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ABSTRACT
Recent studies predict disease risk using different proxies, such as pathogen prevalence in hosts, abundance of the main
hosts, and the number of reported disease cases. These proxies are used to build risk maps that can aid the prevention of new
disease outbreaks. To date, these proxies have not been widely tested for differences in their predictions and effectiveness,
which could have serious implications for disease control measures. In this study, we compared two different proxies inferring
hantavirus disease risk in the state of São Paulo. We compared risk level distribution to the accuracy of risk maps using (a)
Rodent Reservoir Abundance data (RRA) sampled in 2002-2008 and (b) Hantavirus Pulmonary Syndrome cases reported (RC)
in 1993-2012. RRA data were collected within forest fragments and in the matrix of six landscapes, and were extrapolated for
São Paulo State through regression models using the amount of forest cover and the collection context as predictors. Using
Bayesian models, we created a HPS risk map using annual HPS incidence, climate, landscape structure metrics and social
factors. We validated RRA and RC risk maps with actual reported HPS cases (2013-2015). These data were categorized
according to risk levels and compared using histograms and correlations. The two risk maps (RRA and RC) had a low Pearson
correlation (0,038) and a low covariance (0,016), indicating high uncertainty in the predictions between these two proxies. The
RRA map predicted that 68% of the municipalities in the state are in the medium to high risk categories, while the RC map
predicted only 6%. This indicates that the RRA risk map might be overestimating high risk areas. The RRA map also had a
higher sensitivity than the RC map to newly reported cases, correctly identifying 82% of the cases in medium to high risk
areas. On the other hand, the RC map had a higher specificity (91%), leading to better prediction of the low risk areas (31% for
RRA map). Our results draw attention to the fact that different proxies can give different results and predict different risk levels
and should be used carefully in disease studies.
Keywords: emergent diseases; landscape epidemiology; predictive power; risk maps; rodent host abundance.

INTRODUCTION

Some studies use different proxies to infer
transmissible disease risk via maps, which have
become more common in the last 20 years (Kitron
1998). The proxies generally use presence/abundance
of the main hosts in the environment (Guerra et al.
2002). Pathogen prevalence in hosts (Ostfeld et al.
2005, Xiao et al. 2016) and the number of disease
reported cases (Bhatt et al. 2013) can also be used.
This information, when coupled with information on

host ecological requirements, enables the prediction
of patterns of disease emergence, spread and control
(Biek & Real 2010), using different methods. One of
these methods is mapping host distribution to infer
disease risk, as used for Lyme disease (Guerra et al.
2002), malaria (Martens et al. 1999), and dengue
(Little et al. 2011). Likewise, the number of infected
hosts or reported disease cases can also be used in
Bayesian models, regression or niche modeling
analysis, as used for hantavirus pulmonary syndrome
(HPS) (Rogers & Randolph 2000, Glavanakov et al.
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2001) and bluetongue in France (Guis et al. 2007).
Hosts biology dictates the dynamics of pathogen

transmission and persistence (Reisen 2010). For
example, Lyme disease and HPS hosts may serve as
effective long-term reservoirs (Tälleklint et al. 1995),
with the effective dispersal of the pathogen being limited
to the dimensions of the reservoir home ranges
(Madhav et al. 2004). However, the presence or high
abundance of hosts alone does not guarantee that
humans will become infected. To acquire a zoonotic
disease, human exposure to infected hosts is also
necessary; disease transmission results from a
combination of human risk behavior and host risk.
Human risk behavior includes proximity to host habitat
due to anthropogenic activities, while host risks include
host density and the proportion of infected hosts
(Horobik et al. 2007). Anthropogenic influences affect
the epidemiology of several diseases and transmission
dynamics by altering the landscape structure, providing
mechanisms that enhance host breeding success and
increase disease risk.

Disease risk assessment comes with several
caveats (Ostfeld et al. 2005), particularly because it is
hard to incorporate all important risk factors in a single
model. The use of spatially referenced and temporal
data may add strength to epidemiological analyses.
However, to date, no study has evaluated the use of
different data (host presence, infection prevalence,
disease cases) to infer disease risk, nor integrated this
information with data derived from remote sensing.

