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Abstract

Ecological systems are vulnerable to irreversible change when key system properties are pushed over thresholds, resulting
in the loss of resilience and the precipitation of a regime shift. Perhaps the most important of such properties in human-
modified landscapes is the total amount of remnant native vegetation. In a seminal study Andrén proposed the existence of
a fragmentation threshold in the total amount of remnant vegetation, below which landscape-scale connectivity is eroded
and local species richness and abundance become dependent on patch size. Despite the fact that species patch-area effects
have been a mainstay of conservation science there has yet to be a robust empirical evaluation of this hypothesis. Here we
present and test a new conceptual model describing the mechanisms and consequences of biodiversity change in
fragmented landscapes, identifying the fragmentation threshold as a first step in a positive feedback mechanism that has
the capacity to impair ecological resilience, and drive a regime shift in biodiversity. The model considers that local extinction
risk is defined by patch size, and immigration rates by landscape vegetation cover, and that the recovery from local species
losses depends upon the landscape species pool. Using a unique dataset on the distribution of non-volant small mammals
across replicate landscapes in the Atlantic forest of Brazil, we found strong evidence for our model predictions - that patch-
area effects are evident only at intermediate levels of total forest cover, where landscape diversity is still high and
opportunities for enhancing biodiversity through local management are greatest. Furthermore, high levels of forest loss can
push native biota through an extinction filter, and result in the abrupt, landscape-wide loss of forest-specialist taxa,
ecological resilience and management effectiveness. The proposed model links hitherto distinct theoretical approaches
within a single framework, providing a powerful tool for analysing the potential effectiveness of management interventions.
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Introduction

Regime shifts represent fundamental, sudden changes in

ecosystem state, and are usually driven by changes to key-variables

that are linked to ecological resilience – the capacity of the system

to absorb disturbance and reorganize so as to retain essentially the

same function, structure, identity and feedbacks [1]. Multiple

stable-states have been experimentally demonstrated in a variety of

ecological systems [2], and accumulating evidence suggests that

regime shifts can occur in a number of complex ecosystems, with

potentially catastrophic consequences to biodiversity, ecosystem

services and human well-being [3,4].

The ability to anticipate such dramatic changes is of foremost

importance to ecosystem management and has inspired a growing

amount of research and modeling work [5–7]. However, our

understanding of the mechanisms that may underpin regime shifts

is largely limited to aquatic environments and semi-arid

rangelands [4,8]. While there is growing support for the notion

that human-driven impacts can induce sudden changes in other

ecosystems, including tropical forests [9,10], the definition of the

key variables and feedbacks governing such shifts remain one of

the greatest challenges facing the management of human-modified

landscapes especially in the tropics [11].

Candidate drivers of potentially irreversible ecological shifts in

human-modified landscapes include changes in (1) the total

amount and configuration of native vegetation cover through its

effects on landscape connectivity, (2) vegetation structure through

its influence on natural disturbance regimes, and (3) species

composition and the potential for ecological cascades [12]. Among

these options, the total amount of native vegetation cover has been

found to be fundamentally important for all major aspects of

landscape management [13], with a growing amount of empirical

evidence linking changes in total vegetation cover to changes in

both biodiversity [14,15] and ecosystem function [16,17].

The relevance of total native vegetation cover as a driver of

ecological change in fragmented landscapes was initially suggested

by simulation studies. This body of work has shown that total

habitat cover is non-linearly related to both patch (e.g. number of
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patches, size of the largest patch, and landscape percolation) and

gap (e.g. mean distance to the nearest patch, and lacunarity, i.e.

variability in gap size) structure in fragmented landscapes [18,19],

and thus should govern thresholds in dispersal success [18],

landscape connectivity [20], and overall persistence of individual

species (‘‘extinction thresholds’’) [21,22]. Moreover, although

simulated landscapes differ from real landscapes, with their

complex array of socio-economic and biophysical constraints,

general trends in landscape structure changes tend to remain

similar in real landscapes [23]. Nevertheless, these simulation

studies contrast markedly with the majority of empirical work

during the same period, which focussed largely on island

biogeography theory and on the patch, rather the landscape scale

[19].

