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SUMMARY

Dung beetles are detrivorous insects that feed on and reproduce in the fecal material of vertebrates. This dependency
on vertebrate feces implies frequent contact between dung beetles and parasitic helminths with a fecal component to their
life-cycle. Interactions between dung beetles and helminths carry both positive and negative consequences for successful
parasite transmission, however to date there has been no systematic review of dung beetle-helminth interactions, their
epidemiological importance, or their underlying mechanisms. Here we review the observational evidence of beetle
biodiversity—helminth transmission relationships, propose five mechanisms by which dung beetles influence helminth
survival and transmission, and highlight areas for future research. Efforts to understand how anthropogenic impacts on
biodiversity may influence parasite transmission must include the development of detailed, mechanistic understanding
of the multiple interactions between free-living and parasitic species within ecological communities. The dung beetle—
helminth system may be a promising future model system with which to understand these complex relationships.
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INTRODUCTION

Changes in the community composition of free-
living biodiversity can greatly influence parasite
transmission intensity in positive and negative ways
(Randolph and Dobson, 2012; Johnson et al. 2013).
A mechanistic understanding of the observed
patterns between free-living and parasitic diversity
is a prerequisite to explorations of the consistency of
diversity-transmission relationships across parasites
with diverse ecologies.

Macroparasite-based model systems with which to
explore these relationships remain relatively scarce
(Thieltges et al. 2008; Johnson and Thieltges, 2010).
From a basic ecology perspective, this paucity of
macroparasite systems precludes a wider view of
the complex ecological networks that link parasitic
life stages and free-living biodiversity. From an ap-
plied perspective, macroparasitic diseases (e.g. hel-
minthiases) present a tremendous global disease
burden to both domestic (Over et al. 1992) and wild
animals (Albon et al. 2002), and represent the most
common infectious agents of humans in developing
countries (Lustigman et al. 2012). The expansion of
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drug resistance across several helminth families
(Prichard et al. 2012) has further led to recent calls
to consider complementary preventative approaches,
turning research on the biological regulation of macro-
parasites into a frontier applied concern (Lustigman
et al. 2012). In addition, as free-living infectious
stages (e.g. eggs, larvae or oncospheres) and complex
life-cycles that involve multiple hosts are both com-
mon features of helminth natural histories (Johnson
and Thieltges, 2010; Johnson et al. 2012a), macro-
parasite transmission success is strongly influenced
by interactions with free-living biodiversity and by
external environmental conditions. Understanding
how these interactions suppress, maintain or amplify
transmission requires a mechanistic understanding of
the ecological context of parasite transmission.

Here we review the current knowledge of
the mechanisms underlying interactions between
the fecal helminths of vertebrates and coprophagous
dung beetles. Dung beetles are a diverse and cosmo-
politan group of detrivorous insects that use ver-
tebrate feces for both adult feeding and reproduction,
an association dating back to the Cenozoic (Davis,
2009). As a consequence of this resource use, many
coprophagous species in families Scarabaeidae
(subfamilies Scarabaeinae and Aphodiinae) and
Geotrupidae (subfamily Geotrupinae) play roles in
the transmission of vertebrate parasites. Previous



Elizabeth Nichols and Andrés Gomesz 2
Table 1. Common fecal parasitic helminths of vertebrates expected to interact with coprophagous beetle
fauna during their life-cycle. Asterisks denote helminth genera known to use dung beetles as obligate
intermediate hosts. Compiled from Bowman (2008) and Schmidt et al. (2000)

Phyla Order Family Example genera
Direct transmission Nematoda Ascaridida Toxocaridae Toxocara

Nematoda Oxyurida Oxyuridae Enterobius

Nematoda Rhabditida Strongyloididae Strongyloides

Nematoda Rhabditida Ancylostomatidae Amncylostoma

Nematoda Rhabditida Filaroididae Filaroides

Nematoda Rhabditida Strongylidae Strongylus

Nematoda Rhabditida Trichostrongylidae Ostertagia

Nematoda Trichocephalida Trichuridae Trichuris
Indirect transmission  Platyhelminthes Cyclophyllidea Anoplocephalidae Moniezia