HPS ranks among the major emerging diseases
of the last century, with great potential to become a
public health threat in the near future (Pereira et al.
2007). It was first recognized in 1993, in USA (CDC
2014) and Brazil (Brazilian Ministry of Health 2013).
Rodents of the family Cricetidae are the primary hosts
of hantavirus (Jonsson et al. 2010, family
Bunyaviridae), a virus that causes two syndromes in
humans: HPS in the Americas and hemorrhagic fever
with renal syndrome in Eurasia and Africa (Jonsson et
al. 2010). Transmission to humans occurs via inhalation
of aerosolized virus particles emitted from the excreta
of infected rodents (Lee et al. 1981, Vapalahti et al.
2010). HPS has a high lethality rate, especially in Brazil,
where it reaches ~40% (Brazilian Ministry of Health
2013, de Oliveira et al. 2015).

Each Brazilian region has different reservoir
species that host distinct hantavirus strains (Guterres
et al. 2015). In southern Brazil, the sigmodontine
rodents Oligoryzomys nigripes (Olfers, 1818) and
Necromys lasiurus (Lund, 1840) are the main
reservoirs of human HPS from the Juquitiba and
Araraquara viruses, respectively (de Oliveira et al.
2013). Both species are adapted to inhabit anthropic
environments (Umetsu & Pardini 2007, Gheler-Costa
et al. 2012) and native habitat edges (de Oliveira et
al. 2015).

Evaluating the suitability of different data
sources for predicting disease risk to ascertain the best
one can result in more accurate predictions of future
outbreaks. Better inferences of risk are critical to
define effective surveillance and control programs, with
the need for studies that include host data in disease
risk analysis (de Oliveira et al. 2015). However, the
different outcomes and efficacies of disease risk
prediction by different proxies (abundance data and
disease cases) remains unexamined. Here, we fill this
research gap by using rodent reservoir abundance
(RRA) data and the number of reported HPS cases
(RC) in a case study focused on São Paulo State, Brazil.
We created risk maps from both datasets and
hypothesized that the similarities between the two risk
maps will be intermediate, since high abundances of
reservoir rodents may lead to increased contact rates
and increased rates of infection for both rodents and
humans, increasing HPS transmission risk; and that
the risk map based on HPS reported cases will have
more accuracy in predicting high risk areas than the
risk map based on rodent reservoir abundance data,
since contracting diseases requires not only a certain
threshold of reservoir abundance but also human risk
behavior, which is included in the data used to create
this risk map.

MATERIAL AND METHODS

Study area

In this study we used data from São Paulo State,
Brazil, which includes both the cerrado and the Atlantic
Forest biomes and cover an area of 248,200 km2. This
region is ideal for this type of study because it presents
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a marked gradient of forest cover (Ribeiro et al. 2009),
different crops and human population sizes, all
important factors of disease risk.

Rodent abundance data

Rodents were sampled between 2002 and 2008,
using a 100-m sequence of 11 pitfalls traps (60 L) at
104 sites across six Atlantic Forest landscapes in São
Paulo State. Sampling regions included three
fragmented landscapes (11%, 31% and 49% of native
forest cover; here called FClandscapes) and three
continuous forest (>90% native forest cover) (Pardini
et al. 2010, Umetsu 2010; Figure 1). From the 104
sites, 68 were in native forest: 50 in fragments (15
fragments in 11% native forest cover; 15 in 49% and
20 in 31%), and the other 18 in continuous forest (for
more details see Pardini et al. 2010). The remaining
36 sites were in annual crops (landscapes with 11%
and 49% native forest cover) (Umetsu 2010). The
anthropogenic matrix of the landscapes included crops,
pastures, urban areas, forestry and native forest in
early successional stage. For continuous and fragment
landscapes, capture sessions were conducted during
2002 and 2003, totaling 23,936 trap-nights (Pardini et
al. 2010). For agricultural sites, capture sessions were
conducted during 2008, totaling 6,336 trap-nights
(Umetsu 2010).

