Lizards and Lyme disease risk

- Diana Erazo
- Luisa Carrillo Rodriguez
- Marilia Palumbo Gaiarsa
- Paula Ribeiro Prist
- Rodrigo Mazzei Carvalho

Trace: • start • g3 • g2

Projects

- Groups
- 1. Silent night
- 2. Lyme disease

3. Asymmetric mating
4. Nurse plants

- 5. Reproductive tactics
- 6. Manipulative parasites
- 7. Esporulation
- 8. Extinction cascades

Courses

- Distinguished lectures
- Population Biology
- Evolutionary Dynamics
- Spatial Ecology
- Infectious Disease

Tutorials

- (1) Numerical integration in python
- (1) Numerical integration in R
- Bifurcation diagram in python
- (2) Latin hypercube

2014:groups:g2:start

Table of Contents

- Lizards and Lyme disease risk
- Group
- Assignment
- Questions
- Reference

Here you will find the exercise assignment and the group's products.
If you are a group member login to edit this page, create new pages from it, and upload files.

Group

- Carvalho, Rodrigo Mazzei; Federal University of Bahia, Biology Institute, Brazil
- Castro, Danielle; University of São Paulo, School of Public Health, Brazil
- Erazo, Diana; BIOMAC, Universidad de los Andes, Colombia
- Gaiarsa, Marilia Palumbo; University of São Paulo, Ecology Department, Brazil
- Prist, Paula Ribeiro; University of São Paulo, Ecology Department, Brazil
- Rodriguez Carrillo, Luisa Fernanda; National University of Colombia, Mathematics Dept., Colombia

Assistants

- Bruno Pace
- Renato Coutinho
 O里

Introduction

It is an important public health issue in the US, where it is the most common vector-borne disease

Introduction

It is an important public health issue in the US, where it is the most common vector-borne disease

Western black-legged tick (Ixodes pacificus)

Introduction

It is an important public health issue in the US, where it is the most common vector-borne disease

Western black-legged tick (Ixodes pacificus)

It's transmitted to humans trough ticks' bites

Introduction

It is an important public health issue in the US, where it is the most common vector-borne disease

Western black-legged tick (Ixodes pacificus)

It's transmitted to humans trough ticks' bites

[^0]

Hosts

Sceloporus occidentalis

Hosts

Dusky-footed Woodrat
(Neotoma fuscipes)

California Kangaroo Rat
(Dipodomys californicus)

Deer Mouse (Peromyscus maniculatus)

Western Grey Squirrel (Sciurus griseus)

$$
m
$$

Host competence: ability to sustain the tick population.

Host competence: ability to sustain the tick population.
Reservoir competence: ability of an infected host to infect a tick.

Host competence

Host competence

Host competence

Lizards hold up to 90% of the ticks

Reservoir competence

Reservoir competence

\downarrow Host competence
\uparrow Reservoir competence

Objectives

PROCEEDINGS OF \qquad THE ROYAL SOCIETY	Proc. R. Soc. B doi:10.1098/rspb.2010.2402 Published online
Imp ${ }^{1}$ Department ${ }^{3} \text { Depa }$ ${ }^{4}$ Departm	val of Lane ${ }^{3}$ Building, Berkeley, A California, Santa Barbara,

Objectives

To assess the impacts of experimentally reduced western fence lizard density on abundance and infection prevalence of Ixodes pacificus and on tick distributions on the remaining hosts

Sceloporus occidentalis
Ixodes pacificus

Other hosts

\checkmark Abundance
\checkmark Infection prevalence

Hypothesis

The presence of lizards may act as a barrier for the transmission of lyme disease, due to it high host competence and lower reservoir competence

Hypothesis

The presence of lizards may act as a barrier for the transmission of lyme disease, due to it high host competence and lower reservoir competence

Predictions

1) If ticks switch to other hosts when lizards are scarce, and feed with equal success, then tick abundance might not decline and infection prevalence would increase.

