
 

Journal of Applied Ecology

 

 2008, 

 

45

 

, 549–557 doi: 10.1111/j.1365-2664.2007.01407.x

 

© 2007 The Authors. Journal compilation © 2007 British Ecological Society

 

Blackwell Publishing Ltd

 

Regional variation in habitat–occupancy thresholds: 

a warning for conservation planning

 

Jonathan R. Rhodes

 

1,2,3

 

*, John G. Callaghan

 

4

 

, Clive A. McAlpine

 

1,2

 

, Carol de Jong

 

4

 

, 

Michiala E. Bowen

 

1,2

 

, David L. Mitchell

 

4

 

, Daniel Lunney

 

5

 

 and Hugh P. Possingham

 

2

 

1

 

Centre for Remote Sensing and Spatial Information Science, School of  Geography, Planning and Architecture, University 
of  Queensland, Brisbane, QLD 4072, Australia; 

 

2

 

The Ecology Centre, School of  Integrative Biology, University of  
Queensland, Brisbane, QLD 4072, Australia; 

 

3

 

Wealth from Oceans Flagship, CSIRO, GPO Box 1538, Hobart, TAS 7001, 
Australia; 

 

4

 

Australian Koala Foundation, GPO Box 2659, Brisbane, QLD 4001, Australia; and 

 

5

 

Department of  Environment 

 

and Climate Change (NSW), PO Box 1967, Hurstville, NSW 2220, Australia

 

Summary

 

1.

 

An important target for conservation planning is the minimum amount of  habitat needed
in a landscape to ensure the persistence of  a species. Appropriate targets can be determined by
identifying thresholds in the amount of habitat, below which persistence, abundance or occupancy
declines rapidly. Although some studies have identified habitat thresholds, we currently have little
understanding of the extent to which thresholds vary spatially. This is important for establishing
whether we can apply the same planning targets across broad geographical regions.

 

2.

 

We quantified habitat–occupancy relationships for the koala 

 

Phascolarctos cinereus

 

 (Goldfuss)
in three study regions that span much of  its geographical range. Standard and piecewise (broken-
stick/segmented) logistic regression were used to model linear and threshold habitat–occupancy
relationships. We then used an information-theoretic approach to test: (1) whether habitat–
occupancy relationships were described better by threshold or linear models and (2) where threshold
models were better, whether, and to what extent, threshold points varied among study regions.

 

3.

 

There was substantially greater support for the threshold than the linear models across a range
of habitat qualities and landscape extents. The threshold models generally predicted a rapid decline
in occupancy below the threshold points.

 

4.

 

Estimated threshold points varied, sometimes substantially, among study regions. This may
relate to cross-regional differences in habitat quality, demographic rates, and land-use patterns. The
role of habitat fragmentation is unclear.

 

5.

 

Synthesis and applications

 

. Variation in threshold points among study regions suggests that we
should be wary of using thresholds derived in one region for setting conservation planning targets
in another. Rather, we should aim to set specific targets for individual locations (and species), while
acknowledging the inherent uncertainties in these targets. This has implications for our ability to
make general conservation prescriptions for widely distributed species. Future research should aim
to develop generic models capable of predicting threshold responses across different landscapes and
life-history characteristics.
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Introduction

 

Developing quantitative rules-of-thumb for managing
biological populations is an important challenge for applied

ecologists. In particular, there is great demand from con-
servation and landscape planners for thresholds in habitat
amount, above which a species is likely to persists but below
which it will not. Various authors have suggested general
rules-of-thumb, such as 10–30% suitable habitat in a landscape,
above which species will have a good chance of persistence
(Andrén 1994; McIntyre & Hobbs 1999). These types of
rules-of-thumb are used by management agencies as a guide
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for setting habitat protection targets (e.g. ANZECC/MCFFA
1997). While we know that these rules are crude and poten-
tially misleading (Lindenmayer & Luck 2005), the need to
identify thresholds is pervasive. In the absence of habitat
amount targets, we are left with the unhelpful statement:
‘more is better’. This problem has motivated the development
of a substantial amount of theory for understanding popula-
tion responses to habitat loss and identifying extinction
thresholds (Lande 1987; Hanski, Moilanen & Gyllenberg 1996;
With & King 1999). However, we have little understanding
about the extent to which a species’ response to habitat loss
varies spatially in the real world. Consequently, we do not
know if  it is sensible to set a generalized target across a
species’ range or whether we must identify specific targets for
specific locations.

