VI Southern-Summer School on Mathematical Biology

Mathematical Theory of Biological Invasions Part II

Sergei Petrovskii

Department of Mathematics, University of Leicester, UK http://www.math.le.ac.uk/PEOPLE/sp237

IFT/UNESP, Sao Paulo, January 16-27, 2017

Plan of the course

- Introduction & a glance at field data
- Overview of mathematical tools
- Diffusion-reaction systems
 - Single-species system: traveling waves, the problem of critical domain, effects of environmental heterogeneity
 - Predator-prey system and the problem of biological control: traveling waves and pattern formation
 - Beyond the traveling waves: patchy invasion
- Lattice models
- Kernel-based models (integro-difference equations): fat-tailed kernels, "superspread", pattern formation
- Extensions, discussion, conclusions

Plan of the course – Part II

• Lattice models

- Kernel-based models (integro-difference equations): fat-tailed kernels, "superspread", pattern formation
- Extensions, discussion, conclusions

Lattice models of biological invasion

How essential is the choice of the model?

Specific questions:

• Is the patchy spread an artifact of the diffusion-reaction system?

How essential is the choice of the model?

Specific questions:

- Is the patchy spread an artifact of the diffusion-reaction system?
- Concerns: Time-discrete framework may be more appropriate, at least in some cases (e.g. for species with clearly different life stages)

How essential is the choice of the model?

Specific questions:

- Is the patchy spread an artifact of the diffusion-reaction system?
- Concerns: Time-discrete framework may be more appropriate, at least in some cases (e.g. for species with clearly different life stages)
- In order to take into account also the environment heterogeneity, we now consider a system that is discrete both in space and time

Ecological example: metapopulation

(by Katrin Körner & Florian Jeltsch, University of Potsdam)

In a more formal way:

(by Victoria Sork, UCLA)

A possible mathematical framework: discrete space, continuous time (Keitt et al., 2001)

Coupled Map Lattice: single species

Continuous space (x, y) changes into a discrete 'lattice' (x_m, y_n) where k = 1, ..., M and n = 1, ..., N.

Population numbers are defined only in the lattice nodes:

Each discrete step from t to t + 1 consists of distinctly different dispersal stage and the 'reaction' stage.

The dispersal stage includes emigration and immigration:

$$N'_{x,y,t} = (1-\mu)N_{x,y,t} + \sum_{(a,b)\in V_{x,y}} \frac{\mu}{4}N_{a,b,t} ,$$

where μ is the population fraction that emigrates from the site.

The choice of $V_{x,y}$ can be different, for instance

$$V_{x,y} = \{(x-1,y), (x+1,y), (x,y-1), (x,y+1)\},\$$

which corresponds to a certain 'dispersal stencil':

The reaction stage is $N_{x,y,t+1} = f(N'_{x,y,t})$.

We assume that the population growth is hampered by the strong Allee effect.

In particular, we consider

$$N_{t+1} = f(N_t) = \frac{\alpha \left(N_t\right)^2}{1 + \beta^2 \left(N_t\right)^2}.$$

This function f(N) has two steady states, N_1^* and N_2^* .

We also consider its approximation with a simpler function:

$$f(N)\approx \tilde{f}(N)=N_2^*H(N-N_1^*)$$

where H(z) is the Heaviside step function.

Population growth in discrete time

Consider a single-site species introduction:

Questions to be answered:

- Under what conditions this introduction will lead to successful establishment (and, possibly, spread)?
- What can be the rate of spread?
- What can be the pattern of spread?

Establishment

The species will persist at the site p of initial introduction iff its size after dispersal does not fall below the Allee threshold:

$$N'_{p} = (1 - \mu)N_{2}^{*} > N_{1}^{*}$$

that is, for

$$\mu < 1 - \kappa$$
 where $\kappa = N_1^*/N_2^*$. (1)

The spread into a neighboring site q will be successful iff the density after dispersal exceeds the Allee threshold:

$$N'_q = rac{\mu}{4}N_2^* > N_1^*$$

that is, for

$$\mu > 4\kappa.$$
 (2)

Conditions for establishment and spread are now not the same!

Extinction-invasion diagram

Domain I - establishment & spread, Domain III - establishment without spread (invasion pinning), Domain II - spread with pattern formation in the wake, Domain IV - extinction

Spread

For the step-like growth function, the rate of spread is exactly 1 (one site per generation).

