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A Antibody-viral coevolution in genotype space

We represent the antibody population as a set of k genotypes consisting of vectors, A↵ (↵ = 1 . . . k), and corre-

sponding genotype frequencies x, with elements x↵ satisfying
Pk

↵=1

x

↵ = 1. Similarly, we consider a viral population

with k

0 possible genotypes V

a, and frequencies y with elements y

� (� = 1, . . . , k0) with
Pk0

�=1

y

� = 1. Note that

superscripts are indices, not exponentiation, unless next to parentheses, e.g. (a)b. The frequencies change over time,
although we omit explicit notation for brevity, and hence every quantity that depends on the frequencies is itself
time-dependent. In the following, we describe separately contributions from three evolutionary forces (i) mutation,
(ii) selection, and (iii) genetic drift, and build a general stochastic framework for coevolution of antibodies and viruses
in the space of genotypes. We assume that population sizes are large enough, and changes in frequencies are small
enough to accommodate a continuous time and continuous frequency stochastic process [1, 2].

(i) Mutations. The change of the genotype frequencies due to mutations follow,
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where we define m

A↵ and m

V � as the genotype-specific components of the mutational fields in the antibodies and
viruses, and µ

A�!A↵ is the antibody mutation rate from genotype A

� to A

↵, and similarly, µ
V �!V � is the viral

mutation rate from the genotype V

� to V

� . We assume constant mutation rates µa, µv, per generation per site for
antibodies and viruses, with the exception of µv = 0 for the viral constant region, which implies that mutations in
that region are lethal for the virus.

(ii) Selection and interacting fitness functions. The fitness of a genotype determines its growth rate at each
point in time. We define fitness of genotypes in one population as a function of the genotypes in the other population.
The general form of change in genotype frequencies due to selection follows,
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The subscript for the antibody and viral fitness functions, f
A↵ (x;y) and f

V � (y;x), refer to the genotypes in the
corresponding population. The explicit conditional dependence of the antibody fitness function f

A↵ (x;y) on the
viral frequency vector y emphasizes that fitness of an antibody depends on the interacting viral population {V}.
Similar notation is used for the fitness function of the viruses. The subtraction of the population’s mean fitness,
FA =

P
↵ x

↵
f

A↵ (x;y) and FV =
P

� y
�
f

V � (y;x), ensures that the genotype frequencies remain normalized in each

population. In terms of linearly independent frequencies x = (x1

, . . . , x

k�1) and y = (y1, . . . , yk
0�1), these evolution

equations take the forms,
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where �

A↵ (x;y) = f

A↵ (x;y) � fAk(x;y) and �

V � (y;x) = f

V � (y;x) � fV k0 (y;x) are the respective time-dependent
selection coe�cients of the antibody A

↵ and the viral strain V

� , which depend on the state of the both populations
at that moment in time. The inverse of the response matrices, g↵� = (g↵�)�1 and h�� = (h��)�1, play the role
of metric in the genotype space (see below and e.g., [3]). The change in the mean fitness due to selection after an
infinitesimal amount of time follows,
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where �x↵ and �y

� are the infinitesimal changes in the genotype frequencies, and �

V �!A↵ = @�

A↵ /@y
� and, �

A↵!V � =
@�

V � /@x
↵ are respectively the change in the selection coe�cient of the antibody A

↵ and the virus V

� due the
evolution of opposing population. This measure of fitness transfer is a useful concept for interacting populations.
Intuitively, it can be understood as the change of fitness in one population only due to the changes of allele or
genotype frequencies in the opposing population.

(iii) Genetic drift and stochasticity. The stochasticity of reproduction and survival, commonly known as
genetic drift, is represented as discrete random sampling of o↵spring genotypes from the parent’s generation with
the constraint that the total population size remains constant. The magnitude of this sampling noise is proportional
to inverse population size. Na and Nv are the e↵ective population sizes of the antibody and the viral populations,
which represent the size of population bottlenecks e.g., in a germinal center. In the continuous time, continuous
frequency limit, genetic drift is represented as noise terms in a di↵usion equaiton with magnitude proportional to
inverse population size [2]. The di↵usion coe�cients are characteristics of the Fisher metric [4, 3],

g

↵� =

(
�x

↵
x

� if ↵ 6= �

x

↵(1� x

↵) if ↵ = �

, h

�� =

(
�y

�
y

� if � 6= �

y

�(1� y

�) if � = �

(S6)

The generalized Kimura’s di↵usion equation [5] for the joint distribution of genotype frequencies P (x,y, t) in
both populations reads,
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This Fokker-Planck equation acts on the high-dimensional genotype space of antibodies and viruses, which are
likely to be under-sampled in any biological setting. In the following, we introduce a projection from genotype space
onto a lower dimensional space of molecular traits (phenotypes) to make the problem tractable.

B Antibody-viral coevolution in phenotype space

B.1 Molecular phenotypes for antibody-viral interaction

We define the binding a�nity between an antibody and viral genotype as the molecular interaction phenotype under
selection, for which we describe the evolutionary dynamics. Antibody and viral genotypes are represented by binary
sequences of ±1. Antibody sequences are of length `+ ˆ̀, while viral sequences consist of a mutable region of length
`, and a conserved (i.e. sensitive) region of length ˆ̀, where each site is always +1, as was similarly done in [6]. We
model the binding a�nity between antibody A

↵ and virus V� as a weighted dot product over all sites,
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where A

↵
i , and V

�
i denote the i

th site in antibody A

↵ and virus V� , respectively. The set of coupling constants
for the mutable and conserved region, {i, ̂i � 0} represent the accessibility of a clonal antibody lineage to regions of
the viral sequence. Matching bits at interacting positions enhance binding a�nity between an antibody and a virus.
Similar models have been used to describe B-cell maturation in germinal centers [6], and T-cell selection based on
the capability to bind external antigens and avoid self proteins [7, 8]. In Section E, we extend our model to multiple
lineages, where each lineage has its own set of accessibilities. Antibody lineages with access to the conserved regions
of the virus can potentially fix as broadly neutralizing antibodies. We denote the quantities related to the conserved
sites of the virus with a hat: ·̂.

We project the evolutionary forces acting on the genotype to the binding phenotype E

tot

, and quantify the
changes of the binding phenotype distribution in each population over time. For a single antibody genotype A

↵ we
characterize its interactions with the viral population by the genotype-specific moments,
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↵
:

(i) average in the variable region:

E↵ . =
X

�2 viruses

E↵�y
� (S9)

(ii) average in the conserved region:

Ê↵ . = Ê↵ (S10)

(iii) rth central moment in the variable region:
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Since the viral population is monomorphic in the conserved region, the average mean binding a�nity of an an-
tibody is independent of the state of the viral population, Ê↵ . = Ê↵, and the higher central moments are zero,

Î

(r)
↵ . = 0. Similarly, we characterize the interactions of a given viral genotype V

� with the antibody population,
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�
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(ii) average in the conserved region:
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(iii) rth central moment in the variable region:

I

(r)
. � =

X

↵2antibodies

(E↵� � E. �)
r
x

↵ (S14)

(iii) rth central moment in the conserved region:
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One of the most informative statistics that we characterize is the distribution of population-averaged antibody and
viral binding interactions, respectively denoted by PA(E↵ ., Ê↵) and PV (E. � , Ê.). The mean of these distributions
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are equal to each other, but the higher moments di↵er. We denote the population-specific moments of the average
interactions by,
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� (S16)
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Ê↵ x

↵ (S17)

r
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central moment of the average a�nities in,
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(ii) the conserved region of antibody population:
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(iii) the variable region of viral population:
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X
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Note that the population central moments MA,r and MV,r are distinct from the genotype-specific moments, I(r)↵ .

and I

(r)
. � . The central moments of the viral population in the conserved region are equal to zero, M̂V,r = 0.