Theory shows that extinction responses to habitat loss can
be highly non-linear (Lande 1987). As habitat is lost from a
landscape critical thresholds can be reached, below which
further loss results in a rapid increase in extinction risk (Fahrig
2001). One mechanism for explaining these non-linear
responses is that, as habitat is lost, it becomes increasingly
fragmented and a threshold is eventually reached where the
landscape is no longer functionally connected (With & Crist
1995). Alternatively, threshold responses may arise from
habitat loss alone, independent of fragmentation, due to non-
linear effects on reproduction and survival (e.g. Allee effects)
and stochastic effects in small populations (Lande 1993;
Stephens & Sutherland 1999).

Empirical studies that identify threshold responses to
habitat loss as the point at which persistence, occupancy or
abundance declines abruptly as habitat is lost show that there
is substantial variation in responses (Lindenmayer, Fischer &
Cunningham 2005; Denöel & Ficetola 2007; Betts, Forbes &
Diamond 2007). It is generally accepted that threshold
responses will vary among species with different life-history
characteristics (With & King 1999; Fahrig 2001; Vance, Fahrig
& Flather 2003). However, a particular species’ response to
habitat loss is also likely to vary spatially due to differences in
landscape characteristics, such as habitat fragmentation,
landscape history and land-use (Mönkkönen & Reunanen
1999). Threshold responses for a particular species may also
vary spatially due to variation in demographic rates (Fahrig
2001). Understanding spatial variation in population responses
to habitat loss is particularly important for widely distributed
species because demographic and landscape characteristics
can vary substantially across their ranges.

We addressed this issue by quantifying the extent to which
threshold responses to habitat loss varied across a species’
geographical range, using the koala 

 

Phascolarctos cinereus

 

(Goldfuss) as a case study. The koala is a widely distributed
species, extending across 30 biogeographical regions from
tropical Queensland (18

 

°

 

 S) to temperate south-east Australia
(38

 

°

 

 S). It is a forest habitat specialist and sensitive to both
habitat loss and fragmentation (Melzer 

 

et al

 

. 2000; McAlpine

 

et al

 

. 2006). We used data on koala presence/absence from
three study regions that span its geographical range, to test:
(1) whether habitat–occupancy relationships were better

described by threshold or linear models and (2) where threshold
models were better, whether, and to what extent, threshold
points varied among study regions. To model threshold
responses, we used piecewise (broken-stick/segmented) logistic
regression, which provided an objective statistical method for
achieving these aims.

 

Materials and methods

 

STUDY

 

 

 

SPECIES

 

Koalas are arboreal folivores, feeding on a wide range of tree species
from the genus 

 

Eucalyptus

 

, but preferring mainly only a few species
in any particular area (Hindell & Lee 1987; Phillips & Callaghan
2000; Phillips, Callaghan & Thompson 2000). Koala habitat generally
consists of forest associations containing their preferred tree species,
although other factors, such as tree size, water availability and nutrient
status can also be important determinants of habitat quality (Moore

 

et al

 

. 2004; Matthews 

 

et al

 

. 2007). Since European settlement, the
koala has suffered declines in abundance and distribution due to
clearing and degradation of eucalypt forests, together with historical
hunting, disease, bushfire, drought and urbanization (ANZECC
1998; Melzer 

 

et al

 

. 2000; Phillips 2000).

 

STUDY

 

 

 

REGIONS

 

The study regions consisted of three local government areas: Noosa
(86 800 ha) in south-east Queensland, Port Stephens (97 900 ha) on
the central coast of New South Wales, and Ballarat (74 000 ha) in
central western Victoria. These span much of the koala’s geograph-
ical range, with Port Stephens being approximately 700 km south of
Noosa and Ballarat being approximately 900 km south-west of Port
Stephens. See McAlpine 

 

et al

 

. (this issue) for the locations and descrip-
tions of each study region.

 

HABITAT

 

 

 

MAPPING

 

Koala habitat has been mapped in each study region as part of the
Australian Koala Foundation’s (AKF) 

 

Koala Habitat Atlas

 

 (Lunney

 

et al

 

. 1998; AKF unpublished data). Using data from the 

 

Koala

Habitat Atlas

 

, four habitat suitability classes (highly suitable, suitable,
marginal and unsuitable) were mapped for each study region. See
McAlpine 

 

et al

 

. (this issue) for a description of the habitat mapping.

 

PRESENCE

 

/

 

ABSENCE

 

 

 

DATA

 

The presence/absence data were derived from koala faecal pellet
surveys conducted at sites located across the study regions during
winter and spring 2001/2002 in Noosa, autumn 2002 in Port
Stephens and autumn 2003 in Ballarat. Survey sites were chosen by
random stratified sampling and, at each site, a single survey, based
on searches for pellets under trees located at the site, was conducted
to determine the presence or absence of koalas. See McAlpine 

 

et al

 

.
(this issue) for descriptions of the procedures used to select sites and
the method for conducting pellet searches under trees.