Oligoryzomys nigripes was collected in matrix,
fragments and continuous forest (here called collection
context). For matrix sites, we calculated the abundance
per site as the sum of all individuals captured over all
capture sessions. For animals collected in forests, we
calculated the abundance per site as the sum of all
individuals captured over all capture sessions divided
by two, because the capture effort at forest sites was
double that for matrix sites. For N. lasiurus we
consider only the data collected at the 36 matrix sites,
because the number of individuals collected in forest
landscapes was very small. The captured rodents were
not tested for infection rates; therefore, given that we
did not have this information for a gradient of
environmental conditions, we used only the host
abundances. Rodents were always collected in the
summer and in the same period as the epidemiologic
data (1993-2012), which corresponds to the collection

periods of our predictor variables. We compared the
abundances in our RRA model with the results of other
studies conducted in São Paulo State, using abundance
standardized by the sampling effort for O. nigripes
and N. lasiurus separately.

Disease and social data

Data on HPS incidences per municipality per
year for 1993-2012 were obtained from the Center
for Epidemiological Surveillance of the São Paulo State.
Thus, we considered the 645 municipalities of São
Paulo State as our sampling units. For each municipality
we assigned a binary variable according to the
presence (value 1) or absence (value 0) of HPS.

Within rural landscapes, HPS generally occurs
in men over the age of 20, who live or work in
agricultural areas (de Oliveira et al. 2014, Willemann
& de Oliveira 2014). This may occur mainly because
of the absence of preventive measures (Ferreira 2003).
Therefore, we used the number of rural men older
than 14 years in each municipality, obtained from the
National Institute of Geography and Statistics (IBGE;
www.ibge.gov.br), as the population at risk for HPS,
and the Human Development Index (HDI) served as
a proxy for human development. This information was
available only for 1996 and 2006, but we wanted to
model the incidence of HPS from 1993 to 2012.
Therefore, we used the 1996 data as covariates to
predict disease incidence for 1993-2001 and the 2006
data to predict incidence for 2002-2012. We collected
municipal HDI data for 1991, 2000 and 2010 from
IBGE, using the 1991 data to predict incidence for 1993-
1998, the 2000 data to predict incidence for 1999-2005,
and the 2010 data to predict incidence for 2006-2012.

Landscape metrics for modelling HPS

Metrics for reported cases (RC) map
We used the São Paulo State forest maps

(www.iflorestal.sp.gov.br) for 2000 and 2010 and
the programs ArcGis 10.0 and Fragstats 4.1
(McGarigal et al. 2002) to calculated landscape
metrics (percentage of native habitat cover and
number of habitat fragments) for the native
vegetation of each municipality in São Paulo State,
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aggregating both forest and cerrado vegetation
patches. To match this information with available
disease data, we used metrics extracted from the
2000 map as covariates to model incidence for 1993-
2001, and metrics extracted from the 2010 map
served as covariates for the period 2002-2012. The

proportion of sugarcane cultivated in each
municipality was obtained from the Institute of
Agricultural Economics (www.iea.sp.gov.br). For
the analyses presented here, we used annual
agricultural data (1993-2012) to predict annual
disease incidence from 1993-2012.

Figure 1. Location of the studied landscapes in São Paulo State, where rodent abundance data were collected. (a) 31%
forest cover landscape, (b) 11% forest cover landscape, and (c) 49% forest cover landscape. Black dots show collection
points and the black rectangles are the control landscapes of continuous forest sites. Adapted from Pardini et al. (2010).
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Metrics for rodent reservoir abundance (RRA) map
We used the São Paulo State forest map for 2010,

in ArcGis 10.0, to calculate landscape metrics
(percentage of native habitat cover and the amount of
edge density) for the native vegetation cover of each
scale: 200-m, 500-m and 800-m radius circles around each
rodent collection point. These scales were set according
to the species' rate of movement (50 to 100 m) and the
study of Jackson and Fahrig (2012), which suggests that
the appropriate extent is between four to nine times
the average dispersal distances of a species of interest.