Platyhelminthes Cyclophyllidea Taeniidae Taenia*

Platyhelminthes Cyclophyllidea Davaineidae Raillietina*

Nematoda Rhabditida Stephanuridae Stephanurus

Nematoda Rhabditida Syngamidae Mammomonogamus (Syngamus)

Nematoda Rhabditida Crenosomatidae Crenosoma

Nematoda Rhabditida Angiostrongylidae Aelurostrongylus

Nematoda Rhabditida Metastrongylidae Metastrongylus

Nematoda Spirurida Gongylonematidae Gongylonema*

Nematoda Spirurida Thelaziidae Spirocerca*

studies have shown that some species of dung beetles
reduce the number of emergent nematode larvae in
livestock pastures (Mfitilodze and Hutchinson, 1988;
Hutchinson et al. 1989) and contribute to lower
parasite loads in vertebrate hosts (Fincher, 1973),
while others are also involved in the maintenance
of helminth transmission cycles, through their roles
as intermediate hosts (Gottlieb et al. 2011). As these
interactions with helminths consequently result
in both positive and negative parasite transmission
outcomes, the net epidemiological effect of these
interactions may ultimately be context-dependent.
Understanding whether dung beetle communities
buffer, maintain, or amplify parasite transmission,
and how these outcomes depend on local environ-
mental conditions is a key basic and applied ecology
question.

Here we synthesize over five decades of study on
dung beetle-helminth relationships. We propose a
series of five underlying mechanisms by which dung
beetles may influence helminth survival and trans-
mission, review the observational evidence that links
dung beetles to parasite survival and transmission
outcomes, and highlight areas for future research.
While we focus on interactions between dung beetles
and mammal macroparasites, other coprophagous in-
vertebrate species also influence parasite transmission
cycles, and dung beetles also interact with other
parasites of vertebrates.

IMPLICATIONS OF DUNG BEETLE-HELMINTH
INTERACTIONS FOR HELMINTH SURVIVAL
AND TRANSMISSION

The frequent interaction with fecal material puts
dung beetles in contact with at least 19 families of

parasitic helminths with a fecal component in
their life-cycle, predominantly within the phyla
Platyhelminthes (flatworms) and Nematoda (round-
worms) ('Table 1; Fig. 1). Dung beetles may influence
helminth survival and transmission success through
both direct and indirect effects on the viability,
survivorship or transport of parasite eggs or larvae,
and/or by directly participating in transmission
cycles (Table S1).

Direct mechanical interference

Adult dung beetles feed on the microorganism-rich
liquid in feces by first collecting fecal particles using
their maxillary galeae and then removing larger
particles before ingestion by passing fecal material
through a set of filtering setae (Madle, 1934; Holter,
2000). The remaining small particles are then further
squeezed between the beetle’s molar ridges, remov-
ing excess liquid and concentrating the ingestible
microorganisms and dead vertebrate epithelial cell
components that together represent the adult beetle’s
primary diet. Together, these feeding activities can
restrict food ingestion to particles with diameters in
the range of 2—150 um (Holter et al. 2002; Holter,
2004; Holter and Scholtz, 2005, 2007), and sig-
nificantly reduce the likelihood of successful passage
of helminth eggs (Miller, 1954; Bily and Prokopic,
1977, Bily et al. 1978; Holter, 2000). The strength of
this reduction varies depending on the identity of
both the helminth and beetle species. For example,
Miller et al. (1961) observed that the feeding actions
of four species in the genera Canthon and Phanaeus
reduced the passage of hook and roundworm eggs by
nearly 100%, while Dichotomius carolinus had little
effect. Similarly, although Ascaris sp., Trichuris sp.,
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Fig. 1. Biological and epidemiological mechanisms by which dung beetles influence the transmission outcomes of direct

and indirect life-cycle helminths.