The survey at each site was conducted using one of two alternative
sampling protocols, which we differentiate by referring to sites as
either ‘spot assessment’ or ‘presence–absence’ sites. The protocol
used for the spot assessment sites is described by McAlpine 

 

et al

 

.
(this issue). For the presence–absence sites, three subsites were first
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located 100 m apart, along a 200 m transect, at each site (at a few sites
logistical constraints only allowed one or two subsites to be located).
The location of the transect was chosen so that all three subsites were
within the same vegetation type. At each subsite, pellet searches
were then conducted under trees (with diameter-at-breast-height 

 

≥

 

10 cm), starting with the tree at the centre of the subsite and working
outwards, until either a pellet was found or a maximum of 12 trees had
been searched. For both protocols, a presence was recorded at a site
if at least one pellet was found, otherwise an absence was recorded.

The data consisted of: 195 spot assessment sites and 100 presence–
absence sites in Noosa (170 presences and 125 absences); 80 spot
assessment sites and 126 presence–absence sites in Port Stephens
(155 presences and 51 absences); and 100 spot assessment sites in
Ballarat (76 presences and 24 absences). Although we combined
data from surveys that used slightly different sampling protocols,
the two approaches are very similar and sampling effort at each site
was roughly the same, regardless of the protocol used. Therefore,
combining the data was considered sound.

 

CONCEPTUAL

 

 

 

MODELS

 

Prior to data analysis we developed three alternative conceptual
models for the effect of habitat loss on the probability of occupancy.
These conceptual models were then used as a basis for constructing
alternative statistical models of the relationship between koala
occupancy and the amount of suitable habitat. Based on the random
sample hypothesis (e.g. Andrén 1994), the first model (the ‘null’
model) assumes that fragmentation and small population effects are
not important. Under the random sample hypothesis, individuals
are distributed randomly across a landscape and suitable habitat
patches contain random subsamples of individuals from the broader
landscape (Coleman 1981; Haila 1983). Consequently, as habitat is
lost, the relationship between the proportion of habitat remaining
and the proportion of the population remaining is linear and one to
one (Andrén, Delin & Seiler 1997), and population density in suitable
habitat remains constant. For presence/absence, provided the sizes
of sampling units used to record occupancy are small relative to the
total area of habitat (which is the case in our study), the probability
of occupancy will remain relatively constant as habitat is lost
(see Supplementary material, Appendix S1). The second model (the
‘trend’ model) assumes that fragmentation and/or small population
effects are important and the random sample hypothesis does not
hold, leading to a decline in occupancy as habitat is lost.

The random sample hypothesis may hold at high, but not at low,
amounts of remaining habitat. This would occur if fragmentation
and/or small population effects are only important when the
amount of remaining habitat is low (e.g. Flather & Bevers 2002). In
such cases, as habitat is lost, there would initially be no decline in
occupancy, but there would be a decline once the amount of remaining
habitat was sufficiently low. If there is a clear transition between
where the random sample hypothesis holds and where it does not,
then a threshold response to habitat loss would occur. This formed
the basis of the third model (the ‘threshold’ model).

 

STATISTICAL

 

 

 

ANALYSIS

 

Around each site we generated three circular buffers, with radii of
1000 m, 3000 m and 5000 m. Then, within each buffer, we calculated
the percentage of the landscape (excluding water bodies and
unmapped areas) that was: (1) highly suitable plus suitable plus
marginal (HSSM) habitat; (2) highly suitable plus suitable (HSS)

habitat; and (3) highly suitable (HS) habitat. Buffer sizes were
chosen to encompass the range of scales at which koala dispersal
occurs, ensuring that habitat amount was measured at landscape
extents relevant to koalas at the population-level. Koala dispersal
distances have been found generally to be in the order of 1–3 km,
although can occasionally be as high as 10 km (Dique 

 

et al

 

. 2003).
Further, landscape extents of this size (particularly 1000 m buffers)
have been found previously to be appropriate for modelling koala
distributions (McAlpine 

 

et al

 

. 2006). We also generated a categorical
patch-scale metric for each survey site. This consisted of the habitat
suitability class (highly suitable, suitable, marginal or unsuitable) of
the habitat patch within which each site was located. The aim of the
patch-scale metric was to capture processes occurring at the home
range scale.