Trait scale and dimensionless quantities. It is useful to measure traits in natural units, which avoids the
arbitrariness of the physical units ({i, ̂i}), and the total number of sites ` + ˆ̀. As previously shown in [9, 10],
there exist summary statistics of the site-specific e↵ects, (here {i, ̂i}), which define a natural scale of the molecular
phenotype. We denote the moments of the site-specific e↵ects along the genome by,
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We express the phenotype statistics in units of the trait scales, i.e., the squared sum of the site-specific e↵ects,
E
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2
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2

ˆ̀ in the conserved region. The rescaled phenotype statistics follow,
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These scaled values are pure numbers (we distinguish them by use of lower case letters from the raw data). The
trait scales E2

0

and Ê

2

0

provide natural means to standardize the relevant quantities because they are the stationary
ensemble variances of the population mean binding a�nity in an ensemble of genotypes undergoing neutral evolution
in the weak-mutation regime (see Section B.3 for derivation of the stationary statistics),

E

2

0
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h(E � hEi)2i, Ê

2

0
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µa!0

h(Ê � hÊi)2i (S23)

where h·i indicates averages over an ensemble of independent populations.

Binding probability. The probability that an antibody is bound by an antigen determines its chance of proliferation
and survival during the process of a�nity maturation, and hence, defines its fitness. We describe two distinct models
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for antibody activation. The simplest model assumes that the binding probability of a given antibody A

↵ is a sigmoid
function of its mean binding a�nity against the viral population,

pA(A
↵) =

1

1 + exp[��

0

(E↵ . + Ê↵ . � E

⇤)]
(S24)

where E⇤ is the threshold for the binding a�nity and �

0

determines the amount of nonlinearity, and is related to the
inverse of temperature in thermodynamics. Following the rescaling introduced in eq. (S22), the binding threshold

and the nonlinearity in eq. (S24) rescale as e⇤ ⌘ E
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. In the following, we will use

eq. (S24) to characterize a biophysically grounded fitness function for antibodies.

For the virus, binding to an antibody reduces the chances of its survival. Similar to eq. (S24), the probability
that a given virus V� is bound by antibodies follows,
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�) =

1

1 + exp[��

0
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⇤)]
, (S25)

where E

⇤ and �

0

are similar to eq. (S24).

In Section B.5, we will discuss an alternative model for activation of an antibody which is based on its strongest
binding a�nity with a subset of viruses.

B.2 Coevolutionary forces on the binding a�nity

Similar to genotype evolution, stochastic evolution of a molecular phenotype generates a probability distribution,
Q(E , Ê ,MA,r, M̂A,r,MV,r), which describes an ensemble of independently evolving populations, each having a pheno-

type distribution with mean a�nity E and Ê and central moments of the averaged a�nity in the antibody population,
MA,r, M̂A,r, and in the viral population, MV,r (see also [9]). The probability distribution Q(E , Ê ,MA,r, M̂A,r,MV,r)
can be expressed in therms of the distribution for genotype frequencies,
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where �(·) is the Dirac delta function. Below, we characterize the e↵ect of mutations, selection and genetic drift on
the evolution of the phenotype moments E , MA,r, M̂A,r and MV,r.

Mutation. A mutation at site “i” changes the sign of the site, and its e↵ect on the binding a�nity is proportional
to i in the variable region, and ̂i in the conserved region. To compute the e↵ect of mutations on moments of the
phenotype distribution, we classify pairs of genotypes (A↵

,V

�) in mutational classes, defined by the number of +1
positions of their product vector (A↵
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, . . . , A
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The frequency of each mutational class Q(n
+

) is estimated from interactions between all pairs of antibody and viral
genotypes in both variable and conserved regions of the interacting populations,
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The superscript � = 1, 2 indicates the interacting region of the virus, i.e. � = 1 refers to the variable region of the

virus with µ

(1)

v = µv and the length `

(1) = `, and � = 2 refers to the conserved region of the viral genome with µ

(2)

v = 0
and the sequence length `

(2) = ˆ̀. If the mutational e↵ects of all sites were equal to , phenotype moments could be
simply expressed using the statistics of mutational classes: e.g., E = (2[n

+

]A,V � `), where [·]A,V indicates averaging
of a quantity in the subscript populations, which in this case are both the viral and the antibody populations. If the
number of encoding sites of a phenotype is large, annealed averages of the heterogeneous site-specific contributions
Kr, K̂r can well approximate the the moments of the phenotype distribution [11, 12, 9]. As a result, the statistics of

the variable region follow, E = (2[n
+

]A,V �`)K
1

for the mean binding a�nity, and MV,r = 2rKr

h�
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�ri
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A

for the higher central moments in viruses and antibodies. Similar expressions

can be derived for the statistics of the conserved region. Therefore, evolution of the phenotype distribution can be
well-approximated using projections from evolutionary dynamics of the mutational classes. The Master equation for
the evolution of the mutational classes under neutrality (mutation and genetic drift) follows,
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WA(t) and WV (t) are delta-correlated Gaussian noise (Wiener process) with an ensemble mean hWii = 0 and
variance, hWi(t)Wj(t0)i = �i,j �(t� t

0) where i, j 2 {A, V } indicate antibodies and viruses. The stochasticity (genetic
drift) is due to finite population size of the interacting genotypes Na and Nv.
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where h·i denotes averages over independent ensembles of populations. The second term in the right-hand side
of equations (S31, S32) is a consequence of the Itô calculus in stochastic processes [1]. The transformations from

[n(1)

+

]A,V to E in the variable region, and from [n(2)

+

]A,V to Ê in the conserved region result in,
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Selection. We assume that (malthusian) fitness of an antibody is proportional to the logarithm of its activation
probability given by eq. (S24) based on its average interaction strength,

f

A↵ ⌘ fA(A
↵; {V }) = ca log[pA(A

↵)] = �ca log(1 + exp[��

0

(E↵ . + Ê↵ . � E

⇤)]) (S38)

' f

⇤
A
+ Sa(E↵ . + Ê↵ .) (S39)

with f

⇤
A

= �ca log
�
1 + exp[�

0

E

⇤]
�
and the selection coe�cient Sa = ca�0

/(1 + exp[��

0

E

⇤]). The approximation
in (S39) is by expansion of the nonlinear fitness function around the neutral binding a�nity, E = 0. The antibody
selection coe�cient Sa can be thought as the amount of stimulation that a bound B-cell receptor experiences, e.g.
due to helper T-cells. If the chronic infection is HIV, where the virus attacks the helper T-cells, Sa may decrease as
HIV progresses and the T-cell count decays. Furthermore, f⇤

A
a↵ects the absolute growth rate, but does not a↵ect

the relative growth rate between genotypes. We call the fitness models based on the averaged binding a�nity in
eq. (S38) as nonlinear-averaged and in eq. (S39) as linear-averaged. In Section B.5 we introduce an alternative model
of antibody activation, which assumes that proliferation of an antibody is related to its best binding a�nity against
R  Nv antigens, that are presented to the antibody during its life time. The analytical results in this paper are all
based on the antibody evolution in linear-averaged fitness landscapes (S39), and the other fitness models are only
studied numerically.

The viral fitness is related to the probability that it escapes the binding interactions with antibodies. We define
the fitness of an antigen (virus) as the negative logarithm of its binding probability to the average antibodies that it
interacts with, given by eq. (S25),
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f

V � ⌘ fV (V
� ; {A}) = �cv log[pV (V

�)] = cv log(1 + exp[��

0

(E. � + Ê. � � E

⇤)]) (S40)

' f

⇤
V
� Sv(E. � + Ê. �) (S41)

with f

⇤
V
= cv log

�
1 + exp[�

0

E

⇤]
�
and the selection coe�cient Sv = cv�0

/(1 + exp[��

0

E

⇤]).