Hypothesis

The presence of lizards may act as a barrier for the transmission of lyme disease, due to it high host competence and lower reservoir competence

Predictions

1) If ticks switch to other hosts when lizards are scarce, and feed with equal success, then tick abundance might not decline and infection prevalence would increase.
2) Alternatively, reduced lizard abundance might lower tick abundance if ticks generally fail to find alternative, high-quality hosts

Hypothesis

The presence of lizards may act as a barrier for the transmission of lyme disease, due to it high host competence and lower reservoir competence

Predictions

1) If ticks switch to other hosts when lizards are scarce, and feed with equal success, then tick abundance might not decline and infection prevalence would increase.
2) Alternatively, reduced lizard abundance might lower tick abundance if ticks generally fail to find alternative, high-quality hosts

If there is a strong preference for lizards - no switch to an alternate host

Methods

MarinCounty,CA, north of San Francisco

14 long-term 1 ha plots

Methods

MarinCounty,CA, north of San Francisco

14 long-term 1 ha plots

6 experimental removal plots

8 control plots

Results

The effect of lizard removals on the density and infection prevalence of questing ticks was evaluated:
\checkmark Sampling larval ticks in the year of removals (time t)
\checkmark Nymphal ticks the year after the experimental manipulation

Results

The effect of lizard removals on the density and infection prevalence of questing ticks was evaluated:
\checkmark Sampling larval ticks in the year of removals (time t)
\checkmark Nymphal ticks the year after the experimental manipulation

> Time t:
\uparrow Larvae ticks \longrightarrow were not able to immediately find an alternate blood meal host

Results

The effect of lizard removals on the density and infection prevalence of questing ticks was evaluated:
\checkmark Sampling larval ticks in the year of removals (time t)
\checkmark Nymphal ticks the year after the experimental manipulation

> Time t:
\uparrow Larvae ticks \longrightarrow were not able to immediately find an alternate blood meal host
\uparrow Larval burdens \longrightarrow lizard removal elevated larval tick burden on female on female N. fuscipes woodrats

N/
2
$\frac{W}{1}$

N/

Results

The year following lizard removal:

Results

The year following lizard removal:
\downarrow Nymphal ticks
$\checkmark 5.19 \%$ of larval I. pacificus did switch to a competent reservoir host (N. fuscipes)

Results

The year following lizard removal:
\downarrow Nymphal ticks
$\checkmark 5.19 \%$ of larval I. pacificus did switch to a competent reservoir host (N. fuscipes)
\checkmark The increased larval burden on N. fuscipes was not enough to absorb 94.81% of larvae that would have fed on lizards

Results

The year following lizard removal:
\downarrow Nymphal ticks

$\checkmark 5.19 \%$ of larval I. pacificus did switch to a competent reservoir host (N. fuscipes)
\checkmark The increased larval burden on N. fuscipes was not enough to absorb 94.81% of larvae that would have fed on lizards

Results indicate that an incompetent reservoir for a pathogen may, in fact, increase disease risk through the maintenance of higher vector density and therefore, higher density of infected vectors

Larvae Nymph

Tick


```
L= Larvae
N=Nymph
T=Tick
f= hungry
a = fed
i = infected
s=susceptible
```



```
L= Larvae
N=Nymph
T=Tick
f= hungry
a = fed
i = infected
s=susceptible
```

$$
\begin{gathered}
\text { Larvae 当 } \\
L_{t+1}^{f}=e E_{t}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Larva } \\
& L_{t+1}^{f}=e E_{t} \\
& L_{t+1}^{a i}=\left(\frac{V_{A} H_{A} A_{t}^{i}}{\left(A_{t}^{i}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right) L_{t}^{f}\left(1-\mu_{1}\right)
\end{aligned}
$$

Larvae 誛

$$
L_{t+1}^{f}=e E_{t}
$$

$$
L_{t+1}^{a i}=\sqrt{\left(\frac{V_{A} H_{A} A_{t}^{i}}{\left(A_{t}^{i}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right)} L_{t}^{f}\left(1-\mu_{1}\right)
$$

$$
\begin{aligned}
& \text { Lavae } \\
& L_{t+1}^{f}=e E_{t} \\
& L_{t+1}^{a i}=\left(\frac{V_{A} H_{A} A_{t}^{i}}{\left(A_{t}^{i}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right) L_{t}^{f}\left(1-\mu_{1}\right)
\end{aligned}
$$