We then used standard and piecewise logistic regression to model
the probability of koala occupancy as functions of the patch-scale
habitat classes and the landscape-scale percentage habitat metrics. We
considered four alternative regression models, all of which included
the patch-scale habitat class, but differed in how the percentage
habitat metrics were included. These models were: (1) a ‘null’ model
– standard logistic regression (Hosmer & Lemeshow 2000) with no
percentage habitat covariate; (2) a ‘trend’ model – standard logistic
regression with a percentage habitat covariate; (3) a ‘threshold
(different)’ (TD) model – piecewise logistic regression (Ulm 1991)
with a percentage habitat covariate, but where the probability of
occupancy depends only on percentage habitat below different
threshold points for each study region; and (4) a ‘threshold (same)’
(TS) model – same as the TD model, but where all study regions
have identical threshold points. These regression models were chosen
as statistical representations of the three conceptual models, but
with two alternative threshold models, one with a different threshold
point for each study region and one with the same threshold points
for all study regions.

For each percentage habitat metric we fitted (by maximum-
likelihood) all four models to the data from all three study regions
and calculated 95% profile-likelihood-based confidence intervals
for the estimated threshold points, 

 

τ

 

 (Hilborn & Mangel 1997).
Then, model comparisons were conducted to: (1) assess which of the
null, trend or threshold models best described the relationships between
occupancy and percentage habitat; and (2) assess whether estimated
threshold points were the same, or different, among study regions.
These model comparisons were conducted within an information-
theoretic framework (Burnham & Anderson 2002). For each model,
we calculated its Akaike’s information criterion (AIC) and, for
each percentage habitat metric, ranked models by their AIC values
(Akaike 1973). We also calculated each model’s Akaike weight and
calculated evidence ratios for pairs of models. A model’s Akaike
weight is a measure of the probability that the model is the Kullback–
Leibler best model, given a set of models (Burnham & Anderson
2002). Evidence ratios are ratios of Akaike weights for pairs of models
and measure how much more likely one model is the Kullback–
Leibler best model, relative to another (Burnham & Anderson
2002). Also, to gain an understanding of the support for each model
within each study region, we repeated this procedure for the null,
trend and threshold (TD) models for individual study regions. All
models were fitted using 

 

r

 

 version 2·4·1 (http://www.r-project.org).
See Supplementary material, Appendices S2, S3, and S4 for formal
descriptions of the logistic regression models, the procedures used to
fit them and associated 

 

r

 

 functions.
To assess model adequacy we conducted deviance-based

goodness-of-fit tests for the trend, TD and TS models (Hosmer &
Lemeshow 2000). Although there is some distribution theory for the

http://www.r-project.org
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deviance and Pearson 

 

χ

 

2

 

 statistics for logistic regression (Hosmer &
Lemeshow 2000), it is not clear whether this extends to piecewise
logistic regression. Therefore we used a parametric bootstrap approach
to calculate 

 

P

 

-values for the goodness-of-fit tests. From each model,
we generated 1000 simulated data sets, refitted the model to each of
these, and calculated the deviance for each. This provided an empirical
distribution for the deviance, under the null hypothesis that the
model fitted to the real data was the true model. The 

 

P

 

-value for
each model was then calculated as the proportion of replicates that
had a deviance greater than the deviance of the model fitted to the
real data (

 

sensu

 

 Su & Wei 1991). We also inspected plots of the deviance
contributions of individual data points to identify any highly
influential data and possible reasons for any lack-of-fit (Pregibon
1981). Finally, to assess model discrimination ability, we calculated
the area under the receiver operating characteristic curve (AUC) for
the trend, TD and TS models (Hanley & McNeil 1982; Pearce &
Ferrier 2000). The AUC is an estimate of the probability that a
randomly chosen, truly occupied site is ranked correctly relative to
a randomly chosen, truly unoccupied site. For each model, AUCs
were calculated based on predictions from the fitted model and on
predictions derived from a ‘leave-one-out’ cross-validation procedure
(Stone 1974). The 

 

r

 

 package 

 

roc

 

 (http://www.bioconductor.org)
was used to estimate the AUCs.

 

Results

 

All models were fitted successfully to the data, except for the
TD model for HS habitat for the 3000 m buffer due to
convergence failure (see Supplementary material, Table S1 for
comprehensive details of all model fits). For individual study
regions where the threshold model could be fitted, it was the
most parsimonious model in 22 of 25 cases (Table 1). Excep-
tions were: (1) HS habitat for the 5000 m buffer in Noosa; (2)
HSS habitat for the 5000 m buffer in Port Stephens; and (3)
HSS habitat for the 1000 m buffer in Ballarat. Where the
threshold model was the most parsimonious, its Akaike
weight ranged from 0·453 to 0·999; over 70% had Akaike weights
> 0·7 and 50% had Akaike weights > 0·9 (Table 1). Therefore,
in all study regions there tended to be good support for
the threshold models relative to the null or trend models,
particularly for HSSM habitat.