In a seminal meta-analysis study Andrén [24] (see also [25])

proposed the existence of a fragmentation threshold in the total

amount of remnant vegetation, below which landscape connec-

tivity is eroded (i.e. the landscape is broken into several isolated

patches) and local species abundance and richness (alpha diversity)

become dependent on the size or isolation of remaining patches.

Notably, this threshold links landscape-context and patch-area

effects, drawing on both theoretical evidence for structural

thresholds in landscape pattern [18–20] and the known impor-

tance of patch size and isolation as determinants of local extinction

risk [26–28].

Nevertheless, despite the fact that species patch-area effects have

been a mainstay of conservation science for more than three

decades there has yet to be a robust empirical evaluation of the

species patch-area relationship across multiple landscapes that

differ in the amount of total vegetation cover. Few empirical

studies have directly addressed the consequence of changes in total

native vegetation cover for multiple species [12] (but see [14,29]),

and those that considered both landscape and patch-scale

variables are confounded by inappropriate designs and uncon-

trolled variables [30]. Moreover, the relevance of such a threshold

for guiding the management of fragmented landscapes has been

questioned [13,31,32]. Since responses are expected to vary

among species depending on habitat preferences and dispersal

capacity [33], relatively minor changes in native vegetation cover

are not expected to cause abrupt changes in biodiversity across

fragmented landscapes [12].

Here we expand Andrén’s hypothesis, and propose that the

fragmentation threshold represents a first step in a positive

feedback mechanism that has the capacity to severely impair

ecological resilience, and drive a potentially irreversible regime

shift in biodiversity of fragmented landscapes. We present a new

conceptual model that makes explicit the key variables and

feedbacks governing such a shift, taking into account the

interaction between native vegetation cover at patch and

landscape scales, and between alpha (patch) and gamma

(landscape) diversity. The model considers that: (1) population

sizes and local extinction risk are determined by patch size, while

immigration rates are determined by landscape-scale vegetation

cover, and (2) the capacity to recover from local species losses

(reduction in alpha diversity) is dependent on the total landscape

species pool (gamma diversity). From the model, we derive general

predictions of how species abundance and diversity patterns at

different spatial scales should change along a gradient of native

vegetation loss, and test these predictions using a dataset on the

distribution of non-volant small mammals across replicate

landscapes in the Atlantic forest of Brazil.

Our results were consistent with the proposed model. The

species-area relationship among forest patches was strongly

dependent upon the total amount of remaining forest and was

only observed at an intermediate level of forest cover (where

gamma diversity was high but alpha diversity was dependent on

patch size). At a high level of forest cover both gamma and alpha

diversity were high, whereas a low level of forest cover was

associated with a homogeneously low alpha diversity, and thus an

abrupt drop in gamma diversity and associated ecological

resilience. The regime-shift model presented here provides a

powerful analytical and diagnostic framework for understanding

the potential effectiveness of management interventions, and

guiding the investment of limited conservation resources in

human-modified ecosystems.

Materials and Methods

Ethics Statement
Trapping and handling were approved by IBAMA - Instituto

Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis

(permissions 57/02 - IBAMA/SP, 11/04 - IBAMA/SP, 168/2004

- CGFAU/LIC, 237/2005 - CGFAU/LIC, and 262/2006 –

COFAN) and conformed to guidelines sanctioned by the

American Society of Mammalogists Animal Care and Use

Committee. Because our study involved only the capture, handling

for marking and the immediate release of small rodents and

marsupials in the field, it did not receive an approval from the

Ethics Committee of the Institute of Biosciences - University of

São Paulo (Comissão de Ética em Uso de Animais Vertebrados em

Experimentação – CEA - http://ib.usp.br/etica_animais.htm),

which only requires approval for studies on vertebrates that

include experimentation (e.g. maintenance in captivity, injection of

drugs, or surgery).

