry years, the palms are much less likely to produce recruits.
The question is, Ts this a wise investment?

8.3.1 Predicting the Qutcome

The agent for the sale argues that the natural variation in climatic conditions
is beneficial for profit. The variation is so high that the growth rate of the
population is 1.4 in good years and 0.7 in bad years. To simplify matters, let's
assume there are only ever good or bad years, never any mediocre ones.
Given this amount of variability, the upper 95th percentile for the number of
stems at the end of 50 years is 168,162 (see Finkel 1994). The upper 95th per-
centile is a standard measure, telling you that the true value for the number
of stems is unlikely to be higher than this, and is likely to be somewhat
lower. At $10 per stem, there is a 1 in 20 chance that you could make more
than one and a half million dollars. The investment provides you with the
prospect of becoming relatively wealthy in your retirement. This s espe-
cially attractive when you think that this is not the absolute upper bound.
There is a chance {albeit somewhat smaller) of making even more money.
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It may be important to obtain a better estimate of the average expecta-
tion. You recall that the mean of a multiplicative process such as population
growth is given by the geometric mean of the individual rates. Thus, taking
the seller's scenario, a good year followed by a bad year will result in an
overall annual growth rate, R =1.4x0.7=0.99. On average, you will lose
money on the investment, Each year, the number of palms will fall by an
average of 1%. If this continues for 50 years, and there are 25 good years and
25 bad years, the overall rate of change will be (1.4)® % (0.7)* = 0.603. This is
the median (oz, the most likely cutcome) of the distribution of 50-year pop-
ulation growth rates. The number of palms at the end of 50 years would be
5000 x 0.603 = 3,015, with a total value of a little over $30,000. Thus the value
of the palms in 50 years time will be almost 40% less than it is today. It would
seem to be madness to spend $50,000 on something that, on average, loses
$20,000.

The agent does not give up, and offers the following argument: "It is true
that half of the probability lies below $30,000 and half lies above $30,000.
However, the point is misleading. The consequences if the number of stems
exceeds $30,000 far outweigh the consequences on the other side of the
median. For example, it is equally likely that there will be either 30 bad years
or 30 good years out of 50. But the windfall from 30 good years (number of
palms = 96,182) far exceeds the loss if there are 30 bad years {number of
palms = 94). One must weigh the chance of winning over $960,000 against
the chance of losing $49,000. Both these numbers are equally likely. The cor-
rect way to look at the problem is to calculate the probability-weighted sum
of the costs or benefits of the possible outcomes. After one year, there will be
either 3,500 or 7,000 palms. The average of these numbers is 5,250; thus the
population is expected to grow on average by 5% per year. How can you
pass up an investment that on average will grow to 5573,000 by the time you
plan to reap the rewards of the investment, sell up, and retire.”

By this point, you begin to wonder what to make of all these arguments.
Two of them make the investment seem a sure winner. The other makes it
seem like a looser.

8.3.2 Explaining the Uncertainty

All that can be said is that the investment is volatile. One can be reasonably
certain that the number of palms on the one hundred hectares will most
likely be between 54 and 168,162 (5th and 95th percentiles; see Finkel 1994).
Beyond that, it is not possible to be certain about anything. The mystifying
and superficially contradictory nature of the various estimates is caused by
the fact that the outcomes in the agent’s model are lognormally distributed
(Figure 8.2). When plotted on a logarithmic axis (as in this figure}, the log-
normal distribution has a symmetric shape; when plotted on a linear scale it
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would be skewed to the right. Because of the high variability, and the
skewed shape of the lognormal distribution, point estimates (or single-
number estimates) of the outcome, such as the median, the mean and the
95th percentile, may sound contradictory.

Once the kind of distribution of expected events has been characterized,
it is possible to paint a complete picture of the potential risks and benefits of
a decision. Thus, using Figure 8.1, we could create a table, or a curve, of the
chances of there being less than a given number of palms. This way of
looking at the problem can be achieved simply by creating a cumulative
probability curve (Figure 8.3) by summing the values in Figure 8.2, in the
same way that we created risk curves in Chapter 2.

With the two curves representing the probability distributions of pop-
ulation sizes at the end of 50 years, it is clear that all of the information given
by the point estimates is accurate. Your estimate of the average outcome,
3,015 palm stems, is the median of the probability distribution, and it is also
the geometric mean. The range of "reasonable certainty” (between 54 and
168,162 stems) is the region between the 5th and 95th percentiles. The arith-
metic mean of the distribution is 57,300, a not unlikely event in the sense that
it is within the region of reasonable certainty.

These curves provide additional information. The cumulative proba-
bility curve tells you that it is more likely than not that you will not recoup
your $50,000 investment. In fact, the chance of making a loss is about 60% so
the conclusion you reached after looking at the geometric mean was qualita-
tively correct. The agent’s argument concerning the relative weights of
different outcomes is also true. Any outcome in the top 25% of the
distribution represents gains that at least outweigh the maximum loss of
your $50,000 investment. The chance of doubling your investment is greater
than 20%. The chance of a 10-fold increase is better than 5% and the chance of
a 100-fold increase is about 1%.