The shape of the envelope is an artefact of the dispersal stencil.

Spread

But with a little bit of environmental heterogeneity...

Now the shape of the envelope looks much more realistic!

Coupled Maps Lattice: predator-prey system

Now we have, for the dispersal stage

$$\begin{split} N_{x,y,t}' &= (1 - \mu_N) N_{x,y,t} + \sum_{(a,b) \in V_{x,y}} \frac{\mu_N}{4} N_{a,b,t} ,\\ P_{x,y,t}' &= (1 - \mu_P) P_{x,y,t} + \sum_{(a,b) \in V_{x,y}} \frac{\mu_P}{4} P_{a,b,t} , \end{split}$$

and for the reaction stage

$$N_{x,y,t+1} = f\left(N'_{x,y,t}, P'_{x,y,t}\right),$$
$$P_{x,y,t+1} = g\left(N'_{x,y,t}, P'_{x,y,t}\right).$$

Predator-prey on a lattice

Specifically, we choose the reaction term as follows

$$N_{x,y,t+1} = \frac{r(N_{x,y,t})^{2}}{1 + b(N_{x,y,t})^{2}} \cdot \exp(-P_{x,y,t}),$$

and

$$P_{x,y,t+1} = N_{x,y,t}P_{x,y,t}.$$

(in dimensionless variables) where N is prey and P is predator.

This system shows a very complicated dynamical behavior including traveling waves, regular spatial patterns and spatiotemporal chaos.

This patchy invasion occurs in the parameter range where the nonspatial system goes extinct

Chapter VI

Kernel-based (integral-difference) models of biological invasion

Kernel-based models

Consider an insect population, e.g. moth, in a continuous space but with separated growth and dispersal stages:

$$U_t(x) \rightarrow \tilde{U}_t = f(U_t(x)) \rightarrow \mathcal{L}(\tilde{U}) = U_{t+1}(x)$$

adult moth	laid eggs,	adult moth,
settling down	larvae etc.	new generation

where \mathcal{L} is a spatial operator describing dispersal.

For simplicity, we consider dispersal at the infinite space.

Let k(x, y) is the probability distribution that a moth released at x will lay eggs at the position y, then

$$U_{t+1}(x) = \int_{-\infty}^{\infty} k(x,y) \tilde{U}_t(y) dy$$
.

Kernel-based models

Assume that space is homogeneous, $k(x, y) \rightarrow k(x - y)$.

We therefore obtain the following equation:

$$U_{t+1}(x) = \int_{-\infty}^{\infty} k(x-y) f(U_t(y)) dy ,$$

where k(z) is also called the dispersal kernel.

Questions:

- How much different the kernel-based framework is from diffusion-reaction equations?
- If it is different, what can be the rate of spread?

The answer depends on the properties of the dispersal kernel.

Examples of dispersal kernel

Intuitively, the faster the rate of decay of k(z) at large *z*, the lower the rate of spread.

The properties of the kernel can be quantified by the behavior of its moments. (e.g. see Kot et al., 1996)

The moment of the *n*th order:

$$m_n = \int_{-\infty}^{\infty} z^n k(z) dz, \quad m_0 = 1, \quad m_1 = .$$

For almost any k(z), m_n is an increasing function of n.

However, a lot depends on how fast is the rate of increase.

Case 1. All moments exist and the asymptotical rate of increase of m_n is not faster than the factorial of n, i.e. at most

 $m_n \sim n!$

which means that k(z) is exponentially bounded.

In this case, the kernel-based equation with compact initial conditions describes a traveling front propagating with a constant speed (Lui 1983; Kot 1992)

The kernel-based model appears to be equivalent to the diffusion-reaction equation

(Petrovskii & Li, 2006, Section 2.2; Lewis et al., 2016, Section 2.4)

Case 2. For a k(z) with a fatter tail (rate of decay lower than exponential), the model has solutions of a new type: accelerating traveling waves.

The difference between the corresponding kernels can be expressed in terms of the moment-generating function:

$$M(s) = \int_{-\infty}^{\infty} e^{sz} k(z) dz$$

(Kot et al. 1996), that is:

- Constant-speed traveling waves if M(s) exists
- Accelerating traveling waves if *M*(*s*) does not exist (the integral diverges for any *s* ≠ 0)

Accelerating waves do not exist if the population growth is dumped by the strong Allee effect

Patterns in the wake

Interestingly, pattern formation in the wake of the traveling front appears possible even in a single-species kernel-based model:

(Andersen, 1991)

Questions arising

What can be the effect of other species?

