Victimless robbery

Benjamin Figueiredo Melina Leite Hendrik Sulbaran Igor Felipe Michel Tosin

Group 7

IX Southern-Summer Schools on Mathematical Biology (SSSBM 2020) January 12 – 18, 2020 São Paulo, Brazil ITCP-SAIFR/IFT-Unesp

Section 1

Introduction

Once upon a time there was a beautiful garden...

Mutualism: positive plant-animal interaction

Plants give nectar to animals

Animals exchange pollen among flowers - reproduction!

But... peace was disturbed!

A series of nectar robbery started to scare the community!

Damage in the flowers

Group 7

Victimless robbery

The suspect

Bumblebee

Trapped in Darwin's web

How does the robber affect the mutualism?

- Is the nectar robber only a bad guy?
- New studies found that robbers can increase reproduction success of the plants!!
- But how?

The mechanisms for a positive effect of robbers

- Robbers compete for nectar with pollinators
- Less nectar available pollinators have to search for more flowers
- Pollinators visit more flowers and increase reproduction success of plants

Objectives

- Construct a model to describe plant-pollinator-robber system
- Analyse how robbers presence may affects positively pollination

Section 2

Dynamic model

Our delicate system

Plants/Flowers

- Pollination is specialized done by one species of animal.
- No auto pollination!
- No costs to produce nectar
- The production of nectar is proportional to the number of flowers

flower biological processes

Our beautiful system

Pollinators - hummingbirds

- Specialized in the species of plant.
- Population growth by nectar consumption
- Increases flower visit rates (and pollination) when the amount of nectar per flower is low.
- No cost for searching for more flowers.

Our cute system

Robbers - bumblebees

- Generalists.
- Competing by interference with the pollinators for nectar.
- Opens a hole in the flower damage/kill the flower.

Our -crazy- system

Group 7

ICTP SAIFR

Nectar-Flower-Pollinator-Robber dynamics

ICTP SAIFR

Associated dynamic system

$$\frac{dF}{dt} = \left(\left(1 + \frac{A-1}{1+cN} \right) \left(\frac{a_{pf}P}{1+\beta_{f}F+\beta_{p}P} \right) - \frac{a_{fr}R}{\alpha_{fr}+R} - d_{f} \right) F$$

$$\frac{dN}{dt} = a_{f}F - \left(\frac{a_{rn}R}{\alpha_{rn}+N} + \frac{a_{pn}P}{\alpha_{pn}+N} \right) N$$

$$\frac{dP}{dt} = \left(\frac{a_{pn}N}{\alpha_{pn}+N} - d_{p} \right) P$$

$$\frac{dR}{dt} = \left(r \left(1 - \frac{R}{K} \right) + \frac{a_{nr}N}{\alpha_{m}+N} \right) R + \text{initial conditions}$$

N - Volume of nectar

- F Population of flowers
- P Population of pollinators
- R Population of robbers

A - low-nectar amplification of pollination behavior c - speed of pollination behavior transition

- anf pollination rate
- $\dot{\beta_f}$ visitation rate of the pollinators
- β_p saturation rate of the pollinators
- afr damage rate by robber
- α_{fr} half saturation for robber attacks
- d_r death rate of the flowers
- a_f production rate of nectar per flower
- rn inverse of handling time of robbers

 α_{rn} - half saturation of nectar for robbers a_{pn} - inverse of handling time of pollinators α_{pn} - half saturation of nectar for pollinators

- d_n death rate of pollinators
- r growth rate of robbers
- K carrying capacity of the robbers
- anr robber growth rate boost
- ann pollinator birth-rate

Parameters choice

Looking for information in the vast literature:

- Amount of nectar per flower: 0.5 μ L
- Pollination rate for hummingbirds: 2000 visits/day and "handling time" as 20 seconds on average
- Robbery rate for bumblebees: 1000 visits/day, effective "handling time" of 2000 seconds on average

+ some reasonable guesses about death rates, robbers intrinsic growth rates and carrying capacity

Section 3

Results

Pop. dynamics WITHOUT robbers

Pop. dynamics WITH WEAK robbers

Pop. dynamics WITH STRONG robbers

Comparing Results

Bifurcation diagram for consumption rate for robbers

ICTP

Section 4

Discussion

Discussion

Are nectar robbers real bad for the mutualism?