The Conceptual Model
Our conceptual model assumes that the distribution and

abundance of habitat specialist species (i.e. those that are known

from independent work to depend on native vegetation) in

fragmented landscapes is mediated by two key factors: local

resource availability (determined essentially by patch size), and

landscape immigration rates (determined by the connectivity

amongst inhabitable vegetation patches). The loss of native

vegetation is postulated to decrease ecological resilience – defined

here as the capacity of the landscape-wide biota to recover from

local species losses in individual patches – through reduced

immigration at the landscape scale. Where native vegetation cover

is high, immigration rates are high across the landscape because of

the close proximity among patches, allowing for quick recovery

from local species losses (i.e. high ecological resilience). Thus

densities of species and individuals of each species are compar-

atively high throughout the landscape, irrespective of differences in

the size of individual patches (Figure 1A). As the loss of native

vegetation proceeds, connectivity among patches decreases to the

point that the persistence of individual species within a given patch

becomes dependent on the size of the patch [24], since reduced

immigration rates are insufficient to maintain smaller populations,

which in turn are more vulnerable to local extinction from

stochastic events. Although some species are restricted to larger

patches, the regional pool of species is maintained and ecological

resilience is not severely impaired (Figure 1B). At this point, the

loss of species from smaller patches further increases the isolation

of remaining populations across the landscape, making species

persistence in the still occupied larger patches also vulnerable to

further losses of native vegetation at the landscape scale. At the

same time small additional losses of native vegetation at

increasingly low levels of total cover (,10–20%) result in an

exponential increase in the mean and variance of distances among
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patches [18,19]. Together these processes drive a positive feedback

in the erosion of landscape connectivity to the point that large

patches also become subject to local extinction and the patch-area

effect is lost again (Figure 1C). Ecological resilience is then

impaired, and the system undergoes a regime-shift characterized

by the loss of most habitat specialist species at both the patch and

landscape scale, and the proliferation of generalist species that can

successfully exploit edge and human-modified habitats [17,20].

Predictions for Biodiversity Patterns
Our model predicts a change in abundance (per unit of area),

alpha diversity (species richness per unit of area in each patch) and

gamma diversity (number of species across the entire landscape) of

habitat specialist species as native vegetation cover is reduced at

the landscape scale. Comparing across landscapes characterised by

increasing levels of total native vegetation loss we can expect that:

(1) positive patch-area effects on local abundance and alpha

diversity should be evident only at intermediate levels of native

vegetation cover, and (2) an abrupt drop in gamma diversity

should be observed at low levels of native vegetation cover. High

levels of native vegetation cover can be expected to support

consistently high levels of species abundance and alpha diversity

across individual patches, and thus a high level of total gamma

diversity across the landscape (Figure 1A). By contrast a systematic

reduction in species abundance and alpha diversity across all

patches and a concomitant drop in gamma diversity should occur

at low levels of native vegetation cover (Figure 1C). At

intermediate levels of vegetation cover, although species abun-

Figure 1. Regime shift in biodiversity along a gradient of increasing native vegetation loss (A, B, C). i. Schematic representation of the
distribution of native vegetation patches and landscape immigration rates (proportionate to width of arrows). ii. Expected relationship between
patch size and richness or abundance (per unit of area) of specialist (solid line) and generalist (dotted line) species. iii. Expected relationship between
both the effectiveness of local management (solid line) and ecological resilience of native biota (dotted line) to landscape-wide native vegetation
loss.
doi:10.1371/journal.pone.0013666.g001
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dance and alpha diversity should be positively correlated to patch

size, gamma diversity should remain high given the retention of

most species at least in larger patches (Figure 1B). For habitat

generalists, which are not expected to depend exclusively on native

vegetation, we expect either (1) no clear pattern of change in

species abundance and diversity in response to changes in

landscape vegetation cover or individual patch sizes, or (2) an

increase in abundance across all patches in landscapes with low

levels of native vegetation cover following the extinction of habitat

specialists.