Larvae

$$
L_{t+1}^{f}=e E_{t}
$$

$$
L_{t+1}^{a i}=\left(\frac{V_{A} H_{A} A_{t}^{i}}{\left(A_{t}^{i}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right) L_{t}^{f}\left(1-\mu_{1}\right)
$$

$$
L_{t+1}^{a s}=\left(\frac{H_{A} A_{t}^{s}+\left(1-V_{A}\right) H_{A} A_{t}^{i}+R H_{R}+1}{\left(A_{t}^{i}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right) L_{t}^{f}\left(1-\mu_{1}\right)
$$

Larvae

$$
L_{t+1}^{f}=e E_{t}
$$

$L_{t+1}^{a i}=\left(\frac{V_{A} H_{A} A_{t}^{i}}{\left(A_{t}^{i}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right) L_{t}^{f}\left(1-\mu_{1}\right)$
$L_{t+1}^{a s}=\left(\frac{H_{A} A_{t}^{s}+\left(1-V_{A}\right) H_{A} A_{t}^{i}+R H_{R}+1}{\left(A_{t}^{i}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right) L_{t}^{f}\left(1-\mu_{1}\right)$

Larvae

$$
L_{t+1}^{f}=e E_{t}
$$

$$
L_{t+1}^{a i}=\left(\frac{V_{A} H_{A} A_{t}^{i}}{\left(A_{t}^{i}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right) L_{t}^{f}\left(1-\mu_{1}\right)
$$

$$
L_{t+1}^{a s}=\left(\frac{H_{A} A_{t}^{s}+\left(1-V_{A}\right) H_{A} A_{t}^{i}+R H_{R}+1}{\left(A_{t}^{i}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right) L_{t}^{f}\left(1-\mu_{1}\right)
$$

$$
\begin{aligned}
& \text { Nymph } \\
& N_{t+1}^{f i}=(1-\gamma) L_{t}^{a i}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Nymph } \\
& N_{t+1}^{f i}=(1-\gamma) L_{t}^{a i} \\
& N_{t+1}^{f s}=(1-\gamma) L_{t}^{a s}
\end{aligned}
$$

Nymph
垱

$$
N_{t+1}^{f i}=(1-\gamma) L_{t}^{a i}
$$

$$
\xrightarrow[10]{2}
$$

$$
N_{t+1}^{f s}=(1-\gamma) L_{t}^{a s}
$$

$$
N_{t+1}^{a i}=\left(\frac{V_{A} H_{A} A_{t}^{i}}{\left(A_{t}^{i}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right) N_{t}^{f s}\left(1-\mu_{2}\right)+N_{t}^{f i}\left(1-\mu_{2}\right)
$$

Nymph

$$
\stackrel{W}{N}
$$

$$
N_{t+1}^{f i}=(1-\gamma) L_{t}^{a i}
$$

$$
\xrightarrow[10]{2}
$$

$N_{t+1}^{f s}=(1-\gamma) L_{t}^{a s} \quad$ *

$$
N_{t+1}^{a i}=\left(\frac{V_{A} H_{A} A_{t}^{i}}{\left(A_{t}^{i}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right) N_{t}^{f s}\left(1-\mu_{2}\right)+N_{t}^{f i}\left(1-\mu_{2}\right)
$$

Nymph
垱

$$
N_{t+1}^{f i}=(1-\gamma) L_{t}^{a i}
$$

$$
\xrightarrow[10]{4}
$$

$N_{t+1}^{f s}=(1-\gamma) L_{t}^{a s} \quad \not \approx \neq$

$$
N_{t+1}^{a i}=\left(\frac{V_{A} H_{A} A_{t}^{i}}{\left(A_{t}^{i}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right) N_{t}^{f s}\left(1-\mu_{2}\right)+N_{t}^{f i}\left(1-\mu_{2}\right)
$$