There are no absolute rights or wrongs in making the decision. The
wisdom of the choice depends on how you, personally, would react to the
different possible outcomes. The question you should ask is, "How should
weigh a 60% chance of a loss against a 20% chance of a large gain?” If the
550,000 is all that is keeping you from the poor house and a life of misery,
then the risk may not be worth it. If, on the other hand, the $50,000 is spare
change, you may view the investment as you would a raffle ticket. The risk,
in that case, might well be worth taking. You have te apply a kind of per-
sonal weighting factor. Costs and benefits, even when they both can be
measured in terms of money, are not linearly related to the value of the
investment. They are relative to your perception of, or the value you give to,
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Figure 8.2. Probability density function for the number of palm stems
expected at the end of 50 years, assuming equally likely years in which
the growth rate of the population is either 0.7 or 1.4 (after Finkel 1994).
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Figure 8.3. Cumulative probability function for the number of palm
stems expected at the end of 50 years.
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8.3.3 Model Uncertainty: The Importance of Detail

All of the arguments presented by the agent were true within the limits of
the model in which there were only good and bad years. The problem was
simplified so that it could accommodate available data (the average and
variability of the growth rate}, without making it unnecessarily complex. It
served to inform the discussion about the effect of variability on the expected
number of palms. In Chapter 2 we discussed the notion of model uncer-
tainty, the degree of simplification and the specification of structures that
relate the variable of interest (in this case, the number of palms) to the causal
factors (the weather). Has the simple structure of the agent’s model been
misleading? Could a more detailed model improve your understanding of
the problem?

There are several elements of biological detail that could be added to
provide a degree of realism. You know that the assumption of good and bad
years was made to simplify the discussion. Given that the production and
survival of seedlings is related to the weather, it would be much more real-
istic to sample the variation in survival and fecundity from distributions that
reflect the continuous nature of environmental variation. If the population
were to decline, demographic uncertainty might play a role in the chances of
various outcomes such as the loss of the entire population. Because the
important component of environmental variation is concentrated on seed-
lings, the age or size structure of the population may be important. In 1993,
Michelle Pinard published the results of her research into the population
ecology of Iriarten deltoidea. Part of this research was a stage-structured
model for the species (Table 8.2). The models you will develop in the exer-
cises of this chapter, and the discussions in the following sections, are based
on Pinard’s work, but the scenarios for such things as market prices, levels,
and patterns of natural variation are developed for illustrative purposes.
This is not an accurate analysis for the species. It is intended only to provide
examples of the ways in which population ecology interacts with decision
making.

Table 82  Transition matrix for I deltoiden from Altamira, Brazil (after

Pinard 1993).
<05m 05-5m 5-10m 10-15m 15-20m >20m

<0.5m 0.794 0 0 0.195 1.560 2.631
05-5m | 0.040 0.814 0 0 0 0
5-10m 0 0.037 0.896 0 0 0
10-15m t 0 0 0.034 0.950 0 0
15-20m | 0 0 0 0.050 0.940 0
>20m 0 0 0 0 0.045 0.828
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The average growth rate of a population with these parameters is about (.99,
the same as the average growth rate in the example proposed by the agent. If
we add the extra detail represented in Table 8.2, it allows us to explore some
of the consequences of the assumptions that were made in the preceding
discussion, We know from the simple model that variation may change your
perception of the investment, particularly if you are not too averse to the risk
of losing your meney, and if the chances of a large gain are reasonable. One
may add environmental variation to Pinard’s {1993) model by specifying
standard deviations of variation for the fecundity and survival rates. If the
model is implemented on a computer, it is relatively easy to generate proba-
bility curves for the chances of population increase and population decrease
during the next 50 years. ’

A modicum of biclogical intuition tells you that it probably won't be
possible to fit 168,162 paims into 100 hectares. Palms that grow in densities
greater than about 500 per hectare are very likely to compete for soil nutri-
ents and light. This competition will be reflected in increased mortality, a
consequence of self-thinning. Thus, not all of the possible outcomes
suggested by the agent’s model {Figure 8.1) are biologically plausible. Fur-
thermore, this is a natural stand, and the palms are not spread evenly over
the area as they would be in a plantation. They occur in clumps where
microsite conditions provide the appropriate niche. Lastly, you know that
trees are likely to self-thin, which can be modeled by a ceiling to the popula-
tion. In the exercises at the end of the chapter, we will build a model that
includes some of these biological details.

8.3.4 Strategies and Contingencies

Adding the biological details will make the model as plausible as it can be
made, given the current state of your knowledge. This model can then be
used instead of the simple (good-or-bad-year) model in evaluating the
investment. When making this evaluation, you can explore three types of
strategies for better managing this resource. These strategies may be used to
improve the prospects for the investment, rather than accept the difficult
choices that result from the scenarios above.

The first strategy concerns decision rules about the timing of the harvest.
In the above discussion, we assumed that you'd harvest the palms at the end
of 50 years. You could, instead, keep track of the number of palms each year,
and decide to sell the population before the 50 years are up. If the population
reaches a high value in 15 years, or 30 years, you could sell and take the
profit early. For this, you specify an upper bound and say that if the popula-
tion reaches this size, you will sell. In doing so, you state that there is a return
on the investment that will satisfy you. You decline the possibility of even
higher profit in return for reducing the chances that the investment will fail.
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If you set the upper limit at, say, 20,000 plants, you are saying that a four-
fold return on your investment is sufficient. The effect of the upper limit will
be that you have no chance of making more than $200,000. The benefit of
foregoing the opportunity of large profits is that the left hand side of the dis-
tribution, the chance of faiture, will be much reduced. Because you are
prepared to take profits early, there are fewer chances that you will fail.

The second type of strategy concerns the amount and distribution of the
harvest, There are many possible harvesting strategies that may be
employed to improve your chances of success. You could, for example, sell
all of the palms immediately. This way you guarantee that you will break
even, but you forgo any opportunity of making a profit. Another alternative
is that you might harvest a small number of individuals each year, to con-
tribute to running costs and to ensure that you take at least some return from
your investment before the 50 years are up.