Empirical Test of Predictions for Biodiversity Patterns
To test the predictions of our regime-shift model we employed a

dataset describing the distribution of 39 non-volant small mammal

species across three pairs of 10,000-ha fragmented and continu-

ously-forested landscapes in the Atlantic Plateau of São Paulo,

Brazil. The Atlantic forest is the second largest tropical forest in

South America and is characterized by having both an extremely

rich and endemic biota, while also being one the most imperilled

tropical forest ecosystems in the world [34]. Forest cover has been

reduced to less than 16% of its original extent, mostly distributed

in patches smaller than 50 ha and closer than 250 m to the nearest

edge [35]. Non-volant small mammals - the most diverse group of

mammals in the Neotropics - are good indicators of anthropogenic

alterations in the Atlantic forest, exhibiting distinct [36–38] and

rapid [39] responses to forest fragmentation. They are also known

to play key ecological roles as seed predators and dispersers [40],

while some generalist species have an important impact on human

health by acting as the main reservoirs of certain diseases [41] and

as agricultural pests [42].

The three fragmented landscapes are characterised by different

levels of remaining native forest (49, 31 and 11%, from now on

referred to as 50, 30 and 10%), but are similar with respect to

climate, topography, type of forest and of human use, and distance

to areas of continuous forest (Figure S1 and S2, Table S1, and Text

S1). The three paired continuously-forested landscapes are part of

the Serra do Mar, the largest continuous tract of Atlantic forest

remaining in Brazil [35]. Standardized, even-effort samples were

taken from a set of forest patches of a comparable size-distribution

in each fragmented landscape (15 to 20 per landscape, 50 in total),

with six additional samples from each of the paired control areas

(Figure 2). Size and shape of surveyed patches, distance to the

nearest surveyed patch and distance of sampling sites to the nearest

patch-edge did not differ among fragmented landscapes (Text S1).

Figure 2. Distribution of Atlantic forest remnants and sampling sites in the fragmented and continuously-forested landscapes.
doi:10.1371/journal.pone.0013666.g002
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This study design incorporates three features essential for testing

the regime-shift model: (1) control of the patch-size distribution

among landscapes, avoiding a bias towards larger remnants in

more forested landscapes and permitting a comparable evaluation

of patch-area effects among varying landscape contexts; (2) paired

fragmented and continuously-forested landscapes within the same

geographical range, controlling for biogeographic differences in

assemblage structure as well as providing an appropriate reference

point for measuring the conservation value of fragmented areas;

and (3) sampling of landscape units large enough to encompass

multiple sub-populations. Equally important, we explicitly incor-

porated species-specific differences in habitat requirement prior to

attempting to disentangle the effects of landscape and patch-scale

forest loss. This was achieved by grouping non-volant small

mammals into forest specialist and generalist species based on

previous independent work demonstrating inter-specific differenc-

es in habitat preference and specialization [37,38] (Text S1).

We employed a standardised sampling protocol, using the same

type, number and arrangement of traps in the 68 sites, and

sampling each area for the same number of days, regardless of

patch size. We used large pitfall traps, which are more effective

than traditional live-traps, capturing a higher number of species

and individuals, including rare species, and concentrated sampling

effort in the wet season, when daily capture success is known to be

higher [43]. At each site, we set a 100-m sequence of 11 pitfall

traps (60-L buckets, 53.0 cm in depth and 40.0 cm in diameter),

10 m from each other and connected by a 50-cm high plastic

fence. Four capture sessions of eight days each were conducted in

each site, two per summer during two consecutive summers,

totaling 32 days and 352 trap-nights in each site and 23,936 trap-

nights in the 68 sites. In each session, all sites from a pair of

fragmented and continuously-forested landscapes were sampled

within one month. In one pair of fragmented and continuously-

forested landscape, the capture sessions were conducted during the

summers of 2001–2002 and 2002–2003 and, in the other two,

during summers of 2005–2006 and 2006–2007. Animals were

marked with numbered tags at first capture (Fish and small animal

tag-size 1 – National Band and Tag Co., Newport, Kentucky). We

collected voucher specimens of all species, which were determined

by appropriate specialists (R. Rossi, A. Percequillo, Y. Leite, A.P.

Carmignotto, J.A. de Oliveira, and C. Bonvicino), and are held at

the Department of Zoology, University of São Paulo.