For the models fitted to the combined data from all three
study regions, either the TS or TD models were always the

most parsimonious, with weak relative support for the null
and trend models (Table 2). One exception was for HS habitat
for the 3000 m buffer. Here the TS model was only slightly
more likely to be the best model than the trend model, with an
evidence ratio of 1·4 (see Supplementary material, Table S1).
However, for all other percentage habitat metrics, the most
parsimonious threshold models had evidence ratios of  at
least 111·7 relative to the null or trend models (see Supple-
mentary material, Table S1). The TD model was more parsi-
monious than the TS model for 6 of the 8 percentage habitat
metrics where the TD model could be fitted (Table 2). Evidence
ratios for the TD models relative to the TS models were 0·4,
0·4, 1·1, 3·4, 8·5, 9·8, 26·0 and 593·8 (see Supplementary
material, Table S1). Therefore, while the TS model was never
substantially more likely to be the best model than the TD
model, in many cases the TD model was substantially more
likely to be the best model than the TS model. This indicates
generally greater relative support for the TD models than the
TS models.

The goodness-of-fit tests did not reveal any significant
lack-of-fit (

 

P 

 

> 0·1) for any of the trend, TD or TS models
(see Supplementary material, Table S1). Further, inspection
of the deviance contributions from individual data points did
not reveal any that were highly influential. Individual deviance
contributions also indicated that the TD models tended to fit
the data better than the trend models at low levels of percentage
habitat (i.e. below the thresholds), but similarly at high levels
of percentage habitat. Although less distinct, the TD models
also tended to fit the data better than the TS models at low
levels of percentage habitat. AUCs for the most parsimonious
models were slightly less than 0·7 (see Supplementary material,
Table S1), indicating poor to reasonable discrimination ability
(Pearce & Ferrier 2000). The TD and TS models tended to
have similar AUCs, but generally slightly higher than the
trend models (see Supplementary material, Table S1). AUCs
based on the cross-validation predictions had slightly lower
values, but otherwise showed similar patterns (see Supple-
mentary material, Table S1).

With one exception, predictions from the threshold models
all showed rapid declines in occupancy below the threshold
points, indicating general agreement with the conceptual

Table 1. Individual models for each study region, showing the most parsimonious model and its Akaike weight (in parentheses) for each
percentage habitat metric

Habitat type Buffer radius (m) Noosa Port Stephens Ballarat

HSSM 1000 Threshold (0·994) Threshold (0·499) Threshold (0·453)
3000 Threshold (0·994) Threshold (0·990) Threshold (0·908)
5000 Threshold (0·857) Threshold (0·996) Threshold (0·905)

HSS 1000 Threshold (0·833) Threshold (0·981) Null (0·570)
3000 Threshold (0·737) Threshold (0·946) Threshold (0·764)
5000 Threshold (0·649) Null (0·507) Threshold (0·999)

HS 1000 Threshold (0·510) Threshold (0·631) Threshold (0·931)
3000 Trend (0·901)† Trend (0·999)† Threshold (0·856)
5000 Null (0·461) Threshold (0·637) Threshold (0·985)

HSSM = highly suitable plus suitable plus marginal habitat; HSS = highly suitable plus suitable habitat; HS = highly suitable habitat; 
null = null model; trend = trend model; threshold = threshold model. †Could not fit threshold model due to convergence failure.

http://www.bioconductor.org
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threshold model (Figs 1, 2 and 3). The exception was for HSS
habitat for the 5000 m buffer in Port Stephens, where the TD
model predicted occupancy to increase below the threshold
(Fig. 2e). Estimated threshold points tended to be highest in
Noosa, followed by Port Stephens and then Ballarat, although
there was also considerable overlap (Table 2). For example,
for HSSM habitat, threshold point estimates ranged from
46–61% in Noosa, 30–52% in Port Stephens, and 8–30% in
Ballarat across the different landscape extents. However,
95% confidence intervals were wide for most threshold point
estimates, indicating high levels of uncertainty (Table 2).