As shown in eq. (S3) the change in the frequency of an antibody or a virus is proportional to its fitness, which is
related to its average binding a�nity. Therefore, the change of a given phenotype statistic U(x,y) due to selection
follows,

d

dt

U(x,y) =
X

↵,�


@U

@x

↵
(f

A↵ � FA)x
↵ +

@U

@y

�
(f

V � � FV ) y
�

�
(S42)

where FA and FV are respectively the mean fitness in the antibody and in the viral population. With this formulation
we can compute the e↵ect of selection on the statistics of the binding a�nity distribution, i.e., the mean a�nity E ,
Ê , and the central moments, MA,r, M̂A,r and MV,r, which we present in the following section.

Similar to the rescaling procedure in eq. (S22), we use the total trait scales to define the rescaled strength of
selection,

sa = NaSaE0

, ŝa = NaSaÊ0

, sv = NaSvE0

, ŝv = NvSvÊ0

(S43)

Genetic drift. We can project the stochasticity of the genotype space onto the phenotype space. The projected
di↵usion coe�cients show the correlation between the noise levels of the phenotypic statistics A and B.

GAB =
1

Na

X

↵,�

@A

@x

↵

@B

@x

�
g

↵� +
1

Nv

X

�,�

@A

@y

�

@B

@y

�
h

�� (S44)

and the genotypic di↵usion constants g↵� and h

�� are given by eq. (S6). As an example, we compute the di↵usion
term for the mean binding a�nity in the variable region E ,

GEE =
1

Na

X

↵,�

@E
@x

↵

@E
@x

�
g

↵� +
1

Nv

X

�,�

@E
@y

�

@E
@y

�
h

��

=
1

Na

X

↵,�

E↵ .E� .

h
� x

↵
x

�(1� �↵�) + x

↵(1� x

↵)�↵�
i

+
1

Nv

X

�,�

E. �E.�

h
� y

�
y

�(1� �

�
� ) + y

�(1� y

�)���

i

=
1

Na

hX

↵

(E↵ . � E)2x↵
i
+

1

Nv

hX

�

(E. � � E)2y�
i

=
1

Na
MA,2 +

1

Nv
MV,2 (S45)

where �↵� is a Kronecker delta function. A similar approach finds the di↵usion terms for the second moments and
the cross-correlation terms between the first and the second moments in the variable and the conserved regions (see
e.g., [9] for further details),

GMA,2,MA,2 =
1

Na
(MA,4 �M

2

A,2), GMV,2,MV,2 =
1

Nv
(MV,4 �M

2

V,2), G ˆMA,2, ˆMA,2 =
1

Na
(M̂A,4 � M̂

2

A,2)

(S46)

GE,MA,2 =
1

Na
MA,3, GE,MV,2 =

1

Nv
MV,3, G ˆE, ˆMA,2 =

1

Na
M̂A,3
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B.3 Stochastic evolution of molecular phenotypes (linear-averaged fitness)

Putting all the evolutionary forces together, we can write down evolution equations for the statistics of binding
a�nities in a linear fitness landscape introduced in equations (S39, S41),

variable region:

d

dt

E = �2(µv + µa)E + SaMA,2 � Sv MV,2 + �E (S47)

conserved region:

d

dt

Ê = Sa M̂A,2 � 2µa Ê + �

ˆE (S48)

with the Gaussian correlated noise statistics due to the genetic drift,

h�Ei = 0, h�E(t)�E(t
0)i =

h
MA,2

Na
+

MV,2

Nv

i
�(t� t

0) (S49)

h�
ˆEi = 0, h�

ˆE(t)� ˆE(t
0)i =

h
M̂A,2

Na

i
�(t� t

0) (S50)

Similarly, we can write down the stochastic evolution equations for the second moments MA,2, M̂A,2 and MV,2,

d

dt

MA,2 = �4µa(MA,2 � `K
2

)� 4µvMA,2 � MA,2

Na
+ SaMA,3 + �MA,2

(S51)

d

dt

M̂A,2 = �4µa(M̂A,2 � ˆ̀K̂
2

)� M̂A,2

Na
+ SaM̂A,3 + �

ˆMA,2
(S52)

d

dt

MV,2 = �4µv(MV,2 � `K
2

)� 4µaMV,2 � MV,2

Nv
� SvMV,3 + �MV,2

(S53)

with Gaussian correlated noise statistics,

h�MA,2
i = 0, h�MA,2

(t)�MA,2
(t0)i =


MA,4 � (MA,2)2

Na

�
�(t� t

0) (S54)

h�
ˆMA,2

i = 0, h�
ˆMA,2

(t)�
ˆMA,2

(t0)i =
"
M̂A,4 � (M̂A,2)2

Na

#
�(t� t

0) (S55)

h�MV,2
i = 0, h�MV,2

(t)�MV,2
(t0)i =


MV,4 � (MV,2)2

Nv

�
�(t� t

0) (S56)

h�MA,2
(t)�E(t

0)i = MA,3

Na
�(t� t

0), h�
ˆMA,2

(t)�
ˆE(t

0)i = M̂A,3

Na
�(t� t

0) (S57)

h�MV,2
(t)�E(t

0)i = hMV,3i
Nv

�(t� t

0) (S58)

It should be noted that we ignore the linkage correlations between the binding a�nity of the variable region E and
conserved region Ê of the virus. From the numerical analysis we see that the covariance between the linked variable
and conserved regions, hP↵ x

↵(E↵ . � E) (Ê↵ � Ê)i is small compared to the diversity of the average binding a�nity

in both regions of antibody and viral populations, hMA,2i, hM̂A,2i and hMV,2i; S2D Fig. Lineages with access to the
conserved region of the virus adapt by aligning their sites to the conserved sequence, and hence, remain relatively
conserved with variations arising only from the stochastic forces of mutation and genetic drift. In Section B.4 we
explicitly show that the auto-correlation time for the binding a�nity in the conserved region is longer than in the
variable interaction region; see equations (S82, S81). Therefore, the correlation between the binding a�nity of the
variable and the conserved regions remains small throughout the evolutionary process.
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Stationary solutions for trait mean and diversity. From equations above we can solve for the stationary mean
binding a�nity, binding diversity in both populations, and the covariance between the moments as a function of the
higher moments,

hEi = 1

2(✓a + ✓̃v)
NaSahMA,2i � 1

2(✓̃a + ✓v)
NvSvhMV,2i (S59)

hE , Ei = 1

4(✓a + ✓̃v)

⇥hMA,2i+ 2NaSahE ,MA,2i
⇤
+

1

4(✓̃a + ✓v)

⇥hMV,2i � 2NvSvhE ,MV,2i
⇤

(S60)

hÊi = NaSahM̂A,2i/2✓a (S61)

hÊ , Êi = 1

4✓a

⇥hM̂A,2i+ 2NaSahÊ , M̂A,2i
⇤

(S62)

⌦
MA,2

↵
=

1

1 + 4(✓a + ✓̃v)

h
4`K

2

✓a + (NaSa) hMA,3i
i

(S63)

⌦
MV,2

↵
=

1

1 + 4(✓̃a + ✓v)

h
4`K

2

✓v � (NvSv) hMV,3i
i

(S64)

hE ,MA,2i = 1

1 + 6(✓a + ✓̃v)

h
hMA,3i+NaSa

⇥hE ,MA,3i+ h(MA,2)
2i⇤
⌘

(S65)

hE ,MV,2i = 1

1 + 6(✓̃a + ✓v)

⇣
hMV,3i �NvSv

⇥hE ,MV,3i+ h(MV,2)
2i⇤
⌘

(S66)

hE ,MA,3i = hMA,4i/3� h(MA,2)2i
1 + 8/3(✓a + ✓̃v)

, hE ,MV,3i = hMV,4i/3� h(MV,2)2i
1 + 8/3(✓̃a + ✓v)

(S67)

where ✓̃a = ✓a(Nv/Na) and ✓̃v = ✓v(Na/Nv). We denote the ensemble covariance of two stochastic variables x and y

by,

⌦
x, y

↵ ⌘ ⌦(x� hxi) (y � hyi)↵ (S68)

and hence, hx, xi is the ensemble variance of the variable x. Similar forms of the stationary solutions apply to the
statistics of the binding a�nity in the conserved interaction region, hM̂A,2i, hÊ , M̂A,2i, and can be found by setting

the viral mutation rate µv and the central moments M̂V,r equal to zero in equations (S59-S67). For brevity we do
not present the solutions of the central moments in the conserved region.