We evaluated the data on the total number of individuals

(abundance) and species (richness) of both specialist and generalist

taxa in each of the three fragmented landscapes with eight

alternative theoretical models (Figure 3), and employed an

information-theoretic model selection approach to identify the most

plausible candidates [44]. Candidate models encompassed a null

hypothesis, a simple patch-area effect, a landscape-context effect, a

combined landscape-context and patch-area effect, and two models

that describe landscape-dependent patch-area effects: only in the

two most deforested landscapes as proposed by Andrén [24], or only

in the landscape with an intermediate level of deforestation, as

proposed by our conceptual model (Figure 1 and 3).

All candidate models included combinations of linear and/or

constant functions, which represent (1) the lack of relationship

between the dependent variables and patch area in all landscapes,

(2) a positive relationship with patch area regardless of landscape

context, or (3) a positive relationship with patch area in one, two or

three landscapes depending on landscape context (Text S1). The

log-likelihood of each model was calculated as the sum of the log-

likelihoods of their component functions. The maximum likeli-

hood estimates for coefficients in each model were found with

optimization routines [45] as the set of values that minimized the

whole model negative log-likelihood (i.e. the sum of the negative

log-likelihood of the component functions).

Species abundances were calculated as the sum of the number

of individuals captured in each site and were modeled as a

Negative Binomial variable in models that lack patch area effects

(constant functions), and otherwise as a Poisson variable. Species

richness was calculated as the average number of species between

the two years of sampling to avoid overestimating the number of

species present simultaneously in each patch, and was modeled as

a Poisson variable in all cases. In order to express the expected

value as the average number of species per year, we used as a

response variable the mean number of species between years

multiplied by two and included in the model an offset of two,

which accounts for the two sampling years. Patch areas were

converted by their logarithms (base 10). All analyses were

conducted in the R environment, version 2.8.0 [46], and codes

are available under request from the authors.

The Akaike Information Criterion corrected for small samples

(AICc) was calculated for each model from their log-likelihoods,

number of parameters and sample sizes, and the model with the

lowest AICc was considered the most plausible. The plausibility of

alternative models were estimated by the differences in their AICc

values in relation to the AICc of the most plausible model (DAIC),

where a value of DAIC ,2 indicates equally plausible models. The

Akaike weights (wi) express the relative likelihood of each model,

in a scale of 0 to 1.

Results

In the set of 68 sampling sites we captured 3653 individuals

from 39 non-volant small mammal species, including 27 rodents

and 12 marsupials. Among those, 2219 individuals were from 27

forest specialist species (Table S2) and 1434 individuals from 12

generalist species (Table S3).

As predicted by the regime-shift model, forest specialist species

showed a strong landscape-dependent response to changes in

patch area, with both total abundance and species richness being

consistently affected by patch area only in the intermediate-

forested (30%) landscape (Figure 4). For the abundance of forest

specialist species, the landscape-dependent hypothesis of patch-

area effects only in the landscape with intermediate forest cover

was the only selected model and presented a high relative

likelihood based on AICc model weights (wi.0.99), predicting a

higher mean abundance in the two most forested landscapes, and

a positive effect of patch area only in the 30% landscape (Figure 4,

Table S4). For the richness of forest specialist species, although

three models were equally plausible, all predicted a landscape-

context effect, with mean richness being higher in the two most

forested landscapes, and a strong patch-area effect only evident in

the landscape with intermediate forest cover (30%), while no or

only weak patch-area effects were predicted in the two landscapes

with extreme (high or low) levels of forest cover (Figure 4,

Table S4).

As expected for species that are not dependent on native forest,

neither the total abundance nor richness of generalist species was

affected by differences in patch size in any of the landscapes.

Instead, the only selected model for the abundance of generalist

species predicts only a landscape-context effect with mean

abundance being higher in more deforested areas (wi .0.99,

Figure 4, Table S4). For the richness of generalist species, two

models were equally plausible: the null model with no landscape-

context or patch-area effect and one predicting a small landscape-

context effect, with mean richness being lower in the landscape

with 30% of remaining cover (Figure 4, Table S4).