and Taenia sp. eggs ingested by Canthon species
showed varying degrees of external and internal
damage, a significant fraction of those ingested by
beetles in the genus Phanaeus were still recognizable
after passage (Miller et al. 1961). A recent experiment
in Australia found beetle feces burial significantly
reduced the number of emergent helminth larvae
compared with human hand-burial of infected sheep
feces — a difference the authors attributed to the
mechanical impacts of beetles on larval survival
(Coldham, 2011). While such direct mechanical
interference may result both from the feeding actions
of beetle adults and larvae as well as subsequent
digestive processes within the beetles’ gastrointesti-
nal tract, we are not aware of published reports
that separate out these effects, nor explicitly examine
the viability of helminth eggs after passage.

Indirect mechanical interference

Most adult dung beetles craft brood balls from
the fibrous components of feces, oviposit directly
within these balls, and store brood balls in excavated
chambers under the soil surface to provision
developing larvae (Halffter and Edmonds, 1982;
Edwards and Aschenborn, 1987). Such extensive
manipulation of fecal material during these activities
may interfere with helminth survival, through induc-
ing microclimate changes to the fecal deposit itself
(Bryan, 1973), and through underground burial of
feces containing helminth free-living
stages (Bornemissza, 1960).

As adult beetles tunnel through vertebrate fecal
deposits during feeding and nesting activities, they
contribute to pat-fracturing and eventual breakdown
(Bryan, 1973). The subsequent increase in pat de-
siccation rates can have strong effects on parasite
development and survival (Durie, 1961; Williams

infectious

and Bilkovich, 1971; Mfitilodze and Hutchinson,
1988). These impacts may be particularly important
for direct life-cycle parasites, where definitive hosts
are (re)infected by free-living infectious larvae
released during or immediately following defecation
(Fig. 1). For example, Bryan (1973) found that under
relatively dry seasonal conditions, fecal pat aeration
by small dung beetles led to the complete desiccation
of the fecal pat and the rapid death of parasitic
nematode larvae. The burial of parasitic larvae or
eggs as a consequence of beetle brood ball relocation
may also reduce the number of emerging larvae
(Bryan, 1976; Bryan and Kerr, 1989), and therefore
overall contact rates with the final host. This negative
influence of dung beetle feces burial should be most
pronounced when brood balls are buried at depths
that exceed each helminth species’ maximum vertical
migration distance within a given soil type (Lucker,
1936, 1938).

Finally, beetle burial activities also reduce the
likelihood of splash dispersal — a passive parasite dis-
persal mechanism that occurs with contact between
rain droplets and infective stage larvae (Grenvold
et al. 1992, 1996). For example, Gronvold et al.
(1992) reported a 70-90% reduction in splash dis-
persal of infective (1.3) Cooperia spp. from cattle feces
experimentally exposed to a single dung beetle
species (Diastellopalpus quinquedens), compared with
beetle-free controls.

Indivect mechanical facilitation

Beetle-mediated changes in the abiotic conditions
of feces may alternatively enhance parasite survival
by fostering a temperature-buffered and oxygenated
environment, although empirical evidence for this
role is lacking (Bryan, 1976; Houston et al. 1984,
Chirico et al. 2003; Coldham, 2011). Waghorn et al.
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Fig. 2. Relationship between dung beetle body mass and two mechanisms of beetle-macroparasite interactions. (A)
Intermediate host competence for a given parasite with an indirect life-cycle is likely to be in part a function of the
maximum ingestible food particles (MDIP), and therefore related to beetle body size. Parasite eggs that exceed a given
dung beetle’s maximum MDIP value are less likely to be ingested by that beetle, potentially reducing potential host
competency. Data fromHolter (2000, 2004), Holter et al. (2002), Holter and Scholtz (2005) and du Toit et al. (2012).
(B) Indirect mechanical interference as a function of dung burial depth is positively related to beetle body mass.

