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State-space models 

process model: 

what happens 

in nature? 

observation model: 

how did we 

collect the data? 
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How to combine the forward and inverse-approaches in practice? 

Also called Hidden Markov models, process based models... 



Bayesian state-space models 
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Example: stochastic logistic model 

Number of individuals is 𝑛 = 𝑛 𝑡 = 0,1,2,3, … 
 
Individuals produce new individuals at per-capita fecundity rate 𝑓 
 
The per-capita death rate is 𝑑 + 𝑐(𝑛 − 1), where 𝑑 is the density-independent 
background mortality rate and the parameter 𝑐 describes the additional death rate 
imposed by competitive effects of the 𝑛 − 1 individuals to the focal individual 

𝑑𝑛

𝑑𝑡
= 𝑓 − 𝑑 𝑛 − 𝑐𝑛2 = 𝑟𝑛(1 − 𝑛/𝐾), 

The model is a stochastic Markov process. The deterministic mean-field model is 

𝑟 = 𝑓 − 𝑑 is the growth rate of the population at low density 
𝐾 = 𝑟/𝑐 is the carrying capacity 
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Model simulation with “true” parameter values 𝑓 = 3, 𝑑 = 1 and 𝐾 = 50. 
Initial state 𝑛 0 = 5. 
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Model simulation with “true” parameter values 𝑓 = 3, 𝑑 = 1 and 𝐾 = 50. 
Initial state 𝑛 0 = 5.  
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Model simulation with “true” parameter values 𝑓 = 3, 𝑑 = 1 and 𝐾 = 50. 
Initial state 𝑛 0 = 5.  
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The data: 𝑦 = (20,40,43,40,53,64,48,50,41,42) 
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“True” parameter values 𝑓 = 3, 𝑑 = 1 and 𝐾 = 50.  
Simulations with 𝑓 = 3, 𝑑 = 1 and 𝐾 = 50. 
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“True” parameter values 𝑓 = 3, 𝑑 = 1 and 𝐾 = 50.  
Simulations with 𝑓 = 2, 𝑑 = 1 and 𝐾 = 50. 
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“True” parameter values 𝑓 = 3, 𝑑 = 1 and 𝐾 = 50.  
Simulations with 𝑓 = 1.5, 𝑑 = 1 and 𝐾 = 50. 
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“True” parameter values 𝑓 = 3, 𝑑 = 1 and 𝐾 = 50.  
Simulations with 𝑓 = 1, 𝑑 = 1 and 𝐾 = 50. 
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𝜃 = (𝑓, 𝑑, 𝐾) 

𝑦 = (20,40,43,40,53,64,48,50,41,42) 

Likelihood of observing the data 

The data: 

The parameters: 

𝜃TRUE = (3,1,50) 

The probability (likelihood) of observing the data, 
given the model and the model parameters: 𝑝(𝑦|𝜃) 
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𝑦 = (20,40,43,40,53,64,48,50,41,42) 

How to compute the likelihood of observing the data 

The data: 

The experiment was initiated at day 0 with 5 individuals. What is the 
probability that there would be 20 individuals at day 1, assuming 𝜃TRUE? 

𝑝1 = 𝑃 𝑛 1 = 20 𝑛 0 = 5 = 0.03815 

𝑝2 = 𝑃 𝑛 2 = 40 𝑛 1 = 20 = 0.043095 

𝑝10 = 𝑃 𝑛 10 = 42 𝑛 9 = 41 = 0.0368283 

…
 

𝑝 𝑦 𝜃TRUE = 𝑝1𝑝2…𝑝10 

= 0.00000000000000197577 

= 1.97577 ∙ 10−15 
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How does the likelihood depend on model parameters? 

𝜃TRUE = 𝑓, 𝑑, 𝐾 = (3,1,50) 

Keep 𝑑, 𝐾 = (1,50) and vary f 
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𝜃TRUE = 𝑓, 𝑑, 𝐾 = (3,1,50) 
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Bayesian inference 

𝑝 𝑦 𝜃 : the likelihood of observing the data 𝑦 conditional on the parameters 𝜃 
 
𝑝(𝜃|𝑦): the posterior: the probability distribution of parameters, given 𝑦.  