Regime Shifts in Biodiversity
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In terms of the total number of forest specialist species found in

each landscape (gamma diversity), both species-accumulation

curves (Figure 5) and estimated richness (Table S2) indicate that

the most deforested landscape (10% remaining cover) harboured

3–5 times less specialist taxa than the two most forested

fragmented landscapes (30 and 50%) and control areas. As a

result, while the Bray-Curtis similarity in species composition

(presence/absence of forest specialist species) between the two

most forested landscapes was 75.9%, falling well within the range

of similarity between the control areas (73.7 to 82.1%), species

composition in the most deforested landscape (10% forest cover)

was comparatively less similar to that observed in the other

fragmented landscapes (35.3 and 40%). Moreover, the two most

forested fragmented landscapes accounted for 94 and 72% of the

total number of specialist species found in the neighbouring

control areas compared to 19% in the case of the most deforested

landscape (Table S2). The strength of this observed shift in species

composition is most clearly evident by the fact that all of the four

most abundant specialist taxa in the two most forested landscapes

(30 and 50%) were entirely absent from the landscape with only

10% remaining forest cover while common in the paired control

area (Table S2).

Discussion

We can draw two main conclusions from our results. First, the

most plausible models included the effect of total landscape forest

cover in all cases, with the effects observed in opposite directions

for forest specialist and habitat generalist species. Second, the

importance of patch-area effects varied between species groups

and among landscapes as expected by the proposed conceptual

model, with no patch-area effect on generalist species (irrespective

of landscape context) and a strong and positive effect on the

abundance and richness of forest specialist species in the

landscape with intermediate forest cover. While the lack of

evidence for a clear patch-area effect on the abundance and

richness of forest specialist species in the most forested landscape

agrees with Andrén’s fragmentation threshold [24,25], our finding

of an analogous situation in the most heavily deforested landscape

is novel. The observed reduction in abundance, local richness

(alpha diversity) and landscape richness (gamma diversity) of

forest specialist species, together with a proliferation of generalist

taxa, provide strong support for the proposed regime-shift model,

and the loss of ecological resilience in heavily deforested

landscapes.

Figure 3. Candidate models representing species-patch area relationships in landscapes with different amounts of remaining
native vegetation. Sketches represent the relationships between even-effort samples of total abundance or species richness (y axis) and patch area
(x axis) in different landscapes (lines). By definition generalist species should not respond (A) or respond positively (C) to the loss of native vegetation.
The simple patch-area effect model predicts that the abundance and richness of forest specialists increase with patch area, irrespective of landscape
context (B). Alternatively, the amount of native vegetation at the landscape scale may determine the abundance and richness of forest specialists
regardless of (C) or in combination with patch area (D). Finally, specialist species may respond to patch area only above a certain threshold of native
vegetation loss at the landscape scale (E), or only at intermediate levels of native vegetation loss, above which individual patches (regardless of size)
cannot support viable populations (F). For both D and E, the strength of the patch-area effect may depend upon landscape context.
doi:10.1371/journal.pone.0013666.g003
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Our results also emphasize the critical importance of taking into

account variation in species traits to evaluate biodiversity change

across environmental and disturbance gradients. Specialist species

- especially habitat specialists - have been shown to be particularly

affected by environmental disturbance [47]. As such biodiversity

indices that take into account the degree of specialization among

Figure 4. Plausible models describing the variation in non-volant small mammal abundance and richness in three Atlantic forest
landscapes. The models describe the variation in even-effort samples of total abundance and species richness of specialist and generalist non-
volant small mammals among forest patches in landscapes characterised by different levels of total forest loss. M - models (letters corresponding to
models in Figure 3); K - number of parameters; AICc - Akaike Information Criterion for small samples; DAICc - difference between the AICc of a given
model and that of the best model; Wi - Akaike weights (based on AIC corrected for small sample sizes).
doi:10.1371/journal.pone.0013666.g004

Regime Shifts in Biodiversity

PLoS ONE | www.plosone.org 7 October 2010 | Volume 5 | Issue 10 | e13666



species can often provide a more sensitive and robust method of

measuring human impacts in natural systems [48,49]. Geograph-

ical range size – one of the traits most often cited as a good

predictor of extinction risk – is frequently correlated to niche

breath [50], and has been commonly used as a proxy measure of

the degree of habitat specialization among species [51]. Indeed

endemic, specialized species tend to be not only more affected by

human disturbances, but also less able to recover back to their

initial state [50,52]. Our species classification was based on known

geographical distributions, and is supported by previous studies

which have shown that among Atlantic forest, non-volant small

mammals those with restricted distributions are also forest

specialists and are largely absent from anthropogenic habitats

[37,38]. This pattern appears to be consistent among non-volant

small mammal assemblages in other parts of the world [53].