1f you harvest each year, you also need to decide whether to harvest a
fixed amount or a proportion every year. We know from earlier chapters that
removal of fixed numbers of individuals generally destabilizes populations
in variable environments, elevating risks of decline out of all proportion with
the number of individuals removed. It is generally a better strategy to
remove a fixed proportion of the population.

The third type of strategy concerns the management of the resource to
improve its productivity. You may decide to invest additional capital to
modify the processes to reduce the risk of failure, or to increase the expected
size of the population. For example, you may invest in seedling stock, artifi-
cially increasing the size of the population at the outset, or in an irrigation
system to water the plants whenever the weather is dry. We will explore
these in the exercises.

The unconditional investment that was explored using the agent’s
simple model does not allow for making decisions (such as to harvest all
palms before the 50 years are up) in response to the run of chance events.
Nor does it allow the selection of alternative strategies related to harvesting
regimes and additional investments to improve the productivity. In general,
the presence of alternative strategies for management and responses to con-
tingencies should make the decision about whether to buy or not somewhat
easier. By judicious selection of rules and response mechanisms, it should be
possible to develop a strategy that appeals to almost any investor.

8.4 The economic and ecological contexts of
natural resource management

So far we dealt with uncertainties arising from the natural variability and
lack of data. There are also other sources of uncertainty that originate from
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the social and economic conditions under which natural resource manage-
ment decisions are made. In this section, we will discuss some of these
factors. For instance, price uncertainty is important. The calculations above
all assume that the palms will maintain the current net worth into the fore-
seeable future. Markets for commodities such as timber and ornamental
plants are almost as volatile as tropical weather. The chance of increases or
decreases in the relative price of the trees will weigh on any decision. Simi-
larly, when making medium or long term predictions, there are other
implicit assumptions such as the gamble that there will be no political
upheavals that preclude you from accessing the assets when they mature.
The model for the palm trees deals with uncertainty in terms of the
number of stems and ultimately, dollars. Even in such a straightforward sce-
narie, the value of a dollar is not a simple thing. When making resource
management decisions based purely on economic considerations, current
worth is always considered against the discount rate, the factor by which
future earnings are dlscounted to estimate their present value. The Tesult
may be a decision to take the entire population now (assuming reinvestment

elsewhere for a higher rate of return), instead of harvesting on the basis of

sustainable yield. This is probably the reason why open-access systems, such
as the whaling industry, do not operate on a sustainable basis. Rosenberg
and colleagues (1993) suggested that the solution to this problem is to recog-
nize that property rights must be well defined and that rights imply duties
and responsibilities. Several countries including Australia, New Zealand,
Canada, Iceland, and the United States have recognized this problem and
have granted individual quotas in some fisheries.

The value of an investment also depends on your attitude to the chance
of losing your investment versus the chance of making a lot more dollars.
People manage natural populations for many reasons other than their net
market value. When values other than the purely utilitarian come into play,
the mole of uncertainty is magnified by the necessity to equate profit with
other motivations. When Pinard (1993) presented the results of her study of
the palm, she did so from the perspective of developing procedures for sus-
tainable land use practices, She made the point that the concept of
intergenerational equity is usuaily part of definitions of sustainability but
that the concept is intractable from a land manager’s perspective. For man-
aged populations such as many of those described in this book,
sustainability is measured in practice in terms of productivity, resource
population stability, and yield maintenance. Pinard measured sustainability
through population stability and expected yield continuity. The reserves are
intended also to maintain genetic resources, forest structure, and associated
ecological functions. If it turns out, for example, that harvesting latex, Brazil
nuts, game species, and palms is not viable in the medium term of 50 to 100
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years, the authorities would have to decide if it is worth continuing with the
incentives and controls that make the extractive reserves possible. In making
the decision, relevant factors would include such things as the relative value
of ecological processes, genetic resources, conservation priorities, and alter-
native land use practices such as grazing. Because of the uncertainty in
forecasting the economic value of alternatives and the difficulties inherent in
relating very different values in the same currency, the decision would be
determined largely by political and sacial forces.

8.4.1 Uncertainty and Sustainability

A collection of papers, published in the journal Ecological Applications in 1993
{(vol 3, no 4, pp. 547-589) by Ludwig, Hilborn, Holling and others, discussed
the sustainable management of resources when the future is uncertain.
Uncertainty, for these authors, included environmental stochasticity, and
economic and social change. Ludwig made the point that since flows from
natural systems are limited, a conflict between human ‘objectives and con-
servation of reso mewtable unless the rates at which humans use the
environment are also limited. The ob]ecnve of fisheries and forestry
management in the past has been on maximum sustained yield, rather than
on a yield that will ensure conservation of the resource, Fisheries managers
have rarely been able to control the amount, distribution, and technique of
fishing effort, even though such controls are necessary to achieve sustainable
yield. There are many examples in which fisheries 1 managers consistently
allowed higher catch levels than indicated by the consensus of sciefifific
advice. The temptation to increase yield at the ¢ cost of additional r1sk to the
resource is oftenrlrrresgsnble