For macroparasites with direct life-cycles, beetle feces burial depth is likely negatively related to helminth survival.
Different symbols represent different dung beetle species: Canthon aequinoctialis, C. triangularis, Dichotomius batest,
D. lucasi, Eurysternus caribaeus, Oxysternon conspicillatum, Phanaeus cambeforti, P. chalcomelas, Scybalocanthon
pygidialis, burial depth (Vulinec, 2002), body mass (Vulinec, 2000); D. carolinus, burial depth (Lindquist, 1933), body
mass (Estrada and Coates-Estrada, 2002); Onitis alexis, O. fulgidus, O. unicatus, O. viridulus, burial depth (Edwards and

Aschenborn, 1987), body mass (Davis et al. 2012).

(2002) reported an increase in parasite abundance
in experimental soil columns in treatments where
dung was experimentally hand-buried at a distance
of 5cm, relative to an unburied control. The same
shallow experimental burial had no clear influence
on final parasite emergence above ground (i.e.
where contact with definitive hosts occurs). Shallow
hand-burial trials may be an ecologically unrealistic
proxy for beetle-mediated facilitation of parasite
survival, as the maximum feces burial depth for
many dung beetle species can much deeper: e.g. 8 cm
Vulinec (2002), 12 m (Estrada and Coates-Estrada,
1991), 27cm (Shepherd and Chapman, 1998),
102 cm (Lindquist, 1933), and 130 cm (Edwards
and Aschenborn, 1987). However, as burial depth is
positively associated with beetle body size (Fig. 2b),
dung beetle communities dominated by small-
bodied beetle species may have a neutral or positive
community-level influence on helminth transmis-
sion. While these ideas require further exploration, if
dung beetles indeed demonstrate size-ordered sensi-
tivity to environmental change as has been suggested
(Larsen et al. 2005; Gardner et al. 2008), this inverse
relationship between body size and fecal helminth
survival may contribute to enhanced transmission
risk in degraded landscapes.

Direct biological facilitation

Beetles are obligate intermediate hosts for a diverse
group of helminths with indirect life-cycles (i.e. those

involving a definitive and one or more intermediate
hosts) (Table 1; Fig. 1). Here, beetles ingest eggs
from infected feces, parasites develop into an infec-
tive larval stage within the dung beetle’s body, and
successful transmission occurs upon beetle con-
sumption by a definitive host. Species from least
18 dung beetle genera (Anomiopsoides, Ateuchus,
Canthon, Copris Catharsius, Dichotomius, Epirinus,
FEucranium, Euonthophagus, Geotrupes, Gymnopleurus
Megathopa,  Onthophagus,  Onitis,  Phanaeus,
Sarophorus, Scarabaeus and Sisyphus) have been re-
ported as likely or confirmed intermediate hosts
of parasites of omnivores and carnivores, including
Ascarvops  strongylina,  Physocephalus  sexalatus,
Macracanthorhynchus  hirudinaceus, Gongylonema
verrucosum and Spirocerca lupi (Alicata, 1935;
Martinez, 1959; Bailey et al. 1963; Stewart and
Kent, 1963; Bailey, 1972; Fincher and Marti, 1982;
Stumpf, 1986; Mukaratirwa et al. 2010; Gottlieb
et al.2011; du Toit et al. 2012). For a given helminth
species, prevalence can range widely across dung
beetle hosts. For example, Bily and Prokopic (1977)
reported post experimental infection prevalence of
Ascarts suum in dung beetles to range from 90%
(Geotrupes stercorosus), 66-7% (Aphodius fimetarius),
27% (Onthophagus fracticornis) to 5% (Onthophagus
verticornis). To our knowledge, the mechanisms
of this variability in prevalence such as dung beetle
exposure to infection, and infection susceptibility
remain uncharacterized for even a single parasite
species to date.
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Direct transport facilitation