Despite an increasing number of studies illustrating the

importance of landscape-scale native vegetation cover on biodi-

versity [13,15,19], empirical tests of the potential for threshold

effects have been limited to individual species [12], the interaction

between total vegetation cover and configuration at the landscape

scale [14,19], or have been confounded by differences in patch-

size distributions among landscapes [30]. Variable findings among

previous studies have cast doubt on the relevance of native

vegetation thresholds for biodiversity conservation [31]. Although

we agree that the existence of a universal threshold value (e.g. 10–

30% [24]) of native vegetation cover is highly unlikely, regime

shifts such as that shown here, albeit with varying threshold values

among different taxa and regions, maybe much more common

than currently recognized. Once factors that are critical in

determining variability in immigration rates are taken into account

(i.e. differences in species dispersal ability, habitat specialization

and the quality of the anthropogenic matrix), we believe that the

model proposed here can provide a broadly applicable guide to

understanding the consequences of native vegetation loss for

biodiversity, and thus help develop more effective strategies for

long-term conservation management in human-modified land-

scapes.

Although we only reported here the effects on biodiversity

patterns, the observed abrupt change in biodiversity may have

potentially serious ramifications for important biodiversity-medi-

ated ecosystem services, such as the control of disease risk [54].

Oligoryzomys nigripes - the rodent responsible for the strong increase

in the abundance of generalist species in the most degraded

landscape (Table S3, abundance per patch 4.262.9 in the 50%

landscape, 13.068.0 in the 30% landscape, and 27.3612.0 in the

10% landscape) and previously known to be favoured by forest

disturbance at smaller spatial scales [36,37,55,56] - is the main

reservoir of the hantavirus associated with the fatal hantavirus

pulmonary syndrome in the Atlantic forest [41]. Not only are

elevated abundances of the reservoir species known to increase

transmission rates and pathogen reproduction success, but recent

experimental work in Central America has also demonstrated that

a reduction in non-volant small mammal diversity can have the

effect of increasing hantavirus prevalence in the primary reservoir

populations [57].

There are at least three main consequences of the proposed

regime-shift model for conservation management. First, it re-

emphasises the vital importance of developing conservation plans

that account for landscape-scale processes [11,13]. Second, it

highlights the potential for maintaining high levels of biodiversity

and ecological resilience in human-modified landscapes where a

reasonable amount of native vegetation cover is retained [38].

Third, the model indicates that opportunities for enhancing

biodiversity through local management and the restoration of

native vegetation are greatest at intermediate levels of vegetation

cover (Figure 1). In such intermediate landscapes immigration

rates are reduced and biodiversity is concentrated in larger patches

but the majority of the landscape-wide species pool is maintained,

ensuring that the system still holds the potential to respond to local

conservation interventions (e.g. restoration of smaller patches, or

improvements to landscape connectivity through establishment of

corridors or more structurally complex land-uses in the matrix)

[16]. By contrast management effectiveness is likely to be lower in

landscapes that have either high or low levels of native vegetation

cover, either because biodiversity is already high across the entire

landscape or because only a small fraction of the original species

pool is available to support local recovery [16,58]. Furthermore,

our conceptual model and the predictions for changes to

biodiversity supported by our data also suggest that the

appearance of patch-area effects may represent an early warning

Figure 5. Species accumulation curves for each of the three pairs of continuously-forested and fragmented landscapes. Mean and
95% confidence intervals are presented. Color identifies the different pairs by the percentage of forest cover in the fragmented landscapes: black
250% forest cover; gray 230% forest cover; white 210% forest cover. Accumulation curves were generated in EstimateS 8.2.
doi:10.1371/journal.pone.0013666.g005
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indicator of an impending regime shift in the biodiversity of

fragmented landscapes [6]. Given the time lag between landscape

and biodiversity change [39,59], however, opportunities for

avoiding regime-shifts through management and restoration

activities are likely to exist for a period of time after the initial

human impact, and before extinctions occur.