Ludwig and colleagues (1993) suggested that the exploitation of irregular
or_fluctuating resources is subject to the ratchet effect. During relatively
stable penods, harvestmg rates tend to stab111ze at positions that are deter-

good years may encourage mvestment in mfrastructure and capltal In
sequences of poor years, the industry is likely to appeal to o the government or
the general population for help. Substantial investments and many jobs are
at stake. Government response typically is direct or indirect subsidies. The
atchet effect is is caused by the lack of inhibition on investment during good
periods, and strong pressure not to disinvest during poor perlods The long-
term outcome is a heavily subsidized industry that overharvests the

biological resource on which it depends. There is no tra 1t10n of sustalqal)}g

management in urban planning or development. ’ The concept of sustainable
management in agrlculture is limited to stocking rates and water supply on

mdwldual farms, more closely related to maximum sustainable yield than fo’

eco glcally sustainable management.
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A number of general principles were suggested in all of this discussion of
sustamablhty and resource use. H
be included as part of the system to be studied and managed because
human greed and short-sightedness underlie most difficulties in resource
management. Claims of sustainability should be distrusted because past
resource exploitation has seldom been sustainable, and frequently scientific
advice is ignored. Resources should be managed explicitly for uncertainty by
considering a __\{_a_gejcy_gf different strategies, favoring actions that are infor-
mative, reversible, and that are robust to uncertainty, and experimenting
with the system and monitoring the results. Management strategies should
be adaptive in the sense that uncertainty and surprise are an  integral part of
anticipated responses. Such an approach should be interdisciplinary and
combine historical, comparative, and experimental approaches to resource
use. Policies and actions are required that involve not only social objectives,
but that continue to improve understanding and provide for flexibility in the
event of surprises. Trial-and-error is often seen as an integral part of adap-
tive management. Use, monitoring, and the choice of reversible strategies
will enhance our understanding of, and our ability to manage, natural
systems.

All of the above discussions view management of renewable resources
from the rather myopic context of single species or single, utilitarian values.
Changing human values and social priorities form part of the context for
resource management. Resource sustamablhty cannot be divorced from the

sustainability of human .economies, natural communities, and ecosystems,

Sustainability is a moving target, not only because ecosystems change over
time, but also because the economic, social, and political climates in which
decisions are made change.

8.4.2 The Role of Applied Population Ecologists

Wherever there is uncertainty, there will be room for debate. Many decisions
may appear intractable from a scientific point of view, but nevertheless they
may be necessary from a pragmatic point of view. For example, when
making decisions concerning the management of species, it is often neces-
sary to involve expert judgements simply because no quantitative
information is available on which to base decisions. Such judgments
contribute to the priorities that are developed for allocating scarce conserva-
tion resources (IUCN 1995). When the decision affects competing demands
on limited and environmental resources, the question immediately arises:
"Whose experts?' Many natural resource management decisions require
decistons based on forecasts that are inherently uncertain, and as we saw in
Chapter 2, that uncertainty may take many forms.
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There are no easy answers to the question "What is best?" It is the task of
those involved in applied population ecology to present as complete a pic-
ture as possible to those who make decisions. The picture should incorporate
mechanistic understanding, deterministic processes, stochastic variables,
and the ensemble of uncertainties that contribute to the problem. A full
treatment and careful presentation of the sources and consequences of
uncertainty can make the search for an ideal solution easier. A mathematical
model of a population is an explicit treatment of our understanding of the
deterministic and stochastic mechanisms that affect that population.

The context in which the model is developed has profound consequences
for its utility. Biological intuition is essential for constructing models but it is
not sufficient. Decistons made by biologists without quantitative analysis are
likely to lack rigor and consistency. Population models developed in isola-
tion by a mathematician are likely to be biologically naive. Decisions based
on realistic models, but made in isolation from bureaucrats, peliticians, and
interest groups are likely to be politically and socially naive.

The most important feature of applied population biology is that it be
relevant to those that have to make decisions. Models are an important com-
ponent in developing understanding and making predictions, and they are
subject to the same caveat. Relevance may be determined simply by
economic constraints. For example, if your task is to manage a plant popula-
tion on a conservation reserve, the process of model development may be
limited to a consideration of ecological dynamics and those management
practices that can be brought into play within the limitations of a small
budget. In other circumstances, the social context may be much more com-
plex. A model of a population that has implications for the availability of
significant societal resources is doomed to failure if it does not include
stakeholders in its development. [irespective of the abilities of a biologist or
a modeler, the model will either lack the ability to answer the tight ques-
tions, or those who must rely on its output will not have any confidence in it,
or both. If the process of model building is collaborative and iterative, and if
it involves representatives of all stakeholders, it has a chance of being useful.

Many models for natural populations are built in circumstances in which
data and understanding are scarce. The relevance of models for environ-
mental decision making is in the mind of the policy maker, and is not the
realm of the modeler. An ecologist provides a service, a skill, and the end
product is a set of recommendations that are bounded by assumptions and
uncertainties. It is as important, if not more important, for the ecologist to
communicate those uncertainties and assumptions, as it is to communicate
the set of predictions. One of the reasons that models, and the people who
build them, fall into disrepute is that models of complex or poorly under-
stood systems will often produce different expectations. One of the reasons
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for this is that the bounds and the mechanics of the analysis are colored by
what the model builder believes to be important. The fact that different
models of the same natural system may generate different expectations is not
surprising to modelers, but it is a source of frustration to decision makers. In
such circumstances, the modelers may well have failed in their task because
the creation of a sense of frustration implies that the sensitivities, limitations,
and assumptions of the models have not been explained.

The use of models in decision-making should improve communication
and understanding. If they do, the results they produce will be integrated
quite naturalfy with value judgments and political constraints, to produce
better decisions than could be made in the absence of models. To achieve
these ends, models must be carefully and thoroughly documented, and lim-
itations, sensitivities, and assumptions must be explicitly stated. Modelers
must be sensitive to the needs and limitations of those people who intend to
use them. Educational mechanisms that will allow modelers to develop the
skills and experience necessary to produce useful models should be encour-
aged, as these are matters of professional responsibility.