Nymph
N

$$
N_{t+1}^{f i}=(1-\gamma) L_{t}^{a i}
$$

$N_{t+1}^{f s}=(1-\gamma) L_{t}^{a s} \quad$ \#

$$
N_{t+1}^{a i}=\left(\frac{V_{A} H_{A} A_{t}^{i}}{\left(A_{t}^{i}+A_{t}^{)}\right) H_{A}+R H_{R}+1}\right) N_{t}^{f s}\left(1-\mu_{2}\right)+N_{t}^{f i}\left(1-\mu_{2}\right)
$$

$$
N_{t+1}^{a s}=\left(\frac{H_{A} A_{i}^{s}+\left(1-V_{A}\right) H_{A} A_{i}^{i}+R H_{R}+1}{\left(A_{t}^{2}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right) N_{t}^{f s}\left(1-\mu_{2}\right) \text { 米 }
$$

Nymph

$$
\stackrel{W}{N}
$$

$$
N_{t+1}^{f i}=(1-\gamma) L_{t}^{a i}
$$

$N_{t+1}^{f s}=(1-\gamma) L_{t}^{a s}$ \#

$$
N_{t+1}^{a i}=\left(\frac{V_{A} H_{A} A_{t}^{i}}{\left(A_{t}^{i}+A_{t}^{A}\right) H_{A}+R H_{R}+1}\right) N_{t}^{f s}\left(1-\mu_{2}\right)+N_{t}^{f i}\left(1-\mu_{2}\right)
$$

$$
N_{t+1}^{a s}=\left(\frac{H_{A} A_{t}^{s}+\left(1-V_{A}\right) H_{A} A_{t}^{i}+R H_{R}+1}{\left(A_{t}^{i}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right) N_{t}^{f s}\left(1-\mu_{2}\right) \text { 多 }
$$

Nymph

$$
\stackrel{W}{N}
$$

$$
N_{t+1}^{f i}=(1-\gamma) L_{t}^{a i}
$$

$N_{t+1}^{f s}=(1-\gamma) L_{t}^{a s} \quad \not \approx$

$$
N_{t+1}^{a i}=\left(\frac{V_{A} H_{A} A_{t}^{i}}{\left(A_{t}^{i}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right) N_{t}^{f s}\left(1-\mu_{2}\right)+N_{t}^{f i}\left(1-\mu_{2}\right)
$$

$$
N_{t+1}^{a s}=\left(\frac{H_{A} A_{t}^{s}+\left(1-V_{A}\right) H_{A} A_{t}^{i}+R H_{R}+1}{\left(A_{t}^{i}+A_{t}^{s}\right) H_{A}+R H_{R}+1}\right) N_{t}^{f s}\left(1-\mu_{2}\right) \text { 尚 }
$$

Hosts $3-4$

$$
\begin{aligned}
& A_{t+1}^{s}=\left(1-\gamma_{A}\right) A_{t}^{s} \rho_{A}+\left(1-\gamma_{A}\right) A_{t}^{i} \rho_{A} \\
&+\left(1-\gamma_{A}\right) A_{t}^{s}-\epsilon_{A} \mu_{2} \frac{N_{t}^{f i}}{N_{t}^{f i}+N_{t}^{f s}}\left(1-\gamma_{A}\right) A_{t}^{s}
\end{aligned}
$$

Hosts $3 x^{4}$

$$
\begin{aligned}
& A_{t+1}^{s}=\left(1-\gamma_{A}\right) A_{t}^{s} \rho_{A}+\left(1-\gamma_{A}\right) A_{t}^{i} \rho_{A} \\
& +\left(1-\gamma_{A}\right) A_{t}^{s}-\epsilon_{A} \mu_{2} \frac{N_{t}^{f i}}{N_{t}^{f i}+N_{t}^{f s}}\left(1-\gamma_{A}\right) A_{t}^{s}
\end{aligned}
$$

Hosts \rightarrow

$$
\begin{aligned}
& A_{t+1}^{s}=\left(1-\gamma_{A}\right) A_{t}^{s} \rho_{A}+\left(1-\gamma_{A}\right) A_{t}^{i} \rho_{A} \\
&+\left(1-\gamma_{A}\right) A_{t}^{s}-\epsilon_{A} \mu_{2} \frac{N_{t}^{f i}}{N_{t}^{f i}+N_{t}^{f s}}\left(1-\gamma_{A}\right) A_{t}^{s}
\end{aligned}
$$

