THE ROLE OF LANDSCAPE ON

GENETIC DIVERSITY *Euterpe edulis*

Carolina da Silva Carvalho

Orientadores: Rosane Collevatti e Milton Ribeiro

Colaboradores: Mauro Galetti, Alexandra Sanches, Rodrigo Bernardo

THE GENETIC CONSEQUENCES OF HABITAT FRAGMENTATION¹

Alan R. Templeton,² Kerry Shaw,² Eric Routman,² and Scott K. Davis³

2003

Landscape genetics: combining landscape ecology and population genetics

Stéphanie Manel¹, Michael K. Schwartz², Gordon Luikart¹ and Pierre Taberlet¹

LANDSCAPE GENETICS: "quantifies the effects of landscape composition, configuration and matrix quality on gene flow and spatial genetic variation." (Storfer *et al.* 2007).

Effects: Relief

Hydrography

Roads

Corridors

Size

Isolation

Relative contribution of forest amount

Dixo et al. 2009

Factors that can affect the genetic diversity

Multi-scale study

CHAPTER 1

Linking genetics to landscape: large scale study for *Euterpe edulis* along Brazilian Atlantic Rainforest

Heterogenity of Atlantic Rainforest

"the forces maintaining species diversity and genetic diversity are similar." Antonovics, 2003 (Ecology)

Which factors can explain the genetic diversity of *Euterpe edulis* in Atlantic Rainforest?

• Widely distributed in the Atlantic Rainforest

- Over-explotation
- Pollinated and dispersed by animals
- Well-studied

Foto: João de Deus Medeiros

Meta-Analysis

- Published data
- Collected data

67 sites

Response variables

- Fis = endogamy coefficient
- He = expected heterozygosity
- Alelles = Number of alleles

To remove the marker effects: Generalized Linear Models (GLM)

Material and Methods

Predictive variables -RELATIVE CONTRIBUTION

- Forest amount
- Defaunation
- -Functional connectivity
- -Drainage density
- -Forest type
- -Distance from the Atlantic coast
- -Date of settling
- -Latitude
- -Potential distribution
- -Aspect

-Null Model

Generalized Addittive Models (GAM),

Model Selection, AIC

- -Date of settling **\uparrow** He, Alelles \downarrow Fis

----- Fis

He, # Alelos

Fis = endogamy coefficient

Mode					
Variables	AICc	df	dAICc	weight	_
Potential Distribution	-108.3	3	0	0.49	Bost Models
Dranaige	-107	3	1.3	0.25	
Defaunation	-103.7	3	4.6	0.05	
Northness	-103.5	3	4.8	0.04	
Latitude	-103.2	3	5.1	0.03	
Date of settling	-102.4	3	5.9	0.02	
Eastness	-102.2	3	6.1	0.02	
Null Model	-102.0	3	6.3	0.02	
Forest Type	-101.8	3	6.5	0.01	
Functional Conectivity	-101.7	3	6.6	0.01	
% of forest cover	-101.6	3	6.7	0.01	
Distance from the coast	-99.1	3	9.2	0.005	

Results and Discussion

Euterpe edulis distribution model (Maxent)

Alelles = Number of alelles

Model Ranking

Variables	AICc	df	dAICc	weight
Latitude	174.7	3	0	0.95 Best Models
Distance from the coast	181.9	3	7.1	0.02
Forest Type	184.2	3	9.4	0.008
Functional Conectivity	186	3	11.2	0.003
% of forest cover	187.7	3	13	0.001
Potential Distribution	191.8	3	17	<0.001
Dranaige	192.8	3	18.1	<0.001
Null Model	197.9	3	23.2	<0.001
Eastness	198.2	3	23.5	<0.001
Defaunation	199	3	24.2	<0.001
Date of settling	199.3	3	24.6	<0.001
Northness	200.8	3	26.1	<0.001

Results and Discussion

He = Expected Heterozygosity

Model Ranking

Variables	AICc	df	dAICc	weight	
Distance from the coast	289.3	3	0	0.46	Post Models
Potential Distribution	291.6	3	2.3	0.14	Best Wodels
Forest Type	293.8	3	4.5	0.049	
% of forest cover	293.9	3	4.6	0.046	
Functional Conectivity	293.9	3	4.6	0.045	
Northness	294	3	4.7	0.044	
Defaunation	294.2	3	4.9	0.040	
Eastness	294.2	3	4.9	0.040	
Null Model	294.2	3	4.9	0.040	
Dranaige	294.9	3	5.6	0.028	
Latitude	294.9	3	5.6	0.027	
Date of settling	295.1	3	5.8	0.026	

Results and Discussion

Which factors can explain the genetic diversity of *Euterpe edulis* in Atlantic Rainforest?

- Potencial Distribution
 - Dranaige
 - Latitude
- Distance from the coast

Brazilian Forest Code

Multi-scale study

ECOLOGIA DE PAISAGENS E SUSTENTABILIDADE: CONECTANDO A TEORIA À PRÁTICA DA CONSERVAÇÃO

APRESENTAÇÃO

TRABALHOS PREMIADOS

TRABALHOS PREMIADOS ORAIS

OBJETIVO DO EVENTO

TEMAS

PROGRAMA

CRONOGRAMA

LOCAL DO EVENTO

INSCRIÇÃO DE RESUMOS

COMISSÕES

SECRETARIA

HOSPEDAGEM E PASSAGENS

LINKS UTEIS

POSTER / ORAL

MINI CURSOS

TAXAS DE INSCRIÇÃO

EDITAL 2014

CO.059 RETHINKING EDGE EFFECTS: THE UNACCOUNTED ROLE OF GEOMETRIC CONSTRAINTS Prevedello JA1, Figueiredo MSL1, Grelle CEV2, Vieira MV2 - 1Universidade Federal do Rio de Janeiro - Programa de Pós-Graduação em Ecologia, 2Universidade Federal do Rio de Janeiro -Depto. de Ecologia Marcus Vinícius Vieira

mvvieira@biologia.ufrj.br

SP.09

Modelagem ambiental em apoio a políticas públicas Carolina Marques Guilen Lima – UFMG carolmg@gmail.com

CO.089

LINKING GENETICS TO LANDSCAPE: LARGE SCALE STUDY FOR Euterpe edulis ALONG BRAZILIAN ATLANTIC RAINFOREST

Carvalho CS1, Galetti M2, Bernardo R2, Sanches A2, Collevatti RG1, Ribeiro MC2 - 1Universidade Federal de Goiás - Instituto de Ciências Biológicas, 2Universidade Estadual Paulista "Júlio de Mesquita Filho" - Departamento de Ecologia

Carolina da Silva Carvalho carolinacarvalho@msn.com

CHAPTER 2

Landscape structure effects on the gene flow and genetic structure of *E. edulis*

- 8 Landscape \rightarrow r = 2km
- 22 Forest Fragment
- 30 seedling per forest fragment

8 loci of SSR

Landscape metrics

- Forest amount
- Functional connectivity
- Structural connectivity
- Matrix resistence
- Patch size
- Isolation

Model Selection and AIC

- Patch scale
- Landscape scale

Resistence of gene flow \rightarrow sugar cane = pasture matrix > *Eucaliptus*

Resistence of gene flow \rightarrow sugar cane = pasture matrix > *Eucaliptus*

Resistence of gene flow \rightarrow sugar cane = pasture matrix > *Eucalyptus*

CHAPTER 3

How much samples and/or locus on landscape genetics studies?

- 8 Landscape \rightarrow r = 2km
- 22 Forest Fragment
- 30 seedling per forest fragment

Material and Methods

n de individuos

Obrigada! carolina.carvalho@ymail.com