In equations (S47-S58), the evolution of each moment depends on the higher moments in the presence of selection,
which leads to an infinite moment hierarchy. However, in the regime where rescaled coe�cients satisfy sa✓a < 1 and
sv✓v < 1, we can truncate the moment hierarchy. From the comparisons of the Wright-Fisher simulations with our
theoretical results we choose to truncate the hierarchy after the 4th moment. Furthermore, higher central moments
are fast stochastic variables (see e.g., [9] and the discussion in Section B.4 and S3 Fig), and their ensemble averages
can su�ciently characterize the evolution of the mean binding a�nity E and the binding diversity MA,2, M̂A,2 and
MV,2. Therefore, we will only present ensemble-averaged equations for the 3rd and 4th moments of the phenotype
distributions. In order to clarify the truncation of the moment hierarchy, we explicitly show the evolution equations
and their stationary solutions for the rescaled moments of the phenotype distribution, which are defined in eq. (S22).
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d

d⌧a
hmA,3i = �6✓ahmA,3i � 8✓a

⇣ K
3

E

2

0

K
1

h"i
⌘
� 6✓̃v hmA,3i � 3hmA,3i+ sa

⇥hmA,4i � 3
⌦
(mA,2)

2

↵ ⇤
(S69)

d

d⌧v
hmV,3i = �6✓vhmV,3i � 8✓v

⇣ K
3

E

2

0

K
1

h"i
⌘
� 6✓̃a hmV,3i � 3hmV,3i � sv

⇥hmV,4i � 3
⌦
(mV,2)

2

↵ ⇤
(S70)

d

d⌧a
h(mA,2)

2i = �8✓a
⇥h(mA,2)

2i � hmA,2i
⇤� 8✓̃v h(mA,2)

2i+ hmA,4i � 3
⌦
(mA,2)

2

↵
(S71)

d

d⌧v
h(mV,2)

2i = �8✓v
⇥h(mV,2)

2i � hmV,2i
⇤� 8✓̃a h(mV,2)

2i+ hmV,4i � 3
⌦
(mV,2)

2

↵
(S72)

d

d⌧a
hmA,4i = �8✓a

h
hmA,4i � 2

K
4

`K2

2

� (3� 4/`) hmA,2i
i
� 8✓̃v hmA,4i+ 6

⌦
(mA,2)

2

↵� 4hmA,4i (S73)

d

d⌧v
hmV,4i = �8✓v

h
hmV,4i � 2

K
4

`K2

2

� (3� 4/`) hmV,2i
i
� 8✓̃a hmV,4i+ 6

⌦
(mV,2)

2

↵� 4hmV,4i (S74)

with ✓̃a = ✓a(Nv/Na) and ✓̃v = ✓v(Na/Nv). ⌧a = t/Na and ⌧v = t/Nv are the evolutionary times in natural units of
the neutral coalescence time in the antibody population Na and in the viral population Nv, respectively. The term
h"i = 2(sa✓a � sv✓v (Na/Nv))

�
(✓a + ✓v (Na/Nv)) in equations (S69, S70) is the stationary solution for the rescaled

mean binding a�nity up to orders of O(✓2a, ✓
2

v). The stationary solutions for the rescaled central moments of the
antibody population follow,

⌦
mA,2

↵
=

4✓a

1 + 4(✓a + ✓̃v)
� 8✓a

3 + 18(✓a + ✓̃v)
sa

h K
3

E

2

0

K
1

h"i � 4sa✓
2

a +O�✓3a
�i

+O(s2a✓
2

a) (S75)

⌦
mA,3

↵
= �8

3
⇥ ✓a

1 + 2(✓a + ✓̃v)

⇣ K
3

E

2

0

K
1

h"i
⌘
+

32

3
sa

⇥
✓

2

a +O(✓3a)
⇤
+O(s2a✓

3

a) (S76)

⌦
(mA,2)

2

↵
=

8✓a

3 + 28 (✓a + ✓̃v)

h1
`

K
4

K2

2

+ 2✓a(7� 4/`)
i
+O(sa✓

3

a) (S77)

hmA,4i = 24✓a

3 + 28 (✓a + ✓̃v)

h1
`

K
4

K2

2

+ 2✓a(5� 4/`)
i
+O(sa✓

3

a) (S78)

Similar solutions can be found for the central moments of binding a�nity in the viral populationmV,r, by replacing
the subscripts a and v in the equations above. The stationary solutions for the central moments of the binding a�nity
in the conserved region of antibody population m̂A,r can be found by setting the viral mutation rate equal to zero,

✓v = 0, and by using the characteristics of the conserved region i.e., genetic length ˆ̀ and sites contributions K̂r

in equations (S75-S78). S1 Fig shows a good agreement between the numerical results for the rescaled stationary
mean binding a�nity h"i = hEi/E

0

, h"̂i = hÊi/Ê
0

from the Wright-Fisher simulations and the analytical solutions
(S59, S61), by using the stationary ensemble averages for the diversity of the binding a�nity hmA,2i, hm̂A,2i and
hmV,2i in eq. (S75). S2 Fig compares the analytical solution for the second central moments hmA,2i and hmV,2i with
numerical results from the Wright-Fisher simulations, by inserting the empirical estimates of the higher moments
from the simulations as in equations (S63) and (S64), (dashed lines), and by using the analytical solutions for the
higher moments to estimate the stationary value for the phenotype diversity, as given by eq. (S75), (solid lines).
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B.4 Time-dependent statistics and separation of time-scales

Statistics of the mean phenotype. As we show below, the higher central moments MV,r and MA,r for (r > 1)
are fast stochastic variables. Therefore, it is su�cient to use their stationary ensemble averages to compute the finite
time correlation of the mean binding a�nities, E(⌧) and Ê(⌧).

The time-dependent solution for the ensemble averaged mean a�nity hE(⌧)i and hÊ(⌧)i at time ⌧ , and the
covariance between two time-points ⌧

2

� ⌧

1

, starting from an initial condition at time ⌧

0

= 0 with the ensemble
averages for the mean a�nities hE(0)i, hÊ(0)i and the diversities hE(0), E(0)i, hÊ(0), Ê(0)i follows,

hE(⌧)i = (1� e�2(✓a+˜✓v)⌧ ) hEi+ e�2(✓a+˜✓v)⌧ hE(0)i (S79)

hÊ(⌧)i = (1� e�2✓a⌧ ) hÊi+ e�2✓a⌧ hÊ(0)i (S80)

hE(⌧
1

), E(⌧
2

)i = e�2(✓a+˜✓v)⌧2hE(0), E(0)i+
 hMA,2i

Na
+

hMV,2i
Nv

� Z ⌧
1

0

e�2(✓a+˜✓v)(⌧1�⌧ 0
)e�2(✓a+˜✓v)(⌧2�⌧ 0

)

d⌧

0

= e�2(✓a+˜✓v)⌧2 hE(0), E(0)i+
 hMA,2i
4(✓a + ✓̃v)

+
hMV,2i

4(✓̃a + ✓v)

� h
e�2(✓a+˜✓v)(⌧2�⌧

1

) � e�2(✓a+˜✓v)(⌧1+⌧
2

)

i

(S81)

hÊ(⌧
1

), Ê(⌧
2

)i = e�2✓a⌧2 hÊ(0), Ê(0)i+ hM̂A,2i
4✓a

h
e�2✓a(⌧2�⌧

1

) � e�2✓a(⌧1+⌧
2

)

i
(S82)

where hEi and hÊi are the stationary values of the mean phenotype in the variable and the conserved interaction
regions, given by equations (S59, S61). Time ⌧ is measured in units of the neutral coalescence time for antibodies,
Na. The characteristic time-scale for the decay of the mean binding a�nity in the variable interaction region of the
virus is 1/(2(✓a+ ✓̃v)) in units of Na, which is shorter than the time-scale for the conserved region, 1/2✓a. Therefore,
binding a�nity in the conserved region is correlated over a longer period of time compared to the variable region
(i.e., about twice as long if ✓a ⇠ ✓̃v). The di↵erence in time-scale explains the small covariance due to the genetic
linkage between the conserved and the variable region of the virus shown in S3 Fig.