8.5 Exercises

Exercise 8.1: Statistical Power and Environmental Detection

In this exercise, we assume you have taken an introductory course in statis-
tics (or that your instructor has sufficient patience to teach you the
fundamentals). We assume familiarity with hypothesis testing in general,
and with f-tests and the calculation of standard deviations in particular.

Your role in this exercise is to monitor fish populations in a coastal man-
agement area and report on impacts of industrial activities. You know
enough about the biology of a fish species to have developed a reliable
model that incorporates density dependence. The carrying capacity, K, of the
fish population is determined by the area of seagrass. There are two bays,
one of which is a protected national park. You use this as a control. The other
bay supports port facilities. You know from experience the growth rate, the
survival rate, standard deviation of the growth rate, and the carrying
capacity (K] in both bays in the absence of impacts.

There is a proposal to dredge part of the port to create a new dock, which
will result in the elimination of about 10% of the seagrass in the bay, thereby
reducing the carrying capacity for the fish population by 10%. You have
encugh money to conduct accurate censuses once each year. If you had five
years of post-impact, good quality monitoring data, could you be reasonably
confident of detecting the impact of the loss of seagrass, assuming that one in
fact exists? We will use RAMAS EcoLab to help answer this question.

-
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Step 1. Start the "Multiple Populations”  program fro.m the
RAMAS Ecolab shell. Set the number of replications to 1, the duration to 5,
and use demographic stochasticity. Set up two isolated Populations. Call one
the Park population and the other the Port population. Set the carrying
capacity in the Park population to K =10,000 and in the Port populat‘lon to
K = 9,000. For both populations, set initial abundance equal to K. Specify the
following parameters for both populations:

Growth rate (R): 1.1
Survival rate: 05
Standard deviationof Rt~ 0.1
Density dependence type: Scramble

Make sure there is no dispersal or correlation between populations
(However, in order to see both populations on the screen, you may want to
set different coordinates for the two populations). Save your modcl?l. .

Step 2. Run a single replication of this simulation. Select_ Tra}]ectory
summary" from the Results menu, and write down the populatl.on sizes :r'or
the Park and Port populations from years 1,2, 3, 4 and 5. To do this, first click
the "text”" button on the toolbar, then advance the population counter to 1
and then to 2 (population = 0 gives the total metapopulation abundance).

Step 3. For each population, calculate the mean (M) and the standard
deviation (S) of the 5 population sizes. Use these four numbers o c30nduct a
-test of the differences between mean abundances at the two locations. You
should do a one-tailed test because you expect the Port population to be
smaller, on average, than the Park population. The formula for the test is

(Moo — Myon)

1, = ————
NV (Sout Stord I 1

where M., and M, , are the average abundances of the Park and Port pop-

ulations over the first five years of the simulation, 52, and S, are the
variances in the Park and Port populations, and n is the number of years
(n =5). ‘

Step 4. Compare the value you calculate (t,) against the ¢ value of 1.86
(which assumes a Type L error rate of 5%). If the number resu]tmg from your
calculations is larger than this, standard protocols for hypothesis tests'say
that you may conclude that the difference between the average populatu;ans
is unlikely to be due to chance. That is, you are free to conclude that there is a
significant difference between the Park and Port populations. If the fmmber
you calculate is less than 1.86, you cannot reject the null hypothesis of no
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difference between the populations. That is, even though there is a true dif-
ference between the populations, you would have insufficient evidence to be
sure.

In the simulations, you have specified a true difference between the
populations. You may or may not have detected a significant difference
between the two sets of numbers from the two locations, depending on the
vagaries of the environment. If you were to repeat this exercise many times,
you should find that, on average, you find a significant difference about 40%
of the time and that you fail to detect a difference about 60% of the time. This
failure rate is the type I error rate, the probability of failing to detect a true
difference. Thus, even given 5 years of good quality data, a correct model,
and a true decline of 10% in the carrying capacity, the monitoring program
stands a better than even chance of failing to detect the impact. You might
want to extend the length of time from 5 to 50 years, and then recalculate the
test, Power should improve.

Models such as these may be useful in exploring alternative monitoring
programs while exploring our assumptions about the population dynamics
of a species. One way to do this is to calculate the power of a monitoring
program by specifying different kinds of plausible impacts, different sam-
pling designs, and by trying these experiments using a range of alternative
possible models.

Exercise 8.2: Sustainable Catch Revisited

The object of one of the exercises in Chapter 4 was to estimate sustainable
catch for a fishery in the presence of environmental variability. In this exer-
cise, we will develop the issue a little further. Model structure is never
entirely certain, and often there will be more than one plausible model fora
population. The objective of this exercise is to develop a harvest strategy for
a fishery population such that you achieve maximurmn harvest over a 20-year
period without taking any important risks of loss of the population (there
will always be some risk the population will be lost, even if there is no
fishing or other impact).

Step 1. Start the "Age and stage structure” program of RAMAS EcoLab.
Open the file called Codl.st. This mode] represents a stage structured modet
for a cod population. There are 10,000 fish in the current population and the
environment has a carrying capacity of 20,000. Only the stage 3 fish can
reproduce (see the Stage Matrix under the Model menu). The population is
regulated by scramble competition, and the maximum growth rate in the
absence of density dependence is 1.3 (see Density Dependence under the
Model menu}. The standard deviation of each parameter is set to equal 10%
of the mean (a modest amount of environmental variation).

e
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The model is set up to run 1,000 replications of the model over 20 years.
In this version, there is no harvesting. Run the simulation and examine the
Trajectory Summary and the Extinction/Decline curves under the Results
menu. The population tends to increase towards the carrying capacity of
20,000 and there is only a very small probability that the population will
decline to fewer than about 9,000 individuals. We will use these results as the
benchmarks against which to compare other model predictions.