Climatic variables

Meteorological data was obtained from the
International Research Institute for Climate and Society
(http://iridl.ldeo.columbia.edu/index.html). NOAA/
NCEP provided temperature data, at ~50-km spatial
resolution and monthly time step; and CHIRPS provided
precipitation data, at ~5-km spatial resolution and 10-
day precipitation average monthly step. We calculated
annual mean temperatures and total annual amounts of
precipitation for 1993-2012 for each municipality and
used this data to predict annual disease incidence.

Statistical analysis

Predicting HPS using RRA
Using a model selection approach, we fitted

generalized linear models with the following variables:
percentage of native habitat cover and the amount of
edge density at each scale; the collection context; the
percentage of native forest cover at landscape level for
O. nigripes; and the percentage of native forest cover

(FC) at each scale, percentage of native forest cover at
landscape level, and type of crops ('corn' or 'others') for
N. lasiurus. All predictor variables included in the models
had a correlation lower than 21%. The best models
selected for each species were those with the lowest
AICc values (FC at 800-m scale, FClandscape, and the
interaction between collection context and FClandscape
for O. nigripes; and FC at 800-m scale for N. lasiurus;
Table 1). From the best models, we extrapolated the
abundance of the two species to the entire state, using
the São Paulo State forest map for 2010. The N. lasiurus
and O. nigripes maps were summed to build a unique
abundance map for both rodents using ArcGIS 10.0.

Predicting HPS using RC
The probability of hantavirus infection risk for

the state of São Paulo was calculated as a function of
landscape, social and climatic factors, using a Bayesian
model described in detail in Prist et al. (2016). HPS
infection risk was predicted using a Bernoulli distribution
and a model containing seven fixed covariates: proportion
of sugarcane; proportion of native vegetation cover;
number of native vegetation patches; HDI; mean annual
temperature (°C); total annual precipitation (mm); and
rural male population >14 years old. Municipality was
included as a random effect to account for differences
among them. All estimated parameters were
standardized by centering them on their mean and
dividing by two standard deviations (Gelman & Parode
2006). All priors were assigned as uninformative
distributions, and model convergence and performance
was examined via Gelman-Rubin diagnostics. Model
results were used to generate a map of hantavirus risk
areas for the state of São Paulo.

Predictor Variables O. nigripes N. lasiurus 

% native habitat cover at 800m 0.008 (±0.004) -0.033 (±0.011) 
FCLandscape   -0.00019 (±0.007)  
Context (Fragments) 2.472 (±0.331)  
Context (Forest)  -7.273 (±17.825)  
Context (Fragments): 
FClandscape 

  -0.043 (±0.008)  

Context (Forest): FClandscape 0.081 (±0.198)  

Table 1. Slope and standard error (±SE) for each variable from the best models explaining the abundance of Oligoryzomys
nigripes and Necromys lasiurus (RRA model).
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Risk map comparison and validation
The HPS risk map based on reported cases

(RC) was classified as small (<5%), medium ($5 and
#10%), high ($10 and #20%) and extremely high
(#20%) risks. The HPS risk map based on rodent
reservoir abundance (RRA) was classified as small
(<30%), medium (30$ and #40%), high (40$ and # 45%)
and extremely high (>45%) risks, allowing comparison.
Classifications were done in ArcGIS using break
classes according to quantities based on natural
groupings inherent in the data.

Risk maps were then compared through
histograms illustrating the differences in their
distributions for each risk category, and through
correlation (i.e., indicating the relationship between two
datasets; calculated as the ratio of the covariance
between the two layers, divided by the product of their
standard deviation) and variance (i.e., statistical
measure of variance from the mean). We did this using
the Band Collection Statistics tool in Spatial Analyst-
Multivariate (Batista et al. 2016). Continuous data for
both risk maps were compared through Pearson's
correlation. Thus, we ascertained whether the maps
were comparable in predicting the levels of risk in the
same municipalities. Subsequently, risk maps were
validated with actual reported HPS cases (2013-2015)
to see which proxy had the best sensitivity (e.g.,
proportion of correctly identified positives) and
specificity (e.g., proportion of correctly identified
negatives) (Brooker et al. 2002) in predicting new
disease cases, which we considered as indicators of
accuracy. We measured sensitivity as the percentage
of municipalities with actual disease cases in higher
risk categories (medium, high and extremely high), and
specificity was the percentage of municipalities without
actual infection and/or disease that were correctly
categorized as lower (small) risk.