Statistics of the phenotype diversity. As shown in [9], the fluctuations in the phenotype diversity are scale
invariant, which is a consequence of coherent, genome-wide linkage-disequilibrium fluctuations in the absence of
recombination. It is generated by sampling from a set of genotypes with binding a�nities E↵ . in antibodies and
E. � in viruses from the underlying distributions with variance MA,2 and MV,2, which scale like the genome length
`. These large fluctuations result in a relatively short correlation time for the phenotype diversity, shown in S3 Fig.
Similar to the mean binding a�nity, we can estimate the typical lifetime of these fluctuations from the stationary
auto-correlation function,

hMA,2(⌧a),MA,2(⌧
0
a)i ⇠ e�(⌧a�⌧ 0

a)
, hMV,2(⌧v),MV,2(⌧

0
v)i ⇠ e�(⌧v�⌧ 0

v) (S83)

where ⌧a, ⌧ 0a are measured in units of the antibody neutral coalescence time Na, and ⌧v, ⌧ 0v are measured in units
of the viral neutral coalescence time Nv. S3 Fig shows the decay of the stationary auto-correlation for the diversity
of the binding a�nity MA,2, M̂A,2 and MV,2 as a function of the evolutionary separation time �⌧ = ⌧ � ⌧

0. It is
evident that the characteristic decay time for the phenotype diversity (S83) is much shorter than that of the mean
phenotype, given by the auto-correlation function in eqs. (S81, S82).

B.5 Alternative fitness models

Nonlinear activation probability based on average binding (nonlinear-averaged). We assume that the
growth rate (fitness) of an antibody is proportional to the logarithm of its activation probability given by eq. (S38),
which may be approximated by a linear function if the nonlinearity is small (S39). Here, we numerically study
the e↵ect of nonlinear sigmoidal fitness functions by comparing the evolutionary dynamics of populations in fitness
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landscapes with di↵erent values of nonlinearity � = �

0

q
E

2

0

+ Ê

2

0

and binding threshold e

⇤ = E

⇤
/

q
E

2

0

+ Ê

2

0

, while

keeping the overall strength of (rescaled) selection, sa = ca�/(1 + exp[��e

⇤]) constant. The strength of selection
corresponds to the slope of the approximate linear-averaged fitness function in eq. (S39).

As the rescaled nonlinearity � = �

0

E

0

of the fitness function (S38) increases, the mean binding a�nity E becomes
closer to the neutral value; see S4A Fig. This is due to the sigmoid form of the fitness function, which reduces fitness
di↵erences between genotypes at extreme values of binding a�nity. Since mutations push the mean binding a�nity
towards zero, the reduced advantage of binding at the extremes moves the stationary binding a�nity towards zero.

Similar arguments suggest that the rate of adaptation in the antibody population should decrease as the fitness
landscapes become more non-linear. The rate of adaptation is determined by fitness flux [13, 14], and is approx-
imately equal to the variance of fitness in the population [15]; see Section C for detailed discussion. Due to the
sigmoidal shape of the fitness function, fitness di↵erences become small at large values of binding a�nity (i.e., the
functional antibodies), resulting in a reduction of the fitness variance in the population, and hence, a lower rate of
adaptation. However, this e↵ect is less pronounced when the threshold for specific interaction is very large, e⇤ � 1/�.
In this case, the fitness function is nearly linear for most antibodies, since their binding a�nity fall below the binding
threshold e

⇤. In this regime, the fitness variance and the rate of adaptation are only sensitive to the selection strength
sa (i.e., slope of fitness at e = 0), and not the nonlinearity of the fitness landscape. Evidently, the fitness variance
(S4B Fig) is less sensitive to the non-linearity, than the mean binding a�nity (S4A Fig).

Nonlinear activation probability based on the strongest binding (nonlinear-EVD). We study a model
for activation of antibodies which is based on their strongest binding a�nity with a subset of viruses. The basic
assumption is that an antibody attempts to bind to a set of viruses (which may be smaller than the viral population
size), and once a high a�nity binding occurs, it begins to proliferate. Similar treatments have been introduced
in the context of T-cell activation [16, 17]. The probability distribution function, ⇧(E⇤

↵ .) of the strongest of R

independent binding interactions between the antibody A

↵ and the viral population {V} can be obtained using
extreme value statistics. According to extreme value theory, if the distribution of binding a�nities for a given
antibody has an exponential tail, the corresponding distribution for its strongest binding a�nity belongs to the class
of Gumbel distributions [18]. In the evolutionary regime that we study here, the amount of genetic polymorphism in
the population of antibodies results in a Gaussian-like distribution for the binding a�nities, with mean E↵ . + Ê↵ .,

and variance I

(2)

↵ . given by eq. (S11). Therefore, the corresponding probability distribution for the strongest binding
a�nity out of R independent trials, is a Gumbel distribution [18] with a peak at,

E

↵
max

= E↵ . + Ê↵ . +

q
2I(2)↵ . lnR (S84)

and a width ⌃↵ =
q

⇡I

(2)

↵ . /(12 lnR). If we assume that lnR � 1, the distribution is sharply peaked, and E

↵
max

is
su�cient to describe it. In addition, we assume the activation probability is a sigmoid function of E↵

max

,

pA,max

(A↵) =
1

1 + exp[��

0

(E↵
max

� E

⇤)]
. (S85)

The fitness function fA,max

(A↵; {V }) for the nonlinear-EVD model is related to the logarithm of the activation
probability,

fA,max

(A↵; {V }) = ca log[pmax

(A↵)] = �ca log(1 + exp[��

0

(E↵
max

� E

⇤)]) (S86)

where the coe�cients are similarly defined as in eq. (S38). S4A Fig shows the stationary mean binding a�nity for
nonlinear-EVD fitness model. While the mean binding a�nity is sensitive to the nonlinearity parameter �, it is
relatively insensitive to the number of interactions R, and behaves similarly to the nonlinear-averaged model. This
is not surprising given the logarithmic dependence of binding a�nity on the number of interactions R in eq. (S84).
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C Fitness flux and coevolutionary transfer flux

The fitness flux �(t) characterizes the adaptive response of a population by genotypic or phenotypic changes in a

population [19, 13, 14, 20, 21]. The cumulative fitness flux, �(⌧) =
R t+⌧
t N�(t0)dt0, measures the total amount of

adaptation over an evolutionary period ⌧ [19, 14]. The evolutionary statistics of this quantity is specified by the
fitness flux theorem [14]. In our model, the fitness flux for the antibodies �A(t) and the viruses �V (t) follow,

�A(t) =
X

↵2antibodies

@FA(t)

@x

↵
⇥ dx

↵(t)

dt

(S87)

�V (t) =
X

�2viruses

@FV (t)

@y

�
⇥ dy

�(t)

dt

(S88)

where, FA(t) and FV (t) are the mean fitness of the antibody and the viral populations at time t, and time is measured
in units of generations. It should be noted that the cumulative fitness flux for evolution in a constant environment
(equilibrium) is equal to the di↵erence of the mean fitness between the final and the initial time points. However, the
cumulative fitness flux in time-dependent environments (non-equilibrium) depends on the whole evolutionary history
of the population, and captures its incremental adaptive response to the underlying environmental fluctuations.