 

Discussion

 

Conservation planners invariably require targets for species
and habitats before they can make cost-effective decisions
(Possingham 

 

et al

 

. 2006). The task would be simplified sub-
stantially if  reliable rules-of-thumb for the amount of habitat
required by species could be developed based on thresholds.
We found that habitat–occupancy relationships for the koala
were consistently better described by threshold than linear
models, but that threshold points varied, sometimes substan-
tially, among study regions. This identifies some promise for
the use of thresholds to set conservation targets, but the vari-
ation in threshold points indicates that we cannot safely transfer
simple habitat targets from one region to another.

 

HABITAT

 

–

 

OCCUPANCY

 

 

 

RELATIONSHIPS

 

Despite theoretical support for the existence of  habitat
thresholds (Hanski, Moilanan & Gyllenberg 1996; With &
King 1999), empirical evidence for their existence is mixed

Table 2. Overall models for each percentage habitat metric, showing Akaike weights, w, estimated threshold points, τ, and 95% confidence
intervals (in parentheses)

Buffer radius (m) Model wHSSM wHSS wHS τHSSM τHSS τHS

1000 Null 0·000 0·000 0·000
Trend 0·000 0·001 0·007
TD 0·304 0·893 0·768 61·19 (52·44, 76·43) 61·47 (42·06, 87·76) 52·76 (15·55, 75·97‡)

52·42 (8·68, 80·45) 12·94 (10·43, 42·67) 32·46 (1·00, 70·54‡)
30·32 (3·88‡, 99·90‡) 22·20 (0·38‡, 93·01‡) 0·68 (0·20, 12·88)

TS 0·695 0·105 0·225 58·59 (50·57, 69·59) 42·25 (31·80, 67·09) 19·21 (14·72, 31·47)
3000 Null 0·000 0·000 0·000

Trend 0·000 0·000 0·417
TD 0·963 0·517 † 45·69 (39·02, 61·98) 38·61 (26·32, 55·68) †

30·23 (29·29, 41·33) 36·22 (29·88, 42·30)
7·79 (3·15, 36·14) 17·95 (5·40, 36·71)

TS 0·037 0·483 0·583 41·75 (32·83, 50·06) 37·02 (29·38, 41·03) 13·12 (10·03, 37·94‡)
5000 Null 0·000 0·001 0·000

Trend 0·000 0·000 0·000
TD 0·907 0·998 0·297 55·75 (37·19, 64·10) 39·28 (25·76, 57·36) 2·63 (0·68‡, 31·20‡)

42·50 (29·29, 49·00) 24·40 (20·12‡, 91·51‡) 11·86 (8·30, 25·91‡)
9·01 (4·73, 36·52) 7·34 (6·78, 9·23) 8·77 (3·11, 13·70)

TS 0·093 0·002 0·703 42·37 (29·62, 48·85) 33·99 (20·12‡, 47·62) 11·15 (8·27, 14·10)

HSSM = highly suitable plus suitable plus marginal habitat; HSS = highly suitable plus suitable habitat; HS = highly suitable habitat; 
null = null model; trend = trend model; TD = threshold model with a different threshold point for each study region; TS = threshold model 
with the same threshold points for all study regions; ‡confidence limit at minimum or maximum of data range; †could not fit model due to 
convergence failure. Threshold point estimates for the TD models are ordered: (1) Noosa (2) Port Stephens and (3) Ballarat.

Fig. 1. Fitted threshold (different) and threshold (same) models for
highly suitable plus suitable plus marginal (HSSM) habitat and the
highly suitable patch-scale habitat class. (a, b) buffer radius of 1000 m
(c, d) buffer radius of 3000 m and (d, e) buffer radius of 5000 m.
Akaike’s information criterion (AIC) differences, ΔAIC, and Akaike
weights, w, for the models are also shown.
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(Lindenmayer & Luck 2005). We did not test explicitly for the
existence of threshold vs. other possible non-linear habitat–
occupancy relationships. However, our finding that threshold
models were more parsimonious than linear models at least
suggests that declines in occupancy due to habitat loss are
more rapid when the amount of  remaining habitat is low
than when it is high for the koala. This pattern may be a con-
sequence of the koala’s specialized habitat requirements and
susceptibility to habitat fragmentation (McAlpine 

 

et al

 

. 2006).
Fragmentation effects could be related to the low nutritional
quality of the koala’s primary food sources, leading to low
energy budgets for movement (Cork & Sanson 1990), and to
matrix hostility, particularly in areas where roads and residen-
tial development are prevalent. Therefore, as habitat is lost, its
fragmentation may eventually increase the risk of local extinc-
tion by restricting connectivity, lowering reproduction and
elevating mortality (Fahrig 2003). The observed habitat–
occupancy patterns could also be a consequence of stochastic
extinctions in small populations due to events such as fire and
disease (Melzer 

 

et al

 

. 2000; Lunney 

 

et al

 

. 2007). The prevalence
of other small population processes, such as Allee effects, in
koala populations is unclear.