Dung beetles can play a role in helminth transmission
and dispersal when a fraction of ingested eggs survive
passage through the beetles’ masticatory and gastro-
intestinal systems. For example, Trichuris trichuria
eggs have been found in the excrement of Phanaeus
vindex and D. carolinus (Miller et al. 1961). Taenia
saginata ova have been reported as viable in Onitis sp.
and Heliocopris sp. feces for at least 4 days, with some
unfragmented ova recovered up to 10 days after
ingestion (Mutinga and Madel, 1981). In contrast,
Bergstrom et al. (1976) found no trichostrongylid
eggs (Trichostrongylus colubriformis, Nematodirus sp.,
Ostertagia sp., or Marshallagia marshall?) in the intes-
tinal tract of four different species of Aphodius and
Canthon beetles following parasite egg consumption.

Finally, dung beetles may theoretically act as
transport hosts for parasite eggs or larvae that adhere
to beetle exoskeletons, although empirical evidence
for this role is lacking. For example, Bergstrom et al.
(1976) found no trichostrongylid eggs (7. colubrifor-
mis, Nematodirus sp., Ostertagia sp. or M. marshalli)
either within the intestinal tract or on the exoskeleton
of four different species of Aphodius and Canthon.
Other coprophagous invertebrates (e.g. earthworms)
have been investigated for their role as transport or
paratenic hosts (i.e. intermediate hosts that contrib-
ute to parasite life-cycles, but are not required for
development), also with generally inconclusive re-
sults (Roepstorft et al. 2002).

LINKING BIOLOGICAL AND EPIDEMIOLOGICAL
MECHANISMS

Predicting the overall impact of dung beetles on
parasitic helminth transmission risk will ultimately
require information on the per-capita impact of each
dung beetle species in a given community on parasite
transmission success. A simplified view of helminth
transmission can be given as:

ﬂ: AP —yW — pWH (1)
dt
(modified from Dobson and Hudson, 1992), where
the impact on transmission of free-living helminths
(W) by a dung beetle community (H ) depends upon
the production of infectious parasitic stages (1) by
infected definitive hosts (P), subsequent survival
of infectious stages in the environment (y), the
probability of an infectious stage encountering the
beetle community (WH), and the proportion of hel-
minths that successfully produce an infective unit
following an interaction with the beetle community
(P) — a parameter directly linked to the likelihood of
transmission to the definitive host, following a para-
site encounter with the dung beetle community. For
direct life-cycle helminths, infective units are free-
living infective larvae that directly infect final hosts
(Fig. 1). Dung beetles interact with direct life-cycle
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helminths during nesting, where the burial of brood
balls containing feces and helminths can interfere
with helminth vertical migration to the soil surface.
An estimate of the proportion of free-living infectious
units (helminths) that survive an encounter with the
entire beetle community could be given as:

p= B x SixE )

where helminth survival depends on the per-capita
proportion of a fecal mass buried by beetle species ¢
(B;), the proportion of helminths that survive direct
mechanical interference during the feeding activities
of beetle species 7 (S;), and the proportion of hel-
minths able to successfully emerge from the average
burial depth of beetle species i (E;). The proportion of
beetle diet represented by definitive host feces (P;)
will also be an important parameter, as beetle-
helminth interactions cannot occur if a given beetle
is not attracted to infected feces of the appropriate
mammal host. For those indirect life-cycle helminths
for which dung beetles act as intermediate hosts
(Fig. 1), the infective unit of interest is the proportion
of infected beetles within the community:

p= 3 CixSixP 3

which depends upon the capacity of a given beetle
species i to become successfully infected and transmit
that infection (i.e. competence, C;), and the same .S;
and P; terms as above.