We introduce a new measure of interaction between coevolving populations “transfer flux”, which is the change in
the mean fitness of a population due to the evolution of the opposing population. The transfer flux from antibodies
to viruses TA!V and from viruses to antibodies TV!A follow,

TA!V (t) =
X

↵2antibodies

@FV (t)

@x

↵
⇥ dx

↵(t)

dt

(S89)

TV!A(t) =
X

�2viruses

@FA(t)

@y

�
⇥ dy

�(t)

dt

(S90)

In the regime of substantial selection sa, sv & 1, the transfer flux in antagonistically interacting populations of
antibodies and viruses is always negative, implying that adaptation of one population reduces the fitness of the
opposing population.

The fitness flux and transfer flux are rates of adaptation and interaction that are time-independent only in the
stationary state. The total amount of adaptation for non-stationary evolution, where the fluxes change in time, can
be generally measured by the cumulative fitness and transfer flux. For coevolution in the linear-averaged fitness
landscape of equations (S39, S41) the cumulative fitness flux over an evolutionary period [t

0

: t] for antibodies and
viruses follow from a simple genotype-to-phenotype projection,

h�A(t0 : t)i =
⌧
Na

Z t

t0=t
0

�A(t
0)dt0

�

=

*
Na

Z t

t0=t
0

dt

0

 
@FA(t

0)

@E(t0)
@E(t0)
@t

0

���
{V}

+
@FA(t

0)

@Ê(t0)
@Ê(t0)
@t

0

���
{V}

!+

=

*Z t/Na

t0=t
0

/Na

dt

0 ⇥�2✓a (sa"(t
0) + ŝa"̂(t

0)) +
�
s

2

amA,2(t
0) + ŝ

2

am̂A,2(t
0)
�⇤
+

(S91)

h�V (t0 : t)i =
⌧
Nv

Z t

t0=t
0

0

�V (t
0)dt0

�

=

*Z t/Nv

t0=t
0

/Nv

dt

0 ⇥2✓vsv"(t0) + s

2

v mV,2(t
0)
⇤
+

(S92)

The first terms (proportional to ✓) in the integrants of eqs. (S91, S92) are the fitness changes due to mutations
and the second terms are due to selection; the changes due to genetic drift are zero for the ensemble-averaged fitness
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flux of the linear-averaged fitness landscapes in eqs. (S39, S41). In the regime of substantial selection sa, sv & 1, the
fitness flux in a polymorphic population asymptotically converges to the variance of the stationary fitness distribution
in the population (e.g., s2a mA,2 + ŝ

2

a m̂A,2 for antibodies) [14], which is in accordance with the rate of adaptation
given by Fisher’s fundamental theorem and Price’s equation [15, 22].

Similarly, the cumulative transfer fluxes over an evolutionary period [t
0

: t] read,

hTA!V (t0 : t)i =
⌧
Nv

Z t

t0=t
0

TA!V (t
0)dt0
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=
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0
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0
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/Nv

dt
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�
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�� sv

�
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0)
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(S93)

hTV!A(t0 : t)i =
⌧
Na

Z t

t0=t
0

TV!A(t
0)dt0

�

= (Na/Nv)

*Z t/Na

t0=t
0

/Na

dt

0 [�2✓vsa"(t
0)� sasv mV,2(t

0)]

+
(S94)

The first terms in equations (S93, S94) are the fitness changes due to mutation, the second terms are due to
selection.

In the stationary state, the cumulative flux values grow linearly with the evolutionary time, and simplify to,

h�A(⌧a)i
st.

= �hTV!A(⌧a)i
st.

=
sa

✓̃a + ✓v

(sahmA,2i✓v + svhmV,2i✓a) ⌧a (S95)

h�V (⌧v)i
st.

= �hTA!V (⌧v)i
st.

=
sv

✓̃v + ✓a

(sahmA,2i✓v + svhmV,2i✓a) ⌧v (S96)

where we have substituted the expected values for the ensemble averaged binding a�nities in the stationary state,
given by eqs. (S59, S61). ⌧a = (t�t

0

)/Na and ⌧v = (t�t

0

)/Nv are the evolutionary times respectively in natural units
of the neutral coalescence time in the antibody population Na and in the viral population Nv. In the stationary state,
the fitness flux in each population and the transfer flux from the opposing population sum up to 0, keeping the mean
fitness of both populations constant. Non-stationary states occur during transient evolutionary dynamics of the whole
population, or when considering a subset of the population, such as a clonal lineage, whose size fluctuates to fixation
or extinction. In particular, the imbalance between the fitness flux and the transfer flux may determine the evolution-
ary fate of a clonal lineage, which we discuss in Section E. A convenient way to measure fitness and transfer flux is
from time-shifted fitness measurements, for the stationary (Fig 4 and S5 Fig) and non-stationary (S6 Fig) conditions.

D Signature of coevolution from time-shifted fitness measurements

Measuring interactions between antibody and viral populations sampled at di↵erent time points provides means to
quantify the amount of host-pathogen co-adaptation. We introduce the time-shifted binding a�nity between viruses
at time t and antibodies at time t+ ⌧ in the variable and in the conserved regions,

E⌧ (t) =
X

↵,�

E↵�x
↵(t+ ⌧) y�(t) (S97)

Ê⌧ (t) =
X

↵,�

Ê↵x
↵(t+ ⌧)y�(t) = Ê(t+ ⌧) (S98)
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and the corresponding rescaled quantities, "⌧ (t) = E⌧ (t)/E0

and "̂⌧ (t) = Ê⌧ (t)/Ê0

. Since the virus cannot evolve
in the conserved region, the time-shifted binding a�nity in this region Ê⌧ (t) is identical to the non-shifted a�nity
Ê(t+ ⌧) at time t+ ⌧ . The time-shifted fitness for antibodies and viruses at time t in interaction with the opposing
population sampled at time t+ ⌧ follow,

• time-shifted viral fitness:

NvFV ;⌧ (t) = �sv"⌧ (t) (S99)

• time-shifted antibody fitness:

NaFA;⌧ (t) = sa"�⌧ (t+ ⌧) + ŝa"̂(t) (S100)

As shown in Fig 4 in the main text, the behavior of the time-shifted binding a�nity (or fitness) is primarily
determined by the strength of selection on the phenotype at short values of time-lag ⌧ , and is characterized by
randomizing mutations at large separation times. Here, we analytically characterize the stationary state behavior of
the time-shifted binding a�nity as a function of the separation time ⌧ . The change in time-shifted binding a�nity
due to the a�nity maturation of antibodies (adaptation) to neutralize the focal viral population (i.e., for positive
separation times ⌧ > 0) follows,

d

d⌧

h"⌧ (t)i =

*
1

E

0

X

↵,�

E↵�y
�(t)

d

d⌧

x

↵(t+ ⌧)

+

= �2✓̃ah"⌧ (t)i+
*

sa

E

2

0

X

↵

E↵ .(t) (E↵ .(t+ ⌧)� E(t+ ⌧))x↵(t+ ⌧)

+

' �2✓̃ah"⌧ (t)i+ sahmA,2ie�2✓v⌧ (S101)

where time is measured in units of the viral coalescence time, Nv. We used a mean-field approach in the stationary
state to approximate the finite-time divergence of the averaged binding a�nity for a given antibody in a time-varying
environment of evolving viruses, i.e., hP↵ x

↵(t+ ⌧)(E↵ .(t+ ⌧)� E(t+ ⌧)) (E↵ .(t)� E(t))i ' e

�2✓v⌧
⌦P

↵ x

↵(t+ ⌧)(E↵ .(t+ ⌧)� E(t+ ⌧))2
↵
=

e

�2✓v⌧ hMA,2i. The behavior of the time-shifted binding a�nity at negative separation times ⌧ < 0 is mainly deter-
mined by the adaptation (escape) of the viruses to the antibodies in the past. In the stationary state, the backward
dynamics of the time-shifted binding a�nity with respect to the focal viral population is equivalent to the forward
dynamics with respect to the focal antibody population, which can be evaluated similarly to eq. (S101). Combining
the forward and the backward dynamics results in the following functional form for the rescaled time-shifted binding
a�nity,