How it may change the pattern of spread?

Consider a predator-prey system:

$$u_{t+1}(\mathbf{r}) = \int_{\Omega} k^{(u)} (|\mathbf{r} - \mathbf{r}'|) f(u_t(\mathbf{r}'), v_t(\mathbf{r}')) d\mathbf{r}',$$

$$v_{t+1}(\mathbf{r}) = \int_{\Omega} k^{(v)} (|\mathbf{r} - \mathbf{r}'|) g(u_t(\mathbf{r}'), v_t(\mathbf{r}')) d\mathbf{r}',$$

Local demography: predator-prey system

$$u_{t+1}(\mathbf{r}) = \frac{r (u_t(\mathbf{r}))^2}{1 + b (u_t(\mathbf{r}))^2} \cdot \exp(-v_t(\mathbf{r})),$$

$$v_{t+1}(\mathbf{r}) = u_t(\mathbf{r})v_t(\mathbf{r}).$$

ι ι

Local demography: predator-prey system

$$u_{t+1}(\mathbf{r}) = \frac{r (u_t(\mathbf{r}))^2}{1 + b (u_t(\mathbf{r}))^2} \cdot \exp(-v_t(\mathbf{r})),$$

$$v_{t+1}(\mathbf{r}) = u_t(\mathbf{r}) v_t(\mathbf{r}).$$

Local demography: predator-prey system

$$u_{t+1}(\mathbf{r}) = \frac{r(u_t(\mathbf{r}))^2}{1+b(u_t(\mathbf{r}))^2} \cdot \exp(-v_t(\mathbf{r})),$$

$$v_{t+1}(\mathbf{r}) = u_t(\mathbf{r})v_t(\mathbf{r}).$$

Dispersal kernel: the "reference case"

$$k_G\left(|\mathbf{r}-\mathbf{r}'|\right) = \frac{1}{2\pi\alpha_i^2} \exp\left(-\frac{|\mathbf{r}-\mathbf{r}'|^2}{2\alpha_i^2}\right)$$

Dispersal with the Gaussian kernel is known to be equivalent (in some sense) to diffusion.

Fat-tailed kernels in 1D

Long-distance asymptotics for the Gaussian kernel:

 $k(x) \sim e^{-ax^2}.$

Fat tailed kernel - power-law decay:

$$k(x) \sim x^{-\mu}$$
 (1 < μ < 3)

In case $\mu = 2$, the stable distribution is available in a closed form known as Cauchy distribution:

$$k_C(x) = rac{eta}{\pi(eta^2 + x^2)} \sim x^{-2}.$$

Fat-tailed kernels in 2D

Long-distance asymptotics: $k(\mathbf{r}) \sim r^{-(\mu+1)}$ (1 < μ < 3)

Explicit form of the stable distribution is not available, hence extension onto the 2D case is ambiguous.

Cauchy kernels Type I:

$$k_{C_l}({f r},{f r}') = rac{eta_l^2}{\pi(eta_l+|{f r}-{f r}'|)^3} ~\sim ~ |{f r}-{f r}'|^{-3} ~,$$

Cauchy kernels Type II:

$$k_{C_{ll}}(\mathbf{r},\mathbf{r}') = rac{\gamma_i}{2\pi \left(\gamma_i^2 + |\mathbf{r} - \mathbf{r}'|^2
ight)^{3/2}} ~\sim~ |\mathbf{r} - \mathbf{r}'|^{-3}$$

٠

(Rodrigues et al., 2015)

Fat-tailed kernels

Cauchy kernel has significantly different properties compared to the Gaussian kernel: the variance does not exist, $< r^2 >= \infty$.

- The fact that < r² >= ∞ is sometimes interpreted as the infinite correlation length
- Invasive species can spread with an accelerating speed (Kot et al. 1996)

Questions arising:

- Can patchy spread occur for the fat-tailed dispersal?
- How the rate of spread may differ between different kernels?

Simulations, kernel Type I

Simulations, kernel Type II

How can we compare the results for different dispersal kernels, i.e. Gaussian, Cauchy Type I and Cauchy Type II ?