FUTURE RESEARCH PRIORITIES
Community-level influences on parasite transmission

Understanding the influence of biological com-
munities on parasitic disease transmission requires
an integrative view of the ecological mechanisms
by which overall community structure influences
variation in transmission success (Johnson et al.
2012a; Randolph and Dobson, 2012; Wood and
Lafferty, 2012). For example, host species diversity
may inversely correlate with transmission success,
either when additional host species have low or zero
competence and therefore act as epidemiological dead
ends, or when increased host diversity is associated
with a decrease in the density of competent hosts
(Keesing et al. 2006; Suzan et al. 2009). We found no
published work that quantified the relevance of
different dung beetle community compositions on
the survival or transmission of parasitic helminths.
Future studies that link such observational data with
experimental manipulation will be critical to inves-
tigations of the influence of beetle community
structure on parasite transmission.

Species traits

Species’ traits are hereditary morphological, physio-
logical or phenological characteristics that influence
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individual fitness through impacts on organism
growth, reproduction or survival, which can be mea-
sured without reference to the external environment
(Arnold, 1983; Violle et al. 2007). Traits interact with
contemporary environmental conditions and histori-
cal biogeographic conditions to influence species’
patterns of abundance and distribution (Nichols et al.
2013), including those of hosts and parasites. The
application of trait-based models in disease ecology is
remarkably recent (Johnson et al. 2012b) and have
been used to predict intermediate host competency
(du Toit et al. 2012) as well as which hosts may
function as pathogen reservoirs (Cronin et al. 2010;
Hawley and Altizer, 2010). Given the diversity of
mechanisms that link free-living biodiversity to infec-
tion outcomes in macroparasite systems (Orlofske
et al. 2012) and the strong influence of individual
variation in host susceptibility on host-parasite
interactions, trait-based disease ecology models are
likely to be extremely useful in efforts to understand
the role of complex community structure on infection
risk.

Beetle body mass may be a useful predictor of
the impacts of dung beetles on indirect life-cycle
helminths (via interspecific variation in host com-
petence; Fig. 2a), as well as on direct life-cycle hel-
minths (via per-capita influences on burial depth;
Fig 2b). Given the positive relationship between
beetle body mass and burial depth (e.g. Vulinec,
2002), indirect mechanical interference between
larger-bodied beetles and direct life-cycle helminths
may reduce overall helminth survivorship and trans-
mission risk. However, the relationship between
beetle body size and other mechanisms anticipated
to influence the survivorship of direct life-cycle
helminths (e.g. direct mechanical interference) re-
mains unexplored to date.

Dung beetle influence on indirect life-cycle hel-
minths is also likely to be related to beetle body mass,
as well as other physiological traits. For example,
beetle body mass and the intensity of Spirocerca lupi
infections of beetles appear to be positively related
(Mukaratirwa et al. 2010). This may be driven by the
positive correlation between beetle body size and the
maximum diameter of ingestible particles (Fig. 2a)
(du Toit et al. 2012). Large beetles also appear less
choosy about particle size than smaller beetles,
potentially due to evolutionary trade-offs between
high food quality (ingestion of very small particles
only) and quantity (ingestion of larger particles too)
that contributes to reduced ‘pickiness’ about particle
size by large beetles (Holter et al. 2002; Holter and
Scholtz, 2005). These mechanisms are likely to
interact, and suggest that beetle body size may be a
key morphological trait determining beetle exposure
to infection, an important component of competence.

Beetle nesting strategy may also play a role in deter-
mining maximum ingestible particle size (Holter and
Scholtz, 2005). Roller species tend to accept larger
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particles than tunnellers of similar body mass,
potentially as a consequence of reduced feces sel-
ectivity by tunnellers due to reduced exploitative
competition pressures at the feces deposition site
(Holter and Scholtz, 2005). Finally, while host
immunology clearly plays a key role in the probability
of infection and survivorship (and therefore com-
petence), these parameters remain unexplored for
dung beetles.