Hosts

$$
\begin{aligned}
& A_{t+1}^{s}=\left(1-\gamma_{A}\right) A_{t}^{s} \rho_{A}+\left(1-\gamma_{A}\right) A_{t}^{i} \rho_{A} \\
& +\left(1-\gamma_{A}\right) A_{t}^{s}-\epsilon_{A} \mu_{2} \frac{N_{i}^{f i}}{N_{t}^{f_{t}}+N_{t}^{f s}}\left(1-\gamma_{A}\right) A_{t}^{s}
\end{aligned}
$$

Hosts ∞

$$
\begin{aligned}
& A_{t+1}^{s}=\left(1-\gamma_{A}\right) A_{t}^{s} \rho_{A}+\left(1-\gamma_{A}\right) A_{t}^{i} \rho_{A} \\
& +\quad+\left(1-\gamma_{A}\right) A_{t}^{s}-\epsilon_{A} \mu_{2} \frac{N_{t}^{f i}}{N_{t}^{f_{t}^{i t}}+N_{t}^{s}}\left(1-\gamma_{A}\right) A_{t}^{s}
\end{aligned}
$$

Hosts

$$
\begin{aligned}
& A_{t+1}^{s}=\left(1-\gamma_{A}\right) A_{t}^{s} \rho_{A}+\left(1-\gamma_{A}\right) A_{t}^{i} \rho_{A} \\
& \quad+\left(1-\gamma_{A}\right) A_{t}^{s}-\epsilon_{A} \mu_{2} \frac{D_{2}^{f i}}{N_{t}^{f_{i}^{t}}+N_{t}^{s}}\left(1-\gamma_{A}\right) A_{t}^{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hosts } \\
& A_{t+1}^{s}=\left(1-\gamma_{A}\right) A_{t}^{s} \rho_{A}+\left(1-\gamma_{A}\right) A_{t}^{i} \rho_{A} \\
& +\left(1-\gamma_{A}\right) A_{t}^{s}-\epsilon_{A} \mu_{2} \frac{N_{t}^{f i}}{N_{t}^{f t}+N_{t}^{f s}}\left(1-\gamma_{A}\right) A_{t}^{s} \\
& A_{t+1}^{i}=\left(1-\gamma_{A}\right) A_{t}^{i}+\epsilon_{A}\left(1-\gamma_{A}\right) \mu_{2} \frac{N_{t}^{f i}}{N_{t}^{f i}+N_{t}^{f s}} A_{t}^{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hosts } \\
& A_{t+1}^{s}=\left(1-\gamma_{A}\right) A_{t}^{s} \rho_{A}+\left(1-\gamma_{A}\right) A_{t}^{i} \rho_{A} \\
& \quad+\left(1-\gamma_{A}\right) A_{t}^{s}-\epsilon_{A} \mu_{2} \frac{N_{t}^{f i}}{i_{t}^{f i}+N_{t}^{f s}}\left(1-\gamma_{A}\right) A_{t}^{s} \\
& A_{t+1}^{i}=\left(1-\gamma_{A}\right) A_{t}^{i}+\epsilon_{A}\left(1-\gamma_{A}\right) \mu_{2} \frac{N_{t}^{f i}}{N_{t}^{f i}+N_{t}^{f s}} A_{t}^{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hosts } \quad+\left(1-\gamma_{A}\right) A_{t}^{s}-\epsilon_{A} \mu_{2} \frac{N_{t}^{f i}}{N_{t}^{f i}+N_{t}^{f s}}\left(1-\gamma_{A}\right) A_{t}^{s} \\
& A_{t+1}^{s}=\left(1-\gamma_{A}\right) A_{t}^{s} \rho_{A}+\left(1-\gamma_{A}\right) A_{t}^{i} \rho_{A} \\
& A_{t+1}^{i}=\left(1-\gamma_{A}\right) A_{t}^{i}+\epsilon_{A}\left(1-\gamma_{A}\right) \mu_{2} \frac{N_{t}^{f i}}{N_{t}^{f i}+N_{t}^{f s}} A_{t}^{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Humans } \\
& H_{t+1}^{s}=\delta H_{t}^{i}+H_{t}^{s}-\psi \epsilon \mu \frac{N_{t}^{f i}}{N_{t}^{f i}+N_{t}^{f s}} H_{t}^{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Humans } \\
& H_{t+1}^{s}=\delta H_{t}^{i}+H_{t}^{s}-\psi \epsilon \mu \frac{N_{t}^{f i}}{N_{t}^{f i}+N_{t}^{f s}} H_{t}^{s} \\
& H_{t+1}^{i}=H_{t}^{i}-\delta H_{t}^{i}+\psi \epsilon \mu \frac{N_{t}^{f i}}{N_{t}^{f i}+N_{t}^{f s}} H_{t}^{s}
\end{aligned}
$$