Step 2. Open the file Cod2.st. It is a deterministic simulation for the same
model, but with a harvest of 400 individuals per year taken from the oldest
stage. If you run the simulation, you will see that this is the sustainable haz-
vest from the population, in the absence of environmental variation.

Now load the file Cod3.st. This is the same model as in Cod2, except that
the environmental variation present in Cod1 has been added back into the
model. The total harvest is about 12,500 kg (see Harvest Summary, display
text results, and scroll to the very end of the table). There are two important
qualitative features to the results of this simulation. The first is that the
average population declines (see Trajectory Summary). The second is that
there is about a 10% probability that the population will become extinct.
Quite apart from the ecological consequences of such an event, this repre-
sents a significant economic risk. :

Step 3. Repeat this simulation, using fixed harvest amounts of between
200 and 600 individuals per year. This can be done by opening the Manage-
ment and Migration sheet under the Model menu. Plot extinction risk versus
number of individuals harvested. Record the total harvest from each
simulation.

Step 4. Load Cod4.st. This represents a deterministic simulation in which
a proportion, 0.2, of the stage 3 individuals is taken each year (see the Pro-
portion of Individuals field on the Management & Migration sheet under the
Model menu). There are 2,000 stage 3 individuals in the current population,
so in the first year of operation, this harvest is the same as the fixed harvest
applied in the file Cod2. Note that this harvest level is sustainable in the
absence of environmental variation.

Step 5. Load Codb.st. This represents the model in Codd, with environ-
mental and demographic variation added back in. Note thatthe total harvest
is close to 12,500 kg, about the same total harvest as in the case in which a
fixed number of individuals was harvested (in Cod3). The most striking dif-
ference between these results and the strategy involving a fixed harvest

amount is that the mean population does not decline (see Trajectory
Summary) and there is a negligible risk of the loss of the fishery (see Extinc-
tion/Decline).
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Step 6. Repeat this simulation, using harvest proportions of between (.1
and 0.6 of the stage 3 individuals per year. This can be done by modifying
the Management & Migration sheet under the Model menu. Plot extinction
risk versus the proportion of individuals harvested. Record the total harvest
from each simulation.

Step 7. Plot extinction risk versus total harvest for both the constant har-
vest and the proportional harvest. Plot both curves on the same graph. What
do these curves tell you about the effectiveness of these two strategies?
Explain why many of the worlds fisheries are still managed using a fixed
harvest amount. What problems might be introduced if the curgent popula-
tion size was not known exactly, as it is in these simulations?

Exercise 8.3: Sustainable Use

Your goal in this exercise is to implement a harvesting strategy for the palm
population that maximizes the dollar value of the resource over 50 years,
provides for continuation of the resource beyond 50 years, and provides a
reascnable level of security of sustainable use, defined as the maintenance of
a population of at least 1,000 individuals for the entire period.

Step 1. Develop a stage-structured model of the palm population. Use
the stage matrix given above in Table 8.2. Specify values for the standard
deviations the same as the means for the three fecundity values, in other
words, a coefficient of variation of 100%. The upper-left element of the
matrix (.794} is not a fecundity, but the probability that a plant of smallest
size class will remain in that size class the following year. Thus it is a sur-
vival rate, even though it is in the first row. For this element, and all other
survival rates (numbers in other rows), specify the standard deviation as
10% of the mean.

Model the population’s growth as exponential growth to a ceiling of
30,000 plants. Thus, in the density dependence screen, specify ceiling-type
density dependence with the carrying capacity parameter equal to 30,000,
The initial number of plants in each stage is assumed to be as follows:

Stage 1: 3,000
Stage 2: 1,000
Stage 3: 300
Stage 4: 300
Stage 5: 300
Stage 6: 100

Do not ignore the constraints, and use demographic stochasticity. After
entering all the parameters, save the model. Run a stochastic simulation for
50 years, with 1,000 replications. When the simulation is finished, save the
model again, this time with results.

-
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The "Explosion/Increase” curve reports the chances of crossing an upper
threshold at least once in the next 50 years. Thus, it records the chance that
you will sell before 50 years are up, for different threshold values. Suppose
your strategy is to sell all the palms if the population size exceeds 10,000 any
time in the next 50 years, producing a two-fold return on the investment.
What is the probability of this happening? What is the probability of
reaching your target, if your target was a three-fold return, or a four-fold
return?

Step 2. Remember that it was 2 requirement of the scenario that you
manage the population sustainably. Definitions of sustainability vary. In this
case, we shall define it as the requirement that you tnaintain a population of
no less than 1,000 plants. If the population falls below that level, the land will
default to the government and you will lose your asset. Thus the lower limit
at 1,000 plants becomes an unacceptable lower bound, and judgment of
alternative strategies must include an evaluation of the likelihood that you
will cross it in the forthcoming 50 years.

What is the risk that the population size will fall below 1,000 plants at
least once during the next 50 years?

Considering the probability of a two- or three-fotd return, and the prob-
ability of failing to maintain 1,000 plants, do you consider this a wise
investment?

Step 3. Suppose that at the beginning you have a further $10,000 in the
bank. You may decide to use this capital to modify the processes to reduce
the risk of failure, or to increase the expected size of the population. One of
the options you have is to invest in seedling stock, artificially increasing the
size of the population at the outset. The cost of obtaining, planting and
caring for a seedling is $1; thus you can increase the initial number of indi-
viduals in stage 1 by 10,000.