RESULTS

The two risk maps, one obtained from rodent
reservoir abundance data and the other from reported
cases, had a low correlation in terms of risk categories,
with r=0.038 of accordance and 0.017 of covariance.
Considering risk data without categorization, correlation
between RC and RRA maps also showed a low

correlation: (r=0.11, p-value = 0.003). The results from
the statistical model generated through rodent abundance
data classified 208 municipalities as low risk (32% of
the state) and 437 as medium or high risk (68%) for
HPS infection (Figure 2). According to the RRA map,
the highest infection risk is present in municipalities in
the west and north region, while the eastern part of the
state, which includes the Serra do Mar, is classified as
low risk for HPS infection (Figure 3).

The results from the model generated through
reported cases classified 6% of the state in the medium
(5-10%) or high (>10%) risk category for HPS
infection, and 94% was classified in the low risk (<5%)
category. These numbers means that 606 (94%) out
645 municipalities were classified as low risk, 21 (3.2%)
as medium risk, 13 (2%) as high risk and 5 (0.8%) as
very high risk (Table 2; Figure 2). According to this
risk map, the highest infection risk is present in
municipalities in the northeast region, followed by some
municipalities in the east, close to Serra do Mar, and in
the western part of the state (Figure 3).

From 2013 to 2015, 33 new HPS cases were
recorded in the state of São Paulo. The HPS risk map
based on reported cases hit 36% (=sensitivity) of the
new cases, which were reported in municipalities
classified as medium to extremely high disease risk.
The other 64% of cases (21) were reported in
municipalities with low risk for HPS. From these 21
cases, 15 were reported in municipalities with up to
2% risk. From the 606 municipalities classified as low
risk, only 19 had HPS cases during these two years -
an error of 3.13%. Additionally, RC risk map predicted
that 587 (91%) municipalities would be at low risk for
HPS infection, and these presented zero new cases of
the disease.

The RRA map identified 82% (=high sensitivity)
of the new cases, which were reported in municipalities
classified as medium to high risk. From the 208
municipalities classified as low risk, only six had actual
HPS cases - an error of 2.88%. Furthermore, the RRA
map predicted that 202 municipalities (31%) would be
at low risk for HPS infection. Both risk maps classified
municipalities in the eastern part of the state, close to
the Serra do Mar region, in the low risk category, and
some of the municipalities in the northwest region were
categorized as high risk.
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Risk category 
HPS Reported Cases Rodent Reservoir Abundance 

Risk Map New cases Risk Map New cases 
Low 606 21 208  6 
Medium  21  4 273 12 
High  13  2 143 14 
Very High   5  6   21   1 

Table 2. Number of municipalities classified in each risk category of each risk map, predicted using reported HPS cases and
rodent reservoir abundance data.

Figure 2. Number of municipalities classified in each risk category (low, medium, high and very high) according to (a) the
reported cases risk map and (b) rodent reservoir abundance.

DISCUSSION

This study is a first attempt to evaluate how
different data predict disease risk, using the HPS
disease as a model. Contrary to our predictions, both
maps presented low values of similarities and
correlation between them, predicting a large number
of municipalities in different risk categories. In addition,
RRA map performed better in predicting medium to
high risk areas, while the RC risk map had greater

accuracy in predicting low risk areas but performing
worst in predict medium to high risk areas. Therefore,
accuracy aspects varied between both risk maps, with
this variation reflecting a non-uniform distribution of
risk levels in São Paulo, predicted by the use of different
data.

