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Terminology

Dispersal “Any movement of individuals or propagules with
potential consequences for gene flow across space”
[Ronce, 2007]

(c
)W
ik
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Migration “Mass directional movements of large numbers of a
species from one location to another.”
[Begon et al., 1996]
But in population genetics, o�en used as a synonym of dispersal.
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Why disperse?

I Avoid kin competition
I Avoid inbreeding
I Explore new territories
I Find better conditions.
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Dispersal stages

Emigration
Transfer Settlement
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Outline

Introduction

Dispersal and kin competition
Hamilton & May 1977
Islandmodel

In spatially heterogeneous environments
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An iconic example: [Hamilton and May, 1977]

Model

N saturated sites,
N→∞

Emigration probabilities: x = 0, y > 0
Cost of emigration c = 1− p.

O�spring
production

O�spring
dispersal

All parents die

O�spring
establishment

Invasion fitness

w(y, x) =
1− y

1− y + (1− c) x
+

(1− c) y
1− x + (1− c) x
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An iconic example: [Hamilton and May, 1977] (2)

w(y, x) =
1− y

1− y + (1− c) x
+

(1− c) y
1− x + (1− c) x

I Selection gradient

D(x) =
∂w(y, x)
∂y

∣∣∣∣
y=x

=
(1− c)(1− x(1+ c))

(1− cx)2

I Singular strategy

x∗ =
1

1+ c

I Convergence stability

dD(x)
dx

= − (1− c)(1− c+ (c+ 1)cx)
(1− cx)3 ≤ 0

I Uninvadability

∂2w(y, x)
∂y2

∣∣∣∣
y=x=x∗

= −2(1− c)(c+ 1)2 ≤ 0

PIP

(c = 0.3)
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An iconic example: [Hamilton and May, 1977] (3)

We acknowledge that this simple model probably has few close
parallels in the real world. Nevertheless it may usefully force a
re-examination of some widely held ideas about migration.

[Hamilton and May, 1977]

Kin competition Competition between related individuals.
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Dispersal evolution in a subdivided population

n demes,
n→∞

N individuals

zr Emigration probability of residents
zm Emigration probability of mutants
c Cost of dispersal
µ Mutation probability (µ→ 0).

q0(zm, zr): Average frequency of mutants in demes that contain mutants.

Invasion fitness

w(zm, zr) =
1− zm

1− (q0 zm + (1− q0)zr) + (1− c) zr
+

(1− c) zm
1− zr + (1− c)zr

[Gandon and Rousset, 1999]
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Dispersal evolution in a subdivided population (2)

w(zm, zr) =
1− zm

1− (q0 zm + (1− q0)zr) + (1− c) zr
+

(1− c) zm
1− zr + (1− c)zr

Selection gradient

D(z) =
∂w(zm, zr)

∂zm

∣∣∣∣
zm=zr=z

=
q− c− z

(
q− c2

)
(1− c z)2

,

with q = q0(z, z).

Computing q, recursively More on q

qt+1 =
1
N

+
N − 1
N

(
1− (1− c)z

1− cz

)2
qt

q =
1

1+
(
(2− (1−c)z

1−cz

)
(1−c)z
1−cz (N − 1)
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Dispersal evolution in a subdivided population (3)

Singular strategy

z∗ =
1+ 2cN −

√
1+ 4 c2 (N − 1)N

2 c (1+ c)N
.

Cost c

z*

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1

2
5
20

N =

F
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Dispersal evolution in a subdivided population (4)

Invadability

∂2w(zm, zr)
∂z2m

∣∣∣∣
zm=zr=z∗

=

2
(1− c z∗)2

[
(1− z∗)

(
(q∗)2

1− c z∗
+
∂q0(zm, zr)

∂zm

∣∣∣∣
zm=zr=z∗

)
− q∗

]

with q∗ = q0(z∗, z∗)
. . .
I In this model, always z∗ is always uninvadable [Ajar, 2003].
I But with heterogeneity in deme sizes, diversification can occur
[Massol et al., 2011]
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Another classic: [Balkau and Feldman, 1973]

Deme I Deme II

∞ individuals ∞ individuals

m

Life-cycle Selection then dispersal.

Genotypes AB, Ab, aB, ab.

I Locus A: local adaptation
Fitness:

in I in II
A 1+ s 1
a 1 1+ s

I Locus B: emigration
B z
b zm.

With AB and aB
Frequency of AB is x in deme I and y in deme II.

x′ = (1− z) (1+ s) x
(1+ s) x + 1− x

+ z
y

y + (1+ s)(1− y)

y′ = z
(1+ s) x

(1+ s) x + 1− x
+ (1− z) y

y + (1+ s)(1− y)
.

→ Equilibrium (x̂, ŷ) = (x̂, 1− x̂).
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F. Débarre São Paulo, Jan 2017 14



Another classic: [Balkau and Feldman, 1973]

Deme I Deme II

∞ individuals ∞ individuals

m

Life-cycle Selection then dispersal.
Genotypes AB, Ab, aB, ab.

I Locus A: local adaptation
Fitness:

in I in II
A 1+ s 1
a 1 1+ s

I Locus B: emigration
B z
b zm.