- It depends on how better competitor they are:
- If strong competitors, bad guy!)
- If weak competitors, maybe they may coexist
- Weak robbers may help in the stabilization of the population growth of plants, but not so strongly because it didn't impede pollinators growth

Future directions

Improvements in the model

- Include carrying capacity for the plants and pollinators
- Include costs for the flight time looking for nectar in pollinators and robbers it will control it's growth rate
- Play with specialization in plants-pollinator systems

Lessons from Nature

- Mutualism is a very hard species interaction to model!
- Robbers are not always the bad guys in the story!
- They may also increase the reproduction of plants by forcing lazy pollinators to work!

Acknowledgements

Monitors:

Rafael Pamela Matheus

Financial support:

That's all folks! Questions?!

Thanks for your attention!

ICTP SAIFR

$$\frac{dF}{dt} = \left(\left(1 + \frac{A-1}{1+cN} \right) \left(\frac{a_{pf}P}{1+\beta_{f}F+\beta_{p}P} \right) - \frac{a_{fr}R}{\alpha_{fr}+R} - d_{f} \right) F$$

$$\frac{dN}{dt} = a_{f}F - \left(\frac{a_{m}R}{\alpha_{rn}+N} + \frac{a_{pn}P}{\alpha_{pn}+N} \right) N$$

$$\frac{dP}{dt} = \left(\frac{a_{pn}N}{\alpha_{pn}+N} - d_{p} \right) P$$

$$\frac{dR}{dt} = \left(r \left(1 - \frac{R}{K} \right) + \frac{a_{nr}N}{\alpha_{rn}+N} \right) R + \text{initial conditions}$$

- N Volume of nectar
- F Population of flowers
- P Population of pollinators
- R Population of robbers

A - low-nectar amplification of pollination behavior c - speed of pollination behavior transition

- apf pollination rate
- β_f visitation rate of the pollinators
- β_p saturation rate of the pollinators
- afr damage rate by robber
- $\alpha_{\it fr}$ half saturation for robber attacks
- d_r death rate of the flowers
- a_f production rate of nectar per flower
- rn inverse of handling time of robbers
- $\begin{array}{l} \alpha_m \ \text{-half saturation of nectar for robbers} \\ a_{pn} \ \text{-half saturation of nectar for pollinators} \\ \alpha_{pn} \ \text{-half saturation of nectar for pollinators} \\ d_p \ \text{-death rate of pollinators} \end{array}$
- \dot{r} growth rate of robbers
- K carrying capacity of the robbers
- a_{nr} robber growth rate boost
- anp pollinator birth-rate

Initial conditions

Initial condition	What it is	Value
F ₀	Initial population of flowers	10 ⁶
No	Initial amount of nectar	$(5 \ \mu L) \cdot F_0$
P ₀	Initial population of pollinators (hummingbirds)	50
R ₀	Initial population of robbers (bumblebees)	10

Parameter values

Parameter	Info	Coexistence	Extermination
Α	Low nectar amplification of pollination	10	10
с	Speed of pollination behavior transition	10^{-5}	10^{-5}
a _{pf}	Pollination rate per flower	10^{-2}	10^{-2}
$\dot{\beta}_{f}$	Visitation rate of pollinators per flower	10^{-3}	10^{-3}
β_p	Saturation rate of pollination per pollinator	$2 \cdot 10^{-3}$	$2 \cdot 10^{-3}$
a _{fr}	Damage rate due to robber per flower	10 ⁻⁸ /h	10 ⁻⁶ /h
α_{fr}	Robber attack half-saturation	8000	8000
df	Per capita flower death rate	1%/day	1%/day
a _f	Nectar production rate per flower	20 μ L/day	20 μ L/day
$a_{rn} = h_r^{-1}$	Inverse of the robber handling time for nectar	$1.8 h^{-1}$	$18 \ h^{-1}$
α_{rn}	Nectar half-saturation for robbers	0.05 µL	0.05 µL
$a_{pn} = h_p^{-1}$	Inverse of the pollinator handling time for nectar	$180 h^{-1}$	$180 h^{-1}$
α_{pn}	Nectar half-saturation for pollinators	20 µL	20 µL
d _p	Per capita pollinator death rate	1%/day	1%/day
r	Robber growth rate (in absence of nectar)	4 · 10 ⁻³ /h	4 · 10 ⁻³ /h
K	Robber carrying capacity (in absence of nectar)	8000	8000
anr	Robber per capita growth rate boost due to nectar availability	$2 \cdot 10^{-2}/h$	$2 \cdot 10^{-2}/h$
anp	Pollinator per capita growth rate due to nectar availability	$3 \cdot 10^{-4}/h$	$3 \cdot 10^{-4}/h$

