

Facilitation and competition in the desert: saguaro cactus and Palo Verde trees

- Guilherme Casas Gonçalves (University of São Paulo, Mathematics Institute, Brazil)
- Lucas Paoliello de Medeiros (University of São Paulo, Ecology Department, Brazil)
- Ludmila Rattis (University of Campinas, Graduate School of Ecology, Brazil)
- Maria Cecilia de Lima e Sá De Alencar Rocha (Federal Uni. Bahia, Biology Institute, Brazil)
- **Nerea Abrego** (University of the Basque Country, Dept. Plant Biology and Ecology, Spain)
- Susana Contreras (Universidad de los Andes, Dept. Biomedical Engineering, Colombia)

INTRODUCTION OF TARGET SPECIES

Palo Verde tree Cercidium floridum

Saguaro cactus Carnegiea gigantea

INTRODUCTION OF TARGET SPECIES

Palo Verde tree *Cercidium floridum* Saguaro cactus *Carnegiea gigantea*

DESCRIPTION OF THE

Desert

- Water limitations
- Sun exposure
- Freezing
- Predation
- Wind

INTRODUCTION OF THEIR INTERACTIONS

• Nurse plants

protection against such adverse conditions

FACILITATION

Water stress and nutrients

COMPETITION

POPULATION DYNAMICS BASED ON LITERATURE

Saguaros growing under Palo Verde tree Saguaros that have killed a Palo Verde tree

THE MODEL

- Species-1 needs species-2 to survive in a part of its life-cycle
- Young species-1 consumes the resources that species-2 does not use
- Old species 1 competes with species 2 and kills it
- Species-1 behaves as a parasite!

But not any parasite...

As the killer cacti can survive for very long!!

But not just any parasite... As the killer cacti can survive for very long!!

"Alien Cactus" Mode

$$\frac{dP}{dt} = b_p P_T - d_p (1 + \frac{P_T}{K_P}) P - \frac{b_{S_y}(P_{S_o} + S_o)P}{K_o} + \frac{d_{S_y}P_{S_y}}{K_o} + \frac{d_{S_o}P_{S_o}}{K_o}$$

PT: total number of Palo Verde trees (PT = P + PSy + PSo)

$$\frac{dP_{S_y}}{dt} = b_{S_y}(P_{S_o} + S_o)P - g_S P_{S_y} - d_{S_y} P_{S_y} - d_p P_{S_y}$$

$$\frac{dP_{S_o}}{dt} = g_S P_{S_y} - d_{S_o} P_{S_o} - d_p (1 + \frac{P_T}{K_P} + C_{S_o}) P_{S_o}$$

$$\frac{S_o}{dt} = d_p (1 + \frac{P_T}{K_P} + \frac{C_{S_o}}{N_{S_o}}) P_{S_o} - d_{S_o} S_o$$

"Alien Cactus" Mode $\frac{dP}{dt} = b_p P_T - d_p (1 + \frac{P_T}{K_P}) P - b_{S_y} (P_{S_o} + S_o) P + d_{S_y} P_{S_y} + d_{S_o} P_{S_o}$

$$\frac{dP_{S_y}}{dt} = b_{S_y}(P_{S_o} + S_o)P - g_S P_{S_y} - d_{S_y} P_{S_y} - d_p P_{S_y}$$

$$\frac{dP_{S_o}}{dt} = g_S P_{S_y} - d_{S_o} P_{S_o} - d_p (1 + \frac{P_T}{K_P} + C_{S_o}) P_{S_o}$$

$$\frac{S_o}{dt} = d_p \left(1 + \frac{P_T}{K_P} + C_{S_o}\right) P_{S_o} - d_{S_o} S_o$$

Possible Outcomes

 Endemy/Coexistence: Both species survives

Recovery: Cacti extinction

Extinction: Both species extinct

Exploring the model

• Differential equations solved by numerical integration.

Exploring the model

- Differential equations solved by numerical integration.
- Initial conditions:
 - P: high population
 - Psy: low population
 - Pso: absent
 - So: absent

Exploring the model

- Differential equations solved by numerical integration.
- Initial conditions:
 - P: high population
 - Psy: low population
 - Pso: absent
 - So: absent
- Parameter space explored with the Latin Hypercube

Model Outcomes

Endemy/Coexistence: Both species

Model Outcomes

Recovery: Cacti

Model Outcomes Extinction: Both

Change in Initial Population of Palo Verdes

Change in Initial Population of Palo Verdes

Change in Initial Population of Palo Verdes

Palo Verde Birth Rate vs. Mortality

Palo Verde Birth Rate vs. Mortality

Palo Verde Birth Rate vs. Mortality

Palo Verde Birth Rate vs. Mortality

Conclusions

 Endemy/Coexistence: Both species survives
 dP

- Recovery: Costi extinction
- Extinction: Both species extinct

Conclusions

Competition rate (cSo), death rate of old cacti (dSo) and maturation rate of cacti (gS) seem to play an important role in the dynamics

Next steps:

- Explore other parameters while controlling the effects of bp and dp
- Explicitly include abiotic stress (water availability, temperature conditions, etc)