• for antibody a�nity maturation, ⌧ � 0
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8
>><

>>:
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�2✓v⌧ �
⇣

svmV,2

2(

˜✓a+✓v)
+ ✓vsamA,2

✓a˜✓a�✓v ˜✓v

⌘
e

�2

˜✓a⌧
✓a 6= ✓v

⇣
samA,2(Nv/Na)�svmV,2

4✓ + samA,2(Nv/Na)⌧
⌘
e

�2✓⌧
✓̃a = ✓v = ✓

(S102)

• for viral escape, ⌧ < 0

h"⌧ (t)i =

8
>><

>>:

svmV,2

2(

˜✓a�✓v)
e

�2

˜✓a|⌧ | +
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� ✓asvmV,2
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e

�2✓v|⌧ |
✓a 6= ✓v

⇣
samA,2(Nv/Na)�svmV,2

4✓ � svmV,2|⌧ |
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e

�2✓|⌧ |
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(S103)

with ✓̃a = ✓a(Nv/Na) and ✓̃v = ✓v(Na/Nv). S5 Fig shows a good agreement between the numerical results for the
time-shifted fitnessNvhFV ;⌧ i = �svh"⌧ i from the Wright-Fisher simulations and the analytical solutions (S102, S103),
in the stationary state. The slope of time-shifted fitness at time-lag ⌧ = 0 is a measure of the antibody population’s
fitness flux (towards the past) and the transfer flux from the opposing population (towards the future), which are
equal in stationary state as depicted in S5 Fig. In the non-stationary state, the time-shifted fitness hFV ;⌧ (t)i may
have a discontinuous derivative at ⌧ = 0, due to an imbalance between fitness flux and transfer flux (S6 Fig).
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E Evolution of multiple antibody lineages

Fixation probability in a general fitness landscape. We extend our results to multiple clonal antibody lineages
evolving with a viral population. We denote the frequency of an antibody lineage with size N

C
a by ⇢

C = N

C
a /Na.

Assuming that mutations cannot change the identity of one lineage to another, the growth of a given lineage C depends
on the relative mean fitness of the lineage F

AC to the mean fitness of the whole population FA(t) =
P

C FAC (t)⇢C (t),
and on the strength of stochasticity due to genetic drift,

d

dt

⇢C (t) =
X

↵

�
fC↵ (t)� FA(t)

�
x

↵
C (t) +

s
⇢C (1� ⇢C )

Na
(S104)

where fC↵ (t) is the fitness of the genotype A↵ in the lineage C, and x

↵
C ⌘ xC(A↵) is the frequency of the genotype A↵

from lineage C in the total population. Similar to the evolution of a single lineage, the growth of multiple lineages
follows an infinite hierarchy of moment equations for the fitness distribution. Here, we truncate these equations
at the second central moment of fitness, which relates to the lineage-specific fitness flux �

AC and the transfer flux
TV!AC . The changes of the ensemble-averaged mean fitness of a lineage F

AC (t) and the mean fitness of the whole
population FA(t), weighted by the lineage frequency ⇢C (t) follow,
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*
d

dt
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Here, we assume that the mean fitness of a lineage only depends on the genotypes within the lineage, as is the
case for the fitness functions given by eqs. (S39, S41). The ensemble-averaged changes of the fitness flux and the
transfer flux due to selection depend on higher central moments of the fitness distribution, which we neglect in our
analysis. The e↵ects of mutation and genetic drift (using Itô calculus) on the flux quantities follow,
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d

dt

D
⇢C (t) TV!AC (t)

E
'
D
⇢C (t)

h
m

A↵

@

@x

↵
TV!AC (t) +m

V �

@

@y

�
TV!AC (t)

iE
� 1

Nv

D
⇢C (t) TV!AC (t)

E
(S109)

d
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where m

A↵ and m

V � are the mutational fields associated with the changes in genotype frequencies due to mutations
in antibodies and viruses, as defined by eq. (S1).

In order to compute the fixation probability P

fix

= limt!1h⇢C (t)i, it is convenient to use the Laplace trans-
form of the lineage frequency, and compute its asymptotic behavior at large time (see e.g., [23]). The Laplace
transform of a given function A(t) can be computed as, A(z) =

P
t A(t) exp[�zt] with the inverse transform:

A(t) = lim
T!1

1

2⇡i

R �+iT
��iT exp[zt]A(z). Following this procedure for the hierarchy of equations (S104-S110) entails a

general form for the fixation probability of a lineage, depending on the initial states of the antibody and the viral
populations,
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where h(�f)ri denotes the r

th central moment of the fitness distribution. Here, we have neglected the change in
fitness and transfer flux due to mutations, which is of the order of O(✓h(N�f)2i). Below, we will explicitly study the
mutational terms for the specific case of the linear fitness model in eqs. (S39, S41). The first term in eq. (S111) is
the ensemble-averaged initial frequency of the lineage at time t = 0, and equals its fixation probability in neutrality.
In the presence of selection, lineages of antibodies with higher relative mean fitness, F

AC (0) � F (0), higher rate

of adaptation, �
AC (0) � �A(0), and lower (absolute) transfer flux from viruses,

��TV!AC (0)
�� � ��TV!A(0)

��, tend to
dominate the population.

Fixation probability in the linear fitness landscape. In the linear-averaged fitness model (S39, S41), the
growth of a lineage depends on its relative binding a�nity compared to the rest of the population. In order to
quantify the competition between the lineages, we define the following lineage-specific moments,
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C0

E
(S114)
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In this notation the zeroth order lineage-specific moment is equal to the ensemble-averaged frequency of the focal
lineage L

C

A
0

⌘ h⇢C i. As given by eq. (S107), the change in the frequency of the lineage C follows from the evolution
equation,

d

dt

L

C

A
0

= Sa(L
C
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+ L̂

C

A
1

) (S116)

The evolutionary dynamics of multiple lineages follows from an infinite hierarchy of moment equations. In order
to estimate the fixation probability of a lineage up to the order of O((NS)2), it is su�cient to truncate the hierarchy

at the second moment. These hierarchy of evolution equations for the lineage-specific moments L
C

Am
and the cross-

statistics L
C

Am,Vk
follow,
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conserved region:
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with the lineage-specific statistics of the trait scale,
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influence the evolution of the lineage frequency. These quantities vary over time due to changes in
the lineage composition of the population,
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In order to compute the fixation probability, we use the Laplace transform of the lineage-specific moments
LC
Am,Vk

(z) and the lineage-specific statistics of the trait scale QC
2

(z)�QC
(0;2)

(z), and compute the asymptotic behavior

of the 0th moment L

C

0

, after the inverse transform (see e.g., [23, 12]). The Laplace transform of the moment

hierarchy (S117-S124) up to order of O((NS)2) in LC

A
0

follows,
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conserved region:
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The inverse transform of LC

A
0

(z) in the limit of z ! 0 results in the asymptotic behavior of the ensemble-averaged

frequency of the lineage C, lim
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The fixation probability of a lineage can be characterized by the state of the antibody and the viral population
upon its introduction. The first term in eq. (S140) is the frequency of the antibody lineage at the time of introduction,
and is equal to the neutral fixation probability. The terms proportional to the antibody selection coe�cient (NaSa)
measure the relative fitness of the lineage C to the mean fitness of the population. The terms proportional to the
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(NaSa)2 measure the relative fitness flux of the lineage C to the fitness flux of the whole population. The terms
proportional to (NaSa)⇥(NvSv) measure the transfer flux from the viral population to the antibody lineage C relative

to the total transfer flux from viruses to the antibody population. L
C

A
(0;2)

and LA
0

,V
2

= h⇢CMV,2i are respectively the

total diversity of binding in the antibody and in the viral population, scaled by the frequency of the lineage C, and
determine the fitness flux and transfer flux associated with the whole antibody population. The diversity of binding
a�nity in viruses is a population observable which a↵ects the lineage fixation probability, as shown in Fig 5.