Run another simulation that implements this option. Save the model and
results in a new file, How does this change the answers to the questions in
steps 2 and 37 Remember that this time you have $10,000 less in your bank
account. This means that a four-fold return corresponds  to
4 - ($50,000 + $10,000), or $240,000, which means selling the palms once the
population is over 24,000 plants. For this question, assume that your target is
a three-fold, or a four-fold return. A two-fold return (which requires selling
12,000 plants) does not make sense, since we start with 15,000 plants (5,000
that were already there, plus 10,000 additional seedlings).

How do the probabilities of three- or four-fold return, and the risk of
failing to maintain 1,000 plants, change? Does this option change your mind
about how wise this investment is?
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Step 4. Another way you can spend your $10,000 is to set up an itrigation
system to water the plants whenever the weather is dry. By doing so, youdo
not effect the initial population size, but you increase the mean value of the
fecundities (because watering reduces the chances of mortality of seedlings
during their first year), and also reduce their variability (because there will
be less variation due to extreme drought years).

Load the first file you saved (without the additional 10,000 seedlings).
Increase the three fecundities values by doubling their values, and decrease
the standard deviation of each fecundity to 20% of its mean.

Run ancther simulation that implements this option. Save the model and
results in a new file. How does this change the answers to the questions in
steps 2 and 3? How do the probabilities of a two-, three- and four-fold
return, and the risk of failing to maintain 1,000 plants, change? Does this
option change your mind about the investment?

8.6 Further reading

Finkel, A. M. 1994. Stepping out of your own shadow: a didactic example of
how facing uncertainty can improve decision-making. Risk Analysis
14:751-761.

Hilborn, R. 1987. Living with uncertainty in resource management. North
American Journal of Fisheries Management 7:1-5.

Holting, C. S. 1993. Investing in research for sustainability. Ecological Appli-
cations 3:552-535.

Ludwig, D, Hilborn, R. and Walters, C. 1993. Uncertainty, resource
exploitation, and conservation: Jessons from history. Science 260:36.




Appendix:
RAMAS EcoLab Installation and Use

Requirements

The program requires an IBM-compatible computer running Windows 95,
Windows 98, Windows NT 4.0, or later. The program will not-work under
Windows 3 or 3.1. o

Memory: The computer should have at least 16 megabytes of memory.
More memory would improve performance.

" Processor: The program will run on an 80486 processor, although we
recommend a Pentium or faster processor.

Hard disk space: The program requires approximately 2 megabytes of
hard disk space.

Installation

If you received the program on a CD-ROM disc:
You must install the program on the hard disk; you cannot use RAMAS
Ecolab from the disc. Put the CD-ROM disc in the CD-ROM drive. The
installation program will start running. If it does not, select "Run” from the
Start menu; type

d:\setup.exe
where "d" is the letter of the CD-ROM drive, and press Enter. Follow the
instructions on the screen.

If you received the program on floppy diskette(s):
Put the floppy diskette (#1, if there are more than one) in the floppy disk
drive. Select "Run" from the Start menu; type
a:\setup.exe
where "a" is the letter of the floppy disk drive, and press Enter. Follow the

instructions on the screen.

Store the distribution CD or diskette(s) in a safe place in case any of the
program files are accidentally deleted.

RAMAS EcoLab will be installed under your computer’s "Program Files"
folder. Double-click on the RAMAS EcoLab icon on your desktop to start the
program. Press [F1] for help.

You can also start RAMAS EcoLab from the "RAMAS Ecolab" group
under "Programs” in the Start menu, or by double-clicking on the icons of
associated data files (.SP, ST, and MP).
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You might want to uninstall RAMAS Ecolab when you change com-
puters or upgrade to a newer version of the program. You can do this by
selecting “Uninstall” from the RAMAS EcoLab group under "Programs” in
the Start menu. Note that this will delete all files that came with the program
(including sample files). If you have made changes to any sample files that
you'd like to keep, first copy them to a folder other than the folder where
you initially installed RAMAS EcoLab (usually C:\Program Files\EcoLab).

Note: Read the file README.TXT for last-minute hints and corrections.

Using the program

See above for installing the program. Double-click on the RAMAS Ecolab
icon on your desktop to start a shell program that provides access to all pro-
grams of RAMAS Ecolab. One of these, "Random numbers,” lets you sample
uniform random numbers for an exercise in Chapter 2. It gives a pair of
uniform random numbers every time you click a button. The other choices
are programs that let you build medels:

“Population growth" lets you build single population models with no age
or stage structure (i.e., unstructured, or scalar models). These models can
have variability (Chapter 2) or density dependence {Chapter 3}.

"Age and stage structure” lets you build single population models with
age or stage structure, such as Leslie matrix models (Chapter 4) and stage
matrix models (Chapter 5). These models can have variability and den-
sity dependence, as well as harvesting,

“Multiple populations” fets you build metapopulation models with spa-
tial structure (Chapter 6). These models can have variability, density
dependence, and migration among populations.

The use of these three programs programs is very similar. Each program's
main window consists of (1) title bar, (2) menu bar, (3) tool bar, (4) model
summary, and (3) status bar.

(1) Title bar: At the top of the window is the title bar with the program name.
On the title bar, at the upper-right corner of the window, are three buttons
for minimizing, maximizing (or restoring to original size), and closing the
main program window. Clicking the close button will terminate the pro-
gram.

(2) Menu bar: Below the title bar is the menu bar, which includes six menus:

File View Mode! Simulation Results Help
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Click on one of these six words to open the pull-down menu. Alterna-
tively, you can press the Alt key in combination with the underlined letter in
the menu name. For example, pressing will open the Model menu.