Reported HPS cases identified ~6% of the state
of São Paulo (39 municipalities) as presenting medium-
to-high risk of hantavirus transmission, while rodent
reservoir abundance data (RRA) identified 68% (437
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municipalities). Therefore, the RRA map had better
sensitivity than the RC map, though the latter showed
better specificity. It is noteworthy that the majority of
municipalities are classified as medium to high risk in
the RRA map, increasing the likelihood of hitting the

new HPS cases. Withal, the RC map also classified
the majority of the municipalities as low risk (96%),
increasing the chances of hitting municipalities with
no cases. Thus, both maps are overestimating one class
of disease risk and failing to predict others classes.

Figure 3. HPS risk maps based on (a) Reported cases for São Paulo State, Brazil, and (b) Rodent reservoir abundance,
respectively. Municipalities with black outline are medium to very high HPS risk.



50                                                                                          Prist et al.

Oecol. Aust., 21(1): 42-53, 2017

In our RRA map, we hypothesized that areas
with high reservoir abundance were associated with
a higher risk of infection, which is similar to what
was explored by Ryan et al. (2004) and Diallo et al.
(2011). Despite having high sensitivity and identifying
a large number of new cases (82%), this map
predicted a higher incidence of cases than actually
occurred throughout the state. Generally, the
emergence of human diseases is often found to be
more spatially restricted than the distribution of the
reservoir host (Schmaljohn & Hjelle 1997, Andreo et
al. 2014), which seems to be the case for Hantavirus
Pulmonary Syndrome in São Paulo. Therefore, it
seems that our RRA map is strongly overestimating
high risk, which may be due to the extrapolation of
this risk map to the entire São Paulo State, using the
original abundance data that was collected in Atlantic
Forest areas. These differences highlight the level of
uncertainty of our RRA model, which, together with
the lack of data on cerrado areas, can be considered
a source of bias; thus, more accurate measures of
abundance that take into account typical cerrado
landscapes could raise the performance of RRA
maps. When comparing our rodent abundance
extrapolations with data from published articles, we
observe that extrapolated abundances of N. lasiurus
differed from those studies by an average of 2.27
individuals. For O. nigripes, the mean difference was
3.36 individuals (Table 3). All studies but one differed
from the extrapolated abundances by less than five
individuals (N=11), but only four studies differed by
less than one individual.

The RC map involves three interacting
factors in space and time that are essential to a
human get infected: an infected rodent; a certain
abundance of reservoir rodents to proliferate the
infection throughout the rodent population; and a
susceptible human population. In other words, this
proxy is based on a more complete data. However,
the RC map had low sensitivity (36%) and high
specif ici ty (91%),  bet ter  predict ing the
municipalities with zero cases. Therefore, it seems
that this risk map is strongly overestimating low
risk municipalities, which may be occurring because
HPS is rare, with only a few reported cases (~200)
in 20 years of data available. Ta
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As a first and novel approach, the analyses
presented here were based on two types of easily
accessible epidemiological data: official reported HPS
cases and reservoir rodent abundances. Due to the
limitations on the use of our RRA map, we suggest
that data on viral infection and presence of infected
rodents should be coupled with reservoir abundance
data. The former may be the main determinant of direct
transmission (Ostfeld et al. 2005), but it is a proxy that
is hard to obtain or spatially extrapolate. The use of
this data still needs to be tested and compared with
host abundances and disease cases to assess whether
it infers disease risk more accurately than the two used
in this study. This is an opportune moment to evaluate
the use and validity of different proxies, given the large
number of emerging diseases affecting populations
globally (Jones et al. 2008).

In conclusion. disease predictions using different
proxies led to results that varied widely in their
sensitivity and specificity in predicting new cases of
HPS throughout São Paulo State. Each proxy had a
bias and was effective in predicting only certain levels
of disease risk. This represents a caveat to public policy
makers, since similar results are normally used to guide
the allocation of resources for preventive measures,
educational campaigns and even the collection of hosts
in the implementation of control policies. Therefore,
the use of different proxies in modeling disease risk
should be treated carefully and should be examined
further in other studies, in other regions with different
diseases and hosts, in order to determine the best data
for inferring disease risk.
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