Standard approach (equating the variances) does not work as the variance does not exist – "scale-free" process

Conditions of equivalence

Consider radius ϵ within which the probability of finding an individual after dispersal is 1/2:

$$P_{\epsilon} = \int \int_{|\mathbf{r}| \leq \epsilon} d\mathbf{r} = \int_{0}^{2\pi} \int_{0}^{\epsilon} k_{i}(\mathbf{r}, \theta) \mathbf{r} d\mathbf{r} d\theta = \frac{1}{2}.$$

For the Gaussian kernel, we obtain $\epsilon = \alpha \sqrt{2 \ln 2}$.

For Cauchy kernel Type I:

$$\beta = \epsilon(\sqrt{2} - 1) = \alpha(2 - \sqrt{2})\sqrt{\ln 2} \approx 0.4877\alpha.$$

For Cauchy kernel Type II:

$$\gamma = \frac{\epsilon}{\sqrt{3}} = \alpha \sqrt{\frac{2}{3} \ln 2} \approx 0.6798 \alpha.$$

Radius of invaded area vs time

Cauchy Type I

Cauchy Type II

Invasion rates are related by the above equivalence condition.

There is no accelerated spread.

Invasion rates obtained for the Cauchy kernels are between 1-10 km/year, hence in excellent agreement with field data.

(Rodrigues et al., 2015)

This is the end of the course...

This is **the end** of the course...

But certainly not the end of the story

Literature cited in the notes

Lewis, M.A., Petrovskii, S.V. & Potts, J. (2016) *The Mathematics Behind Biological Invasions*. Interdisciplinary Applied Mathematics, Vol. 44. Springer.

Petrovskii, S.V. & Li, B.-L. (2006) *Exactly Solvable Models of Biological Invasion*, Chapman & Hall / CRC Press. (pdf is available on my website.)

Owen, M.R. & M.A. Lewis (2001). How predation can slow, stop or reverse a prey invasion. *Bull. Math. Biol.* **63**, 655-684.

Petrovskii, S.V., Malchow, H. & Li B.-L. (2005) An exact solution of a diffusive predator-prey system. *Proc. R. Soc.Lond. A* **461**, 1029-1053.

Sherratt, J.A., Lewis, M.A. & Fowler, A.C. (1995) Ecological chaos in the wake of invasion. *Proc. Natl. Acad. Sci. USA* **92**, 2524-2528.

Jankovic, M. & Petrovskii, S. (2013) Gypsy moth invasion in North America: A simulation study of the spatial pattern and the rate of spread. *Ecol. Compl.* **14**, 132-144.

Mistro, D.C., Rodrigues, L.A.D. & Petrovskii, S.V. (2012) Spatiotemporal complexity of biological invasion in a space- and time-discrete predator-prey system with the strong Allee effect. *Ecological Complexity* **9**, 16-32.

Rodrigues, L.A.D., Mistro, D.C., Cara, E.R., Petrovskaya, N. & Petrovskii, S.V. (2015) Patchy invasion of stage-structured alien species with short-distance and long-distance dispersal. *Bull. Math. Biol.* **77**, 1583-1619.

Kot, M., Lewis, M. A. & van der Driessche, P. (1996) Dispersal data and the spread of invading organisms. *Ecology* **77**, 2027-2042.

Other useful references

Shigesada, N. & Kawasaki, K. (1997) *Biological Invasions: Theory and Practice.* Oxford University Press.

Lewis, M.A. & Kareiva, P. (1993). Allee dynamics and the spread of invading organisms. *Theor. Popul. Biol.* **43**, 141-158.

Neubert, M.G., Kot, M. & Lewis, M.A. (1995) Dispersal and pattern formation in a discrete-time predator-prey model. *Theor. Pop. Biol.* **48**, 7-43.

Lui, R. (1983) Existence and stability of travelling wave solutions of a nonlinear integral operator. *J. Math. Biol.* **16**, 199-220.

Volpert, V. & Petrovskii, S.V. (2009) Reaction-diffusion waves in biology. *Physics of Life Reviews* 6, 267-310.

Kot, M. (2001) Elements of Mathematical Ecology. Cambridge University Press.

Malchow, H., Petrovskii, S.V. & Venturino, E. (2008) *Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, Simulations.* Chapman & Hall / CRC Press.

Keitt, T.H., Lewis, M.A., Holt R.D. (2001) Allee effects, invasion pinnings, and species' borders. Am. Nat. 157, 203-216.

Good luck with your research!