File menu is used to open or save model files. View menu is used to set
display options. Selecting each item in the Model menu opens a dialog box
that includes a group of model parameters. Simulation menu is used to run a
simulation. After running a simulation, selecting each item in the Results
menu displays one type of model result. The entries listed under Model and
Results menus depend on the program. In each program, click "Help” t
learn more about the operation of the program. %

{3) Toalbar: Below the menu bar is the toolbar, which includes four buttons
that can be used as shortcuts to access the following functions found under
the File menu:

New (start a new model; same as pressing (CztN))

Open (open an existing model; same as pressing (C«r0))

Save (save the model in a file; same as pressing (Cuig))

Exit {close the program; same as pressing (AltX])

(4) Mode! summary: The largest part of the main program window contains
asummary of the model. Depending on the prograrn, this summary can take
two forms:
text, including title and comments (from the General information
dialog), the number of replications, time steps, stages, and popula-
tions.

map of the metapopulation.

(5) Status bar: At the bottom of the main program window is the status bar,
which displays information about what the program is doing, as well as
hints.

You can resize the program window by clicking on the lower-right
corner of the window and dragging,.

Some of the selections in the menus of a program (for example "Run"} are
procedures, and selecting them will make the program start computing.
Others are dialog boxes for entering input parameters or displaying results.
When you select one of the dialog boxes for input, the program will display a
template on which you can type the values of the various parameters. After
you enter your parameters, click "OK." If you want to leave a dialog box
without making any changes to the input data, click "Cancel.” The changes
you have made since you opened the dialog box will be ignored. For help
about input parameters, click "Help" (or press £1)). The use of these programs
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are explained and demonstrated in the exercise sections of Chapters 2
through 6 (look under "RAMAS EcoLab" in the Index). Below, we discuss
their general features.

Loading input files

In each program, you can load sample files. To do this, select Open from the
File menu (or, press (C&10]), type in the filename or select a file by clicking.

Saving models and results

In each program, you can save a model you have created or modified. To do
this, select Save as (to save a model with a different name) or Save (to save
with the same filename) from the File menu. If you have already run the
model, the results will also be saved.

Entering data

Within input windows under the Model menu (such as General informa-
tion), you can type in parameter values, as well as title and comments. In all
subprograms, the number of time steps (duration) and the number of
replications are entered in General information. Setting replications to O is a
convenient way of making the program run a deterministic simulation, even
if the standard deviation of the growth rate is greater than zero.

When the number of replications is specified as 0, the program assumes a
deterministic simulation and ignores parameters related to stochasticity.
These parameters include the standard deviation matrix for age- or stage-
structured models, and the parameters that are dimmed (not available for
editing) in other input windows.

After editing an input window, click "OK" to accept the changes. (Note:
clicking "Cancel” will close an input window without the changes you have
made in that window.)

Erasing all input data and all results

To erase all input parameters and all results of a model, simply start a new
model. You can do this by selecting New from the File menu.
Using the help facility

The function key F1) provides access to a context-sensitive help facility. You
can press (1} or click the "Help" button anytime to get help about a particular
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window. In the help facility, you can get an overview of the help file by
clicking on the "Contents” tab. In the Contents, click on a topic and then click

"Open."

Running a simulation

After you have loaded a file, or created a model, you can run a simulation by
selecting Run from the Simulation menu (or by pressing (CuiK)). When the
simulation starts, the program will open a Simulation window.

There are several controls on the toolbar at the top of the Slmulahon
window. The first two buttons on the left (right under the word “Simulation”
in the title) allow you to choose the simulation display (what to display
during a simulation). By the default, the program will display trajectories or
the metapopulation map, depending on the program.

For unstructured and age- or stage-structured models (Chapters 1
through 5), the program will display the population trajectory simulated by
each replication. For metapopulation models (Chapter 6}, the program will
display a map of the metapopulation and will update the map at every time
step.

The display of trajectories or maps may slow down the program. To turn
off the display, click the first button from left on the toolbar. This will display
only text (title, comments, and other parameters} during a simulation. This
allows the simulation to be completed faster.

For more information, click the help button (with a (?]) on the toolbar of
the Simulation window.,

When a simulation is completed, you will see "Simulation complete” at
the bottom of the window. Close the Simulation window (click on the (3] in
the upper-right corner) to return to the the main window. Once you return to
the main window, you cannot go back to the display of individual trajecio-
ries (unless you run the simulation again).

Viewing and printing results

To view or print the results of a simulation, select one of the entries under
the Results menu. This will open a window and display a graph. On top of
the window is a series of buttons that

show a plot (display the result graphically, which is the default)

show numbers (display the result as a numerical table)

open a window for changing the scale and titles of the graph
save the result as a disk file

print the result (plot or text) on the default Windows printer
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copy the result to the clipboard, for pasting into another application
display help for the particular result

For more information, click the help button (or press (1)) and then click on
"Copying, saving and printing results.”

When a graph is displayed, the axes may have the letters k, m, or b.
These indicate the multiplication factors:

k: x1,000

m: x 1,000,000

b: x1,000,000,000
Thus 2.50k means 2500 and 0.2m means 200,000.

Exiting the program

To exit from one of the subprograms, select Exit from the File menu
{Important: Remember to save your results before you exit).

Technical support

User support from Applied Biomathematics is limited to techmical aspects of
using the program. The RAMAS home page has a list of frequently asked
questions. If you want to contact us, please indicate the program and model
you are using, describe the question or difficulty in detail, and if possible,
attach a copy of the input file you were working on.

homepage: http://www.ramas.com
e-mail: ecolab@ramas.com
address: 100 North Country Road, Setauket, NY 11733 USA.
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