As mentioned in the main text, the higher viral diversity favors the fixation of broadly neutralizing antibodies
for two reasons. First, the larger viral diversity compromises the mean fitness of the resident non-broad antibody
population, and makes it easier for the potential BnAb lineage to take over the existing antibody lineages. This
e↵ect is captured by terms proportional to NaSa in eq. (S140). Second, the transfer flux from the viral population
to the lineage with access to the conserved interaction regions (i.e, a lineage with Ê

2

0

/E

2

0

� 1) is small. Therefore,
the viral escape from binding to a potential BnAb lineage is less e�cient than from the resident non-broad antibody
population, which increases the chance of fixation for a potential BnAb lineage. This e↵ect is captured by terms
proportional to (NaSa)⇥ (NvSv) in eq. (S140).

The approximation used to estimate the fixation probability in eq. (S140) is valid when the e↵ective selection
pressure on the lineage (rescaled by the nucleotide diversity) is comparable to the e↵ective pressure on viruses,
i.e., (sCa �PC0 s

C0

a ⇢C0 + ŝ

C
a �PC0 ŝ
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a ⇢C0 )✓a ⇠ sv✓v, where s
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)1/2 and ŝ
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2

)1/2 are the
rescaled selection coe�cients of the focal lineage C in the variable and the conserved regions. Fig 5 in the main text
shows deviations between analytical expectations from eq. (S140) and the outcome of the Wright-Fisher simulations
beyond this approximation regime. Specifically, the analytical predictions become less reliable for the case of an
emerging BnAb lineage on the background of a neutralizing resident population, which causes a strong selection
imbalance between the two populations. Including the higher order terms of the lineage-specific moments would
improve the analytical predictions. However, in the regime of very strong selection, the higher order terms of the
series expansion in eq. (S140) become very large (and of alternating sign), so that the fixation probability remains
bounded (0  P

fix

 1). In this regime, we show that substituting the second order lineage-specific moments in
eqs. (S117, S124) by their ensemble-averaged expectation in neutrality,
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could provide a more reliable approximation to the fixation probability as opposed to a higher order yet incomplete
expansion; see Fig 5 (dashed lines) in the main text.

F Analysis of time-shifted neutralization data

The empirical study by Richman et al. [24] provides time-shifted measurements of viral neutralization by a patient’s
circulating antibodies, as the percent inhibition of viral replication at various levels of antibody dilution compared to
an antibody-negative control. The inhibition of the virus for a given concentration of antibodies in the serum [AB]
is,

I =
[AB]

[AB] +K

(S142)

where K is a constant that equals the antibody concentration which inhibits 50% of viruses. The inhibition can
be written in terms of the plasma dilution dAB ,

I(V(t
1

),A(t
2

)) =
dAB(t2)

dAB(t2) + 1/titer(Vt
1

, At
2

)
(S143)

where titer is the reciprocal of antibody dilution where inhibition reaches 50% (IC
50

). Inhibition by antibodies
reduces the replication rate of viruses from the maximum value in the absence of antibodies r

max

by a factor 1� I,
and results in population growth, Nv(t + 1) = r

max

(1 � I)Nv(t), with a malthusian mean fitness for the viral
population Fv = 1

t�t
0

log (Nv(t)/Nv(t0)) = log (r
max

(1� I)). In the patient, the plasma is not diluted i.e., dAB ⇠ 1.
Therefore, the viral fitness during infection can be approximately expressed in terms of the neutralization titer
Fv ⇠ � log(titer). A similar relation between neutralization titers and viral fitness has been previously suggested by
Blanquart & Gandon [25].
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Additional control experiments show inhibition of a neutralization-sensitive virus (NL43) [24], which we denote
by I

⇤. In the stationary state, we expect that the titers (and fitness) associated with the neutralization-sensitive
virus to be comparable across serums of various time-points. However, due to a low antibody response at the initial
stages of the infection, the neutralization titers for both autologous viruses and the control NL43 virus grow as the
infection progresses; see S7 Fig. In order to account for this non-stationary antibody response, we evaluate the fitness
as the relative titers of the autologous viruses and the neutralization-sensitive virus (NL43) at each time-point. We
define the relative time-shifted mean fitness of the viral population at time t against the antibody serum sampled at
time t+ ⌧ as,

FV ;⌧ (t) = c

0

� log
⇣
titer(Vt, At+⌧ )

.
titer⇤(At+⌧ )

⌘
(S144)

where titer⇤(At+⌧ ) is the neutralization titer for NL43 virus against the serum sampled at time t + ⌧ , and c

0

is a
constant that relates the relative neutralization titers to the viral fitness.

Fig 4C in the main text shows the time-shifted relative mean fitness FV ;⌧ (t) averaged over all time-points t,
evaluated for two patients (TN-1 & TN-3) from the data provided by Richman et al. [24]. Before averaging, we
linearly interpolate the raw data to produce equal time shifts (3 months for TN-1 and 6 months for TN-3). Due
to the functional form of time-shifted fitness in eqs. (S102-S103), which involves sums of two exponentials, brute
force parameter scanning is necessary for a convergent solution. Our results indicate comparable values of nucleotide
diversity in antibodies and viruses ✓̃a and ✓v. Therefore, we report fits to the simpler analytical forms of time-
shifted fitness with common ✓’s given by eqs. (S102-S103), that use a single exponential function to both sides of the
data. Fits are found by scanning parameters and calculating the mean squared errors with appropriate weights due
to averaging over equal time-shifts. Each fit contains 4 composite variables which are functions of the underlying
evolutionary parameters: (i) nucleotide diversity ✓, (ii) selection component of the fitness flux in the viral population
S

2

vMV,2, (iii) selection component of the transfer flux from antibodies to viruses, �SaSvMA,2(Nv/Na), and (iv) the
constant c

0

in eq. (S144). Assuming that the derivative of the time-shifted fitness function is continuous at the
separation time ⌧ = 0, the mean fitness of viruses interacting with their co-residing antibody population can be
evaluated dependent on the other fitted parameters, FV ;0

= (S2

vMV,2�SaSvMa,2)/4✓. The fitted variables are listed
below for both patients,

diversity / month, sel. part of �V /month, sel. part of TA!V /month, o↵set,

✓ · (month/Nv) S2
vMV,2 �SaSvMA,2 c0

patient TN-1 0.07 0.69 �0.24 �0.24
patient TN-3 0.05 0.20 0 0.52

(S145)

The time-shifted fitness measurements match well with the analytical fits and indicate two distinct regimes of
coevolutionary dynamics in the two patients. In patient TN-1, viruses and antibodies experience a comparable
adaptive pressure, as indicated by the “S-curve” in Fig 4C (blue line), with svmV,2/(samA,2) = 2.9. In patient
TN-3, adaptation in viruses is much stronger than in antibodies, resulting in an imbalanced shape of the time-shifted
fitness curve in Fig 4C (red line). The lower overall neutralization titers in patient TN-3 (S7 Fig) is indicative of
such imbalance between the immune response and HIV escape in the patient. It is likely that a longer monitoring of
patient TN-3 would capture a stronger antibody response in later stages of infection.

Note that in these studies time is measured in units of months rather than coalescence time of the populations.
Estimating the coalescence time-scale in units of months would require analysis of genealogical relations between
sequences of antibodies and viruses extracted from each patient over the course of infection, which is not available
for this study.
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[19] Mustonen V, Lässig M (2007) Adaptations to fluctuating selection in Drosophila. Proc Natl Acad Sci USA 104:
2277–2282.
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