Noosa generally had the highest threshold points, followed
by Port Stephens and then Ballarat. Theory suggests that a
key determinant of the point at which thresholds occur is
reproductive output (or population growth rate), with thresholds
declining as reproductive output increases (Fahrig 2001;
Vance, Fahrig & Flather 2003). Evidence from a range of
studies indicates that the highest koala population densities
(and smallest home ranges) tend to occur in parts of Victoria
and southern Australia, the lowest densities in the semi-arid
forests and woodlands of inland New South Wales and
Queensland and intermediate densities in the coastal forests
of New South Wales and south-east Queensland (Gordon,
McGreevy & Lawrie 1990; Mitchell & Martin 1990; Melzer

 

et al.

 

 2000; Dique, de Villiers & Preece 2003; Lunney 

 

et al

 

.
2007). Therefore, across the koala’s range, there appear to be
latitudinal and longitudinal trends in density, with the highest
densities found in the south and the lowest densities found in
the north and west. It is interesting to note that we found occu-
pancy probabilities in highly suitable habitat to be highest
in Ballarat and Port Stephens and lowest in Noosa, which
is broadly consistent with the observed latitudinal trends in
density. These cross-regional differences in density are likely

Fig. 2. Fitted threshold (different) and threshold (same) models for
highly suitable plus suitable (HSS) habitat and the highly suitable
patch-scale habitat class. (a, b) buffer radius of 1000 m (c, d) buffer
radius of 3000 m and (d, e) buffer radius of 5000 m. Akaike’s
information criterion (AIC) differences, ΔAIC, and Akaike weights,
w, for the models are also shown.

Fig. 3. Fitted threshold (different) and threshold (same) models for
highly suitable (HS) habitat and the highly suitable patch-scale
habitat class. (a, b) buffer radius of 1000 m (c, d) buffer radius of
3000 m and (d, e) buffer radius of 5000 m. Akaike’s information
criterion (AIC) differences, ΔAIC, and Akaike weights, w, for the
models are also shown.
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to be driven by broad-scale variation in environmental
variables, such as water and nutrient availability (Moore 

 

et al

 

.
2004). The implications are that habitat qualities, and hence
intrinsic population growth rates, are probably highest in
southern parts of the koala’s range and lowest in northern and
western parts. This may partly explain the variation in thresh-
old points between study regions. However, other factors that
affect habitat quality, such as differences in land-use, are also
likely to be important. Also, koala translocations to the
Ballarat area during the 1990s (Department of Sustainability
and Environment – Atlas of Victoria Wildlife unpublished
data) could have artificially boosted koala densities there
in the short term. Therefore, whether koala populations are in
equilibrium is likely to be an important additional factor.

An alternative explanation for the variation in threshold
points is that it is due to differences in habitat fragmentation
among study regions. If  habitat fragmentation is a key
determinant of where the threshold points occur, then we
would expect to see habitat thresholds occurring earliest
in landscapes with the highest levels of  fragmentation (Hill
& Caswell 1999; Fahrig 2001). However, we observed that
habitat tended to be most fragmented (as measured by patch
density) in Ballarat, followed by Port Stephens and then
Noosa (results not shown), and so there was an inverse
relationship between fragmentation and the threshold points.
In Ballarat, koalas were recorded in many areas that were
highly fragmented because these also coincided with small
patches of  good quality habitat, containing high densities of

 

Eucalyptus viminalis

 

 (a primary food tree species), on fertile
soils. This led to high occupancy probabilities in good quality
habitats, despite high levels of fragmentation. Therefore, the
role of  fragmentation is unclear, but is likely to depend on
complex interactions with habitat quality, habitat selection
and matrix hostility.

Across the different percentage habitat metrics, we found
that the most parsimonious models were those for HSSM
habitat (see Supplementary material, Table S1), suggesting
that the amount of both high- and low-quality habitat is
important. Low-quality habitat may perform important
functions for facilitating dispersal and movement within a
hostile matrix (Wiegand, Revilla & Moloney 2005). Also,
across the different landscape extents, the most parsimonious
models were those for the 1000 m buffer (see Supplementary
material, Table S1). This is consistent with koala dispersal
distances, which are typically in the 1–3 km range for males
and < 2 km for females, and although longer dispersal dis-
tances do occur, they are less common (Dique 

 

et al

 

. 2003).
The higher support for models based on the 1000 m buffer,
relative to the larger landscape extents, suggests that the
spatial dynamics of koala occupancy are more influenced by
typical dispersal movements than less common long-distance
dispersal events.