Conservation activities are invariably constrained by limited

resources [60,61]. The proposed regime-shift model provides a

framework for evaluating both existing biodiversity benefits and

the likely effectiveness of management interventions, which should

be taken into account for the efficient allocation of conservation

and restoration resources [61]. This framework can help in

developing more cost-effective and lasting conservation strategies

by prioritizing areas for restoration in severely modified regions.

At the same time it underlines the need for proactive measures

elsewhere to prevent severe losses of vegetation that could incur

either disproportionately high restoration costs or irreversible

losses to biodiversity.

We believe that the conceptual model presented here will help

advance our understanding of the ecological consequences of

habitat loss and fragmentation by linking together three previously

established ideas, namely: (1) the importance of patch size and

isolation as determinants of local extinction risk [26–28], (2) the

importance of structural thresholds in landscape pattern for

determining dispersal success, extinction risk and biodiversity

patterns [18,19,21,22,24,25], and (3) the notion that ecological

systems can present multiple stable-states and are thus vulnerable

to regime shifts [3,4,8]. Future research should aim to test: (1) the

predictions of the proposed regime-shift model for other

taxonomic groups and ecological systems both through correlative

studies in real landscapes and experimental work, (2) the main

underlying mechanism that is assumed to drive the patterns

observed in our data - that landscape-scale immigration rates are

impaired by a landscape-wide loss of native vegetation cover, (3)

the effectiveness of restoring native vegetation cover across

different landscape contexts, and (4) the possible long-term

consequences of such wholesale shifts in biodiversity for ecosystem

functions and services.

Supporting Information

Text S1 Description of the study region, mapping procedures

and sampling design, details of data analysis, and additional

references.

Found at: doi:10.1371/journal.pone.0013666.s001 (0.08 MB

DOC)

Table S1 Distribution of all forest patches in the three

fragmented Atlantic forest landscapes with different proportions

of forest cover.

Found at: doi:10.1371/journal.pone.0013666.s002 (0.06 MB

DOC)

Table S2 Number of individuals (and sites) where forest

specialist, non-volant small mammals were sampled, total number

of captured individuals, and observed and estimated richness in

fragmented and continuously-forested landscapes.

Found at: doi:10.1371/journal.pone.0013666.s003 (0.14 MB

DOC)

Table S3 Number of individuals (and sites) where generalist,

non-volant small mammals were sampled, total number of

captured individuals, and observed richness in fragmented and

continuously-forested landscapes.

Found at: doi:10.1371/journal.pone.0013666.s004 (0.12 MB

DOC)

Table S4 Mean (X) and standard deviation (SD) of non-volant

small mammal richness and abundance among sampled sites in

the three fragmented landscapes with different proportions of

forest cover.

Found at: doi:10.1371/journal.pone.0013666.s005 (0.07 MB

DOC)

Figure S1 Distribution of land-use types in the three fragmented

landscapes with different proportions of forest cover. A- Landscape

with 50% forest cover in the municipalities of Piedade and

TapiraÃ-; B- Landscape with 30% forest cover in the municipal-

ities of Cotia and IbiÃuna; and C- Landscape with 10% forest

cover in the municipalities of RibeirÃ£o Grande and CapÃ£o

Bonito.

Found at: doi:10.1371/journal.pone.0013666.s006 (0.61 MB TIF)

Figure S2 Variation in vegetation structure among surveyed

forest patches in the three fragmented landscapes. The graph

represents a biplot of the first two axes of a Principal Component

Analysis in a correlation matrix on the foliage density in five strata

of the forest in the 50 surveyed patches. Color identifies the

percentage of forest cover in the landscapes: black 250% forest

cover; gray 230% forest cover; white 210% forest cover.

Found at: doi:10.1371/journal.pone.0013666.s007 (0.03 MB TIF)
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