𝑝 𝜃 : the prior: what we assumed about  the parameters before seeing the data 

Bayes theorem:  

𝑝 𝜃 𝑦 ∝ 𝑝 𝜃 𝑝 𝑦 𝜃  



How to choose the prior 

Sometimes there is prior information, e.g. from other studies.  
 

“We followed singly grown individuals through their life-times, from which data 
we estimate the density-independent death rate 𝑑 to be between 0.7 and 1.1.” 

Often there is no prior information. Then one may assume an “uninformative prior”. 

Let us assume, for the sake of illustration, the following prior: 

𝑝 𝜃 = 1/20000 if 0 ≤ 𝑓, 𝑑 ≤ 10 and 0 ≤ 𝐾 ≤ 200 

otherwise 𝑝 𝜃 = 0 



The marginal posterior distributions 
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fecundity f mortality d carrying capacity K 

48.1 (41.6-58.6) 1.42 (0.06-5.88) 3.66 (1.48-9.22) 

posterior mean  (95% credibility interval) 



The joint posterior distribution 
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The posterior distribution of a derived parameter 
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growth rate 𝑟 = 𝑓 − 𝑑 

2.2 (0.81-4.81) 

𝜃TRUE = 𝑓, 𝑑, 𝐾 = (3,1,50) 



Individual-level 

model observation model 

data 

prior prior 

Population-level 

model 

prior 

State-space models often have a hierarchical structure 



Metapopulation Research Group 

 

50 by 70 km 

Example: Glanville fritillary metapopulation dynamics 

prof. Ilkka Hanski 



Building metapopulation dynamics from individual behavior 
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Harrison, P. J., Hanski, I. and Ovaskainen, O. 2012. Bayesian state-space modeling of 

metapopulation dynamics in the Glanville fritillary butterfly. Ecological Monographs 81, 581-598. 



Part of the individual-based model 

.  The number of larval groups that 
survive through the winter: ~ ( , )N Bin E 

~ ( )E Poisson The number of egg groups in the autumn: 

 E N

The amount of time all 
females spend in a patch 
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Life of a single female 

5 km 

Example of model prediction at the individual level 

Circle = habitat patch 



5 km 

Number of larval groups 

Circle = habitat patch 

Examples of model prediction at the population level 



70 km 

Fraction of occupied patches 

Circle = habitat patch network 

Examples of model prediction at the metapopulation level 



Strategies for model validation 

1. Do nothing, just trust the model (still most common 
option!) 
 

2. Fit model to data, then check if the model can reproduce 
the same data 
 

3. Cross-validation: split the data into two parts. Use data 1 
for fitting the model, and check if the model is able to 
reproduce data 2 
 

4. If you have data from different situations, see if the 
model fitted to situation 1 can reproduce the data 
collected from situation 2 
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Example of model validation (strategy 4) 

Model parameterized with data 

from Landscape A, prediction for 

Landscape B 

Empirical data on Landscape B 

La
n

d
sc

ap
e

 A
 

La
n

d
sc

ap
e

 B
 

Ovaskainen, O., Luoto, M., Ikonen, I., Rekola, H., Meyke, E. and Kuussaari, M. 2008. An empirical test of a diffusion 

model: predicting clouded apollo movements in a novel environment. American Naturalist 171, 610-619. 



Strategies for model selection 

1. Try only one model and hope it fits nicely enough (still 
most common option!) 
 

2. See which model reproduces the data (or preferably 
some independent data) using a summary statistic you 
best like / think is biologically relevant 
 

3. Use formal model selection methods: AIC, BIC, DIC, 
Bayes factor, ... 



L2: take home messages 

• State-space models combine a process model with an observation model. They 

provide a very general framework of formulating and fitting movement models. 

 

• State-space models can be visualized using a DAG (directed acyclic graph). 

DAG is a very useful way to illustrate how the components of the model link to 

each other. 

 

• State-space models allow one to bring biological knowledge into statistical 

inference, parameterize dynamic models of movement, and to use data with 

missing observations. 

 

• Fitting state-space models to data can be technically challenging. A great 

number of methods exist (essentially variants of MCMC approaches).  

 

• All models are wrong, but some are still useful. Take model selection and 

validation seriously! 