With AB and aB
Frequency of AB is x in deme I and y in deme II.

x′ = (1− z) (1+ s) x
(1+ s) x + 1− x

+ z
y

y + (1+ s)(1− y)

y′ = z
(1+ s) x

(1+ s) x + 1− x
+ (1− z) y

y + (1+ s)(1− y)
.

→ Equilibrium (x̂, ŷ) = (x̂, 1− x̂).
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Another classic: [Balkau and Feldman, 1973] (2)

Dynamics with the four genotypes

Frequencies:
AB Ab aB ab

in deme I x1 x2 x3 x4
in deme II y1 y2 y3 y4

x′1 = (1− z) (1+ s)x1
(1+ s)(x1 + x2) + (x3 + x4)

+ z
y1

(y1 + y2) + (1+ s)(y3 + y4)

x′2 = (1− zm)
(1+ s)x2

(1+ s)(x1 + x2) + (x3 + x4)
+ zm

y2
(y1 + y2) + (1+ s)(y3 + y4)

x′3 = . . .

Invasion analysis

Local stability of the equilibriumwithout b,
(x̂, 0, 1− x̂, 0, ŷ, 0, 1− ŷ, 0) More on stability analysis
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Another classic: [Balkau and Feldman, 1973] (3)

→ All eigenvalues ρi such that |ρi| ≤ 1 when zm > z
Reduced emigration probabilities are favored.
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A few take-homemessages

I Kin competition favors the evolution of emigration

I Spatial heterogeneity only does not. . .

but dispersal can evolve when local conditions change with
time and space.

I Dispersal is a complicated trait to study, because it a�ects
spatial structure (→ Lecture 4).
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More on q

New parameters:
n Number of demes
µ Mutation probability (infinite allele model)

m =
1− z
1− c z

Backward dispersal probability

Probability that two individuals came from the same deme and

I are in the same deme: a = (1−m)2 + m2

n−1 ,

I are in di�erent demes: b = 1−(1−m)2

n−1 − m2

(n−1)2 .

Probabilities of identity by descent, with replacement:

I In the same deme: q0,t+1 = 1
N + N−1N (1− µ)2 (a q0,t + (1− a) q1,t) ,

I In di�erent demes: q1,t+1 = (1− µ)2 (b q0,t + (1− b) q1,t) ,

[Cockerham andWeir, 1987]
Back
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More on q (2)

q0,t+1 = 1
N + N−1N (1− µ)2 (a q0,t + (1− a) q1,t) ,

q1,t+1 = (1− µ)2 (b q0,t + (1− b) q1,t) ,

Order of limits

I When µ = 0,
q0,∞ = q1,∞ = 1.

I When n→∞, q1,∞ = 0
and q0,∞ =
1
N + N−1N (1−µ)2 (a q0,∞) .

[Cockerham andWeir, 1987]
Back
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Outline

More on q

Stability analysis
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Stability analysis for discrete-timemodels

1 Identify an equilibriumModel

N1(t + 1) = G1(N1(t),N2(t), . . . ,Nk(t))
N2(t + 1) = G2(N1(t),N2(t), . . . ,Nk(t))

...
Nk(t + 1) = Gk(N1(t),N2(t), . . . ,Nk(t))

Equilibrium

Ñ = (Ñ1, . . . , Ñk), such that

G1(Ñ1, . . . , Ñk) = Ñ1
...

Gk(Ñ1, . . . , Ñk) = Ñk
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Stability analysis for discrete-timemodels

2 Write system of equations for the change over time of a small derivation from
the equilibrium

, and get a linear approximation of this system (Taylor series)

Deviations from equilibrium

Define ni(t) = Ni(t)− Ñi.

ni(t + 1) = Gi(N1(t), . . . ,Nk(t))− Ñi

≈ 0+ ∂Gi
∂N1

∣∣∣∣
N(t)=Ñ

(N1(t)− Ñ1)︸ ︷︷ ︸
n1(t)

+ · · ·+ ∂Gi
∂Nk

∣∣∣∣
N(t)=Ñ

(Nk(t)− Ñk)︸ ︷︷ ︸
nk(t)

.

In matrix form:n1...
nk

 (t + 1)

︸ ︷︷ ︸
n(t+1)

=


∂G1
∂N1

. . . ∂G1
∂Nk

... . . .
...

∂Gk
∂N1

. . . ∂Gk
∂Nk


∣∣∣∣∣∣∣
N=Ñ︸ ︷︷ ︸

J

·

n1...
nk

 (t)

︸ ︷︷ ︸
n(t)
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≈ 0+ ∂Gi
∂N1

∣∣∣∣
N(t)=Ñ
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(N1(t)− Ñ1)︸ ︷︷ ︸
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Stability analysis for discrete-timemodels (3)

3 Identify solutions of n(t + 1) = J · n(t)

Solution:

n(t) = c1ν1λt1 + c2ν2λt2 + · · ·+ ckνkλtk,

with the ci constants determined by the initial conditions, and ν(i)
an eigenvector associated to the eigenvalue λi, i.e., J · ν(i) = λi ν(i).

Leading eigenvalue: eigenvalue with the largest modulus
Modulus: for a complex number λ = A+ ıB,

|λ| =
√
A2 + B2.

[Case, 2000]
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Stability analysis for discrete-timemodels (4)

4 Inspect the eigenvalues of J

(c
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