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The size-structured population model
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The size-structured population model
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Mass conservation:
Juvenile growth and adult reproduction proportional to body size:
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A bit of modelling philosophy

Does your model fit my system?
Most likely, not at all!
Does it provide insight about my system?
Probably yes!
Model (equations) are just a vehicle to gain

insight about an ecological system.
It is these insights and their implications that matter




Ontogenetic asymmetry
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Overcompensation is (almost) everywhere

Adult-biased
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* Predictions for (unstructured) cases with ontogenetic symmetry hold under limited

conditions

* Overcompensation mostly influenced by production asymmetry, little influence of
mortality asymmetry



Mortality increases the most efficient stage
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Life history based on Kooiyjman’s DEB model

Increased mortality
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Consumer density

Size-dependent mortality and food-dependent
growth effects
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Competition leads to middle class dominance
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Competition leads to middle class dominance
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Equilibrium changes with increasing mortality
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Reproduction control: v;(R) > v4(R) > 0
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”? Similar overcompensation for all types of mortality
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COMMUNITY CONSEQUENCES?



A fundamental ecological principle
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Top-predator death rate



Food chain model with size-selective predators
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Food chain with size-selective predation

Resource turnover:
p(Rl’l’laX _R)
Consumer foraging:
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Predators present
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Emergent Allee effect

Harvesting juveniles

Juvenile biomass (mg)

0.00 0.02 0.04
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Positive feedback of abundance of
predator on their own food availability
(positive density dependence)



Emergent Allee effect

Adult prey Preda

Small juvenile prey = = = Large juvenile prey
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* At low density predators will fail to increase in abundance and go extinct

* At higher densities predation is sufficient to change the prey size distribution,
leading to predator recovery
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Bistability due to an Emergent Allee effect
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Large juvenile & Adult prey

Multiple stable community states
(with/without predators), if

Predators forage on small prey
only and the prey equilibrium is
controlled through maturation
(reproduction bottleneck)

Predators forage on large prey
only and the prey equilibrium is
controlled through reproduction
(development bottleneck)

Potential for predator population
collapse and lack of recovery

Predators shape their environment to the benefit of themselves
and other guild members!
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What slowed its recovery?
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Changes in Baltic clupeid populations:
Changes in size distribution
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Persson et al. Science 316: 1743-1746 (2007)
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Changes in clupeids (i.e. Cod’s food)

Cod biomass

Medium sized clupeids
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Is the cod doomed after collapsing?

No!l

Catch the clupeids!

Decreases the competition....
Changes its size distribution....

Provides more food for cod
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Could this absurd idea possibly work in practice????

Predators



Artic Charr in Lake Takvatn
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Experimental thinning of Charr in Takvatn

P

From 1984 to 1989, a total of 666 000 charr (31.3 metric tons)
were removed by intensive fishing.....
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Harvesting prey for a while  Leads to predator recovery
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Emergent Allee effect: Takvatn Lake, Norway
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Increases in Charr growth
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Changed individual growth has remained up to today!

Persson et al. ICES J. Mar. Sci. 71: 2268-2280 (2014)



Ontogenetic asymmetry through niche shifts

* Major mode of life in 80% of all animal species
* Metamorphosing species (insects, amphibians)

* Species exhibiting substantial growth through life
(fish)

= Little diet overlap between stages of same species:
» < 8% for species with metamorphosis
» ~40% for species with substantial growth through life

Rudolf & Lafferty, Ecology Letters, (2011) 14: 75-79



Ontogenetic asymmetry due to niche shifts
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Ontogenetic asymmetry due to niche shifts
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The size-structured population model
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Size-structured population model equations
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Maturation versus reproduction control
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= At Jow adult resource productivity equilibrium is dominated by adult
biomass controlled by limited reproduction

= At high adult resource productivity equilibrium is dominated by
juvenile biomass controlled by limited maturation

= Both types of equilibria co-occur at intermediate productivity



Two types of equilibria
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Maturation-controlled, juvenile-dominated equilibrium and reproduction-controlled,
adult-dominated equilibrium co-occur over large productivity ranges




Adding specialist predators
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Emergent Predator Exclusion




Persistence of juvenile-specialist predators
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Adult specialist
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Persistence of adult-specialist predators
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What about predator coexistence?
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Predator biomass (mg/L)

Consumer biomass (mg/L)
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Stable coexistence of both specialist predators
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Stable coexistence of both specialist predators
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* Competitive dominance of
specialist predator at low
resource productivity of its
main prey

* Coexistence of specialist
predators in stable
equilibrium or stable limit
cycle over large ranges of
productivity

* Extinction of one of the

specialist predators may lead
to recovery or total collapse



Two types of equilibria

Maturation control
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Maturation-controlled, juvenile-dominated equilibrium and reproduction-
controlled, adult-dominated equilibrium co-occur over large productivity ranges




Overturning a basic ecological principle
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Energetic asymmetry over ontogeny leads to
counter-intuitive, positive biomass-mortality relations




Overcompensation in total biomass
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Higher biomass at higher mortality

Up to 60% more biomass at up to 4 times background mortality
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Flexible population structure more in tune with
resource supply at higher mortality, increasing efficiency




Ontogenetic specialist

Mortality Mortality
Food-dependent Food-dependent
growth maturation
Food-dependent

reproduction

/ \

Maintenance Maintenance

L Resources J L Resources J




Ontogenetic generalist
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Competing as a double-handicapped consumer
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The fate of a double-handicapped loser

Generalists

1.2

1.0 — -

T / The loser
06 - takes it all!

04 |- _

L \\ _
0.0 I L | L] I 1 I )

1.5

Consumers (mg/L)

T
—

1.0

0.5

Predator (mg/L)

0.0 1 | 1 | 1 J 1 | 1
0 1000 2000 3* 4000 5000

Double-handicapped loser wins under substantial ranges of
productivity due to flexible population stage structure




ﬁ«"" The loser takes it all: a robust phenomenon

Juvenile/adult diet overlap ontogenetic specialist

No overlap 50% overlap
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Irrespective of linear/non-linear functional responses, semi-chemostat/logistic
resource dynamics, generalist/specialist predators, complete/partial niche shifts




Core ecological insights overturned

= Mortality decreases population abundance
Mortality increases stage-specific or total population biomass

ﬂ»

® Food chains: productivity uniquely determines food chain
length

Alternative stable equilibria in case of size-selective predation

= Predators foraging on the same prey will competitively
exclude each other

Predators feeding on different size ranges of prey need each
other to persist

= Persistence requires balancing competitive advantages
against predatory disadvantages

In case of ontogenetic niche shifts, double-handicapped
consumers with both a competitive and predatory disadvantage
can outcompete competitors