Diet breadth

A key attribute that shapes dung beetle—vertebrate—
parasite ecological networks is beetle diet breadth.
For this diverse group as a whole, we lack basic data
about feeding ecology, including diet breadth, plas-
ticity and their ecological correlates (Nichols et al.
2009). As attraction to infected feces is a prerequisite
of beetle interaction with fecal helminths, there is a
dire need for basic investigation into these aspects of
dung beetle natural history. The few existing pub-
lished cafeteria studies demonstrate that dung beetle
species range from extreme dietary specialism (e.g.
obligate on single species) to extreme generalists
(e.g. capable of feeding across multiple vertebrate
guilds) (Whipple and Hoback, 2012). Given the
ephemeral nature of dung beetle-vertebrate interac-
tions, both traditional field observations and cafeteria
experiments are limited in their ability to cost-
effectively evaluate dietary preferences in the wild
(Nichols et al. 2009; Garcia-Robledo et al. 2013).
Recently, the use of molecular methods has helped
expand our knowledge about animal diets in the wild
(Pompanon et al. 2012) and may prove to be par-
ticularly useful in studying dung beetle feeding
patterns.

Influence of seasonality and climate events

Environmental conditions (i.e. moisture and tem-
perature) have a major impact on the development,
survival and migratory behaviour of parasitic nema-
tode larvae with direct life-cycles (Durie, 1961;
Stromberg, 1997). Particularly in their ensheathed
infective stage, the free-living larvae of many nema-
tode species may survive for months after deposition,
depending on environmental conditions, raising
concern that the beetle-mediated burial of infected
feces in arid regions or dry seasons may result in
an infection ‘time bomb’, although no empirical
evidence currently supports this concern (Coldham,
2011). For indirect life-cycle parasites, seasonal
changes in the abundance of competent intermedi-
ate hosts will influence seasonal transmission dy-
namics. For example, the seasonal variation in
S. lupi prevalence in Israel is correlated with the
seasonal abundance variation of its principal inter-
mediate host Onthophagus sellatus (Mazaki-Tovi
et al. 2002).
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Interactions with other pathogens: micrvoparasites
and fungi

The mechanisms that interfere with or facilitate
macroparasite transmission by dung beetles may also
modulate the transmission of fecal microparasites.
Saitoh and Itagaki (1990) concluded that two species
of Onthophagus beetles that emerged from cat feces
infected with Toxoplasma gondii carried infective
oocysts, both in their feces and on their bodies. These
individuals subsequently transmitted toxoplasmosis
to mice, and onwards to kittens that consumed them
(1990). The same authors additionally detected two
additional strains of feline coccidian (Isopora felis and
Isopora rivolta) on dung beetles collected from urban
dog feces. These dung beetles were also able to suc-
cessfully transmit feline coccidia to kittens via dung
beetle-mouse consumption, suggesting a paratenic or
intermediate host role for some beetle species in feline
coccidia (Saitoh and Itagaki, 1990).

In contrast, in an investigation of the fate of
Cryptosporidium parvum oocysts ingested by three
beetle species (Anoplotrupes stercovosus, Aphodius
rufus and O. fracticornis), Mathison and Ditrich
(1999) reported that the majority of oocysts were
destroyed following passage through dung beetle
mouthparts and gastrointestinal tract, suggesting a
potentially negative influence of beetles on C. parvum
transmission. A similarly negative impact of beetle
activity on Cryptosporidium oocysts’ viability was
reported by Ryan et al. (2011), who found that
oocysts’ viability in feces burial by seven pairs of
Bubas bison declined from 58% (control) to 10% (bur-
ial treatment). In a study of the ability of the dung
beetle species Catharsius molossus to act as transport
host for the pathogenic Escherichia coli strain O157:
H7, only 5% of dung beetles tested positive for its
presence in their gut contents, leading the authors to
conclude that dung beetles appeared to play no
epidemiological role in its transmission (Xu et al.
2003). Dung beetles have also been implicated in the
reduction in abundance of the exploding fungus
Pilobolus sporangia, which forcefully disperses nema-
todes in pasture systems along with its own spores
(Gormally, 1993; Biggane and Gormally, 1994).