Ticks

$$
T_{t+1}=\left(N_{t}^{a i}+N_{t}^{a s}\right)\left(1-\mu_{3}\right)
$$

Ticks

$$
T_{t+1}=\left(N_{t}^{a i}+N_{t}^{a s}\right)\left(1-\mu_{3}\right)
$$

Saturation term

$$
\mu=\exp ^{-\sigma \frac{A H_{A}+R H_{R}}{N_{t}^{f i}+N_{t}^{f s}}}
$$

Ticks

$$
T_{t+1}=\left(N_{t}^{a i}+N_{t}^{a s}\right)\left(1-\mu_{3}\right)
$$

Saturation term

$$
\mu=\exp ^{-\sigma \frac{A H_{A}+R H_{R}}{N_{t}^{f i}+N_{t}^{f s}}}
$$

Maintenance term

$$
\rho_{A}=\frac{\gamma_{A}}{1-\gamma_{A}}
$$

Ticks

$$
T_{t+1}=\left(N_{t}^{a i}+N_{t}^{a s}\right)\left(1-\mu_{3}\right)
$$

Saturation term

$$
\mu=\exp ^{-\sigma \frac{A H_{A}+R H_{R}}{N_{t}^{f i}+N_{t}^{f s}}}
$$

Maintenance term

Eggs

$\rho_{A}=\frac{\gamma_{A}}{1-\gamma_{A}}$

$$
E_{t+1}=N_{e} T_{t}
$$

Final Remarks

PROCEEDINGS the royal sOCIETY	Proc. R. Soc. B doi:10.1098/sspb.2010.2402 Published online
${ }^{1}$ Department $\begin{array}{r} { }^{3} \text { Depa } \\ { }^{4} \text { Departm } \end{array}$	val of Lane ${ }^{3}$ Building, Berkeley, S California, Santa Barbara,

- Transient state;

- Lizard = barrier

Final Remarks

PROCEEDINGS the royal SOCIETY	Proc. R. Soc. B doi:10.1098/rspb.2010.2402 Published online
Imp An ${ }^{1}$ Department ${ }^{3}$ Depar ${ }^{4}$ Departme	val of Lane ${ }^{3}$ Building, Berkeley, A California, Santa Barbara,

- Transient state;

- Lizard = barrier

Questions

Can a mathematical model for Lyme disease transmission help understand the experimental result described above? What else such a model can predict about:

- infection risk to humans?
- host assemblages and Lyme disease prevalence in humans and reservoirs?
- management of reservoir populations to decrease the risk of infection?

THANKS!!!

- Organizers
- Professors
- T.As

$e=:$ "Number of eggs that hatch"
$V_{A}=:$ "Reservoir competence on animals"
$H_{A}=$: "Host competence of animals"
$R=:$ "Number of lizards"
$H_{R}=$: "Host competence of lizards "
$H_{H}=$: "Host competence of humans"
$\mu_{1}=$: "Feeding success rate of larva"
$\mu_{2}=$: "Feeding success rate of nymphs"
$\gamma=:$ "Larval death rate"
$\gamma_{A}=$: "Animal death rate"
$\gamma_{H}=$: "Humans death rate"
$\rho_{A}=$: "New animals that born to mantain the equilibrium of the system"
$\epsilon=$: "Efficiency of the bites on humans"
$\epsilon_{A}=:$ "Efficiency of the bites on animals"
$\delta=$: "Human infection recovery rate"
$\lambda=$: "Encounter rate of infected nymph and human"
$\psi=$: "Death rate due to the disease"

[^0]: Fall