 

THE

 

 

 

MODELLING

 

 

 

APPROACH

 

Piecewise regression models are becoming recognized more
widely as important tools for modelling ecological relation-

ships (Toms & Lesperance 2003). However, to date there have
been few ecological applications of piecewise logistic regression,
despite the widespread prevalence of presence/absence data
(but see Denöel & Ficetola 2007; Betts, Forbes & Diamond
2007). A particular characteristic of our threshold models
was that they made better predictions at low amounts of
remaining habitat than standard linear models. This is important
for conservation planning because accurate extinction risk
estimates are likely to be most critical when the amount of
remaining habitat is low. We found that threshold model fits
were adequate, but discrimination ability (AUC < 0·7) was
not particularly high. However, given the relatively simple
models adopted, low discrimination ability is not surprising.

The set of different statistical models was chosen to represent
a small number of alternative hypotheses about the nature of
the habitat–occupancy relationships. In so doing, our aim
was not to necessarily find the best statistical model, but
rather to test the relative support for each hypothesis. A range
of other non-linear statistical models, such as polynomial
regression or generalized additive models (Hastie & Tibshirani
1990), could have been considered that may have been more
parsimonious. However, threshold parameter estimates for
the piecewise models were directly interpretable and this
allowed us to quantify explicitly differences among the study
regions. This would have been more difficult to achieve using
other non-linear models that do not have directly interpretable
parameters (Muggeo 2003).

A potentially important component that was missing from
our models was the effect of site-scale variables. Although we
found that the patch-scale habitat coefficient estimates were
usually sensible, in some cases occupancy was predicted to
be higher in low-quality than in high-quality patches (see
Supplementary material, Table S1). A likely reason for this is
within-patch variation in habitat quality that we did not
account for. Within-patch variation has been shown to be an
important determinant of koala occupancy at a site (McAlpine

 

et al

 

. 2006) and therefore our models may have been improved
by the inclusion of site-scale variables. However, we do not
consider that this would have affected the broad conclusions
of the study.

 

FUTURE

 

 

 

RESEARCH

 

An extension of our approach would be to identify whether
habitat–occupancy responses vary for individual habitat
classes, rather than the fairly broad, aggregated, habitat
categories that we used. Although this would need to consider
issues of independence between habitat thresholds, it could
guide more refined conservation strategies, with different
targets for different habitat qualities. More generally, an
important area for future research is to seek explanations for
threshold responses to habitat loss and their spatial variation.
Key components of this research will be identifying whether
thresholds occur in other demographic variables, such as
survival or reproduction, and whether habitat amount
thresholds coincide with thresholds for other landscape
variables, such as habitat fragmentation. Studies designed to
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identify relationships between threshold points and life-history
and landscape characteristics will be important. This is entirely
feasible within the modelling framework that we have presented,
but would require far greater replication across landscapes
and species. The ‘Holy Grail’ in this field of research is to derive
completely generic models of habitat–occupancy relation-
ships as functions of  life-history and landscape character-
istics at regional scales (e.g. MacNally, Bennett & Horrocks
2000). Generic models of  this kind would be of substantial
benefit to conservation planners because predictions of species-
and landscape-specific threshold responses would then be
feasible.

IMPLICATIONS FOR CONSERVATION PLANNING

Extinction thresholds have been advocated as a useful concept
for setting generalized minimum habitat area targets for
conservation planning. However, this approach has been
criticized for not taking into account variability in threshold
responses to habitat loss (Lindenmayer & Luck 2005). Regional
variation in threshold points for the koala indicates a need to
set different targets in different locations. For example,
minimum targets for native forest cover of  around 60% in
Noosa, 50% in Port Stephens and 30% in Ballarat may be
sensible for conserving koala populations. A policy of uniform
targets across regions will be a risky strategy unless precau-
tionary targets can be set at high levels everywhere, which is
likely to be unrealistic. If  the threshold concept is to be a
practical tool for conservation planning, a concerted effort is
required to understand and predict how threshold behaviour
varies across different species and locations. These relationships
are currently highly uncertain, and it is therefore important
that this uncertainty is fully accounted for when using habitat
thresholds for conservation planning. This can be achieved
most effectively within a decision-theoretic framework
(Possingham et al. 2001), which would help to ensure more
prudent use of ecological thresholds.
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