A background regulatory role for dung beetles in
public health?

Given that open defecation is practiced by nearly 1 in
5 people in developing countries (¢. 1-1 billion people
worldwide (WHO and UNICEF, 2012) and that
dung beetles readily bury human feces (Miller, 1954;
Nichols and Gardner, 2011), it should be expected
that dung beetles interact with the transmission of
helminths of public health concern. Human hel-
minth infections (also known as soil-transmitted hel-
minths, or STHs) are associated with approximately
10000-135000 deaths annually, severe annual
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morbidity for an estimated 300 million people
and the extensive impairment of physical and
mental development in children (Lustigman et al.
2012). The principal STH agents (i.e. Ascaris
lumbricoides, Trichuris trichiura, Necator americanus
and Ancylostoma duodenale) that disproportionately
represent the morbidity burdens of the neglected
tropical diseases recognized by the World Health
Organization (WHO, 2004; Lopez and Mathers,
2006) are all direct life-cycle helminths for which
dung beetles are expected to play a strong regulatory
role. Although chemotherapeutic intervention is
clearly effective in reducing the prevalence, intensity
and morbidity of STH infection (Hotez, 2009), mass
chemotherapy has its own challenges, including
drug resistance risk (Vercruysse et al. 2011) and
barriers to the optimal treatment coverage required
for acceptable reductions in the probability of
reinfection (Prichard et al. 2012). Given these con-
straints, it is generally accepted that anthelmintic
treatment must be complemented by improvements
in environmental sanitation, housing, health edu-
cation and access, and vector control where relevant
(Gazzinelli et al. 2012). Dung beetle-mediated
transmission suppression may be especially import-
ant in reducing environmental reservoirs of viable
STH eggs or larvae (i.e. infected feces or soil), and
therefore likely plays a positive role in the reduction
of re-infection risk.

CONCLUSIONS

Two important factors emerge from consideration
of the mechanisms that link dung beetle community
composition to fecal helminth survival and trans-
mission. First, beetle-parasite interactions may have
divergent effects on transmission intensity within a
given transmission cycle. For example, beetles above
a body mass threshold may have a neutral or positive
influence on transmission of indirect life-cycle para-
sites, while smaller species are likely to suppress the
quantity of available infecting stages, by being fully
incompetent hosts (Fig 2a). For direct life-cycle
helminths, small beetles may exert relatively weak
indirect mechanical interference as a consequence of
their shallow feces burial, yet continue to reduce
helminth viability through direct mechanical inter-
ference effects on parasite larvae and eggs.

Second, beetle-parasite interactions may have di-
vergent effects on transmission intensity across trans-
mission cycle types, given the divergent relationships
between beetle body mass and parasite transmission
and survival for direct and indirect-life-cycle para-
sites. Ultimately, the net epidemiological con-
sequences of dung beetles on the parasitic
helminths of vertebrates will be a function of the
community-wide distribution and redundancy of
beetle traits such as body size, diet breadth and
feeding strategy. The dung beetle-fecal helminth
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system is a potentially ideal model system to under-
stand the epidemiological consequences of com-
munity disassembly under environmental change,
given the cosmopolitan distribution of both beetles
and helminths, as well as their amenability to experi-
mental manipulation in both laboratory and field
settings. Here we have sought to draw attention to the
diverse ways in which coprophagous beetles may
contribute towards the maintenance, amplification
or dilution of parasitic helminth transmission.
Enhanced understanding of such mechanistic links
will be an important step in future efforts to
understand how environmental change may influence
the interactions between free-living and parasitic
species that ultimately alter infection risk (Randolph
and Dobson, 2012; Johnson et al. 2013).
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