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Arid and semiarid ecosystems endure strong spatial search sites. Subsequent comparisons to field data and
and temporal variation of climate and land use that re- geographical information system (GIS) maps were
sults in uniquely dynamic vegetation phenology, cover, deemed successful. The SWIR2 region of the reflected so-
and leaf area characteristics. Previous remote sensing ef- lar spectrum provides a robust means to estimate the ex-
forts have not fully captured the spatial heterogeneity of tent of bare soil and vegetation covers in arid and semi-
vegetation properties required for functional analyses of arid regions. The computationally efficient method
these ecosystems, or have done so only with manually in- developed here could be extended globally using SWIR2
tensive algorithms of spectral mixture analysis that have spectrometer data to be collected from platforms such as
limited operational use. These limitations motivated the the NASA Earth Observing-1 satellite. Elsevier Sci-
development of an automated spectral unmixing ap- ence Inc., 2000
proach based on a comprehensive analysis of vegetation
and soil spectral variability resulting from biogeophysical
variation in arid and semiarid regions. A field spectro- INTRODUCTION
scopic database of bare soils, green canopies, and litter

Dynamic climate and land use in arid and semiarid sys-canopies was compiled for 17 arid and semiarid sites in
tems result in complex spatial and temporal variation ofNorth and South America, representing a wide array of
vegetation properties. Large-scale monitoring is criticalplant growth forms and species, vegetation conditions,
for assessments of ecological change in these regionsand soil mineralogical-hydrological properties. Spectral
(UNEP, 1992). The tight coupling of vegetation cover toreflectance of dominant cover types (green vegetation, lit-
important hydrological and biogeochemical processes (e.g.,ter, and bare soil) varied widely within and between
Schlesinger et al., 1996; Schlesinger and Pilmanis, 1998)sites, but the reflectance derivatives in the shortwave-in-
emphasizes the paramount importance of resolving vegeta-frared (SWIR2: 2,100–2,400 nm) were similar within and
tion and bare soil extent for functional analyses of theseseparable between each cover type. Using this result, an
environments. However, the spatial extent of vegetationautomated SWIR2 spectral unmixing algorithm was de-
and bare soils is notoriously difficult to measure in aridveloped that includes a Monte Carlo approach for esti-
and semiarid ecosystems using satellite imagery becausemating errors in derived subpixel cover fractions re-
variation occurs on the scale of a few meters or less.sulting from endmember variability. The algorithm was

Traditional multispectral classification approachesapplied to SWIR2 spectral data collected by the Airborne
(e.g., using Landsat TM or NOAA Advanced Very HighVisible and Infrared Imaging Spectrometer instrument
Resolution Radiometer (AVHRR)) have provided broad-over the Sevilleta and Jornada Long-Term Ecological Re-
scale estimates of vegetation greenness needed to link
climate variability to ecological variation in arid and

* Department of Geological Sciences and Environmental Studies semiarid regions (e.g., Tucker et al., 1991; Myneni et al.,
Program, University of Colorado, Boulder 1996). However, past efforts have not provided the de-† Department of Applied Mathematics, Brown University, Prov-

tailed biogeophysical information needed to monitor andidence
model important changes in vegetation properties thatAddress correspondence to Gregory P. Asner, University of Colo-

rado, Department of Geological Sciences, Benson Building, Campus can occur on the spatial scales of land use and biogeo-
Box 399, Boulder, CO 80209-0399. E-mail: gregory.asner@colorado. chemical cycling. For instance, a 30-m Landsat TM im-edu

Received 20 September 1999; revised 2 December 1999. age can indicate spatial and temporal variation in green-

REMOTE SENS. ENVIRON. 74:99–112 (2000)
Elsevier Science Inc., 2000 0034-4257/00/$–see front matter
655 Avenue of the Americas, New York, NY 10010 PII S0034-4257(00)00126-7



100 Asner and Lobell

ness (via the normalized difference vegetation index 1998). Thus, vegetation and soil spectral endmembers
collected in the field are difficult to apply in spectral(NDVI)), but greenness estimates cannot easily separate

the effects of changing vegetation condition (such as leaf mixture analyses at the spatial scales needed for regional
monitoring efforts.area index) relative to vegetation cover (Carlson and Rip-

ley, 1997). However, the difference is important from Several spectral unmixing approaches have been de-
veloped to address variation in vegetation and soil end-biogeochemical, hydrological, and land-use management

points of view (Asner et al., 1998a; Wessman and Asner, member spectra (e.g., Bateson et al., 2000; Smith et al.,
1994). The most flexible approaches derive ranges of1998). Similarly, few multispectral classification ap-

proaches have quantitatively resolved the extent of senes- spectral endmembers from field data or image pixels and
then incorporate this variability into subpixel cover esti-cent plant canopies (standing litter) and bare soil. Several

efforts have focused on removing the effects of these mates (e.g., Bateson et al., 1999). Efforts to incorporate
endmember variability (e.g., via fuzzy endmember setsconstituents from greenness indices (e.g., van Leeuwen

and Huete, 1996), but specific quantification of litter or bundles) are physically consistent with the natural
variability that occurs among vegetation and soil spectra,canopy and bare soil cover has proven elusive using exist-

ing multispectral approaches. but broad variation in endmembers often leads to wide
ranges of plausible cover fraction results. Therefore, it isImaging spectrometry provides near-contiguous, nar-

rowband spectral analysis of the land surface that has desirable to establish features of the spectrum that, for
the most common land-cover types, display the leastproven useful for studying a wide variety of biophysical

and geological processes (Green et al., 1998). One of the spectral variability while remaining distinct from one
another.most common uses of imaging spectrometry is spectral

mixture analysis, which capitalizes on unique spectral Previous work involving arid and semiarid vegetation
in North and South America indicated high spectral vari-features of surface properties to estimate the subpixel

cover fraction of specific land-surface types (Smith et al., ability of live and senescent canopies (Asner, 1998; Asner
et al., 2000). Most of this variation was attributed to the1994; Wessman et al., 1997). A central assumption is that

land-cover endmembers sum linearly, or that departures spatial and temporal heterogeneity of leaf and litter area
index (LAI, LitterAI). Similarly, it was observed that soilfrom this assumption can be accommodated via residual

cover fraction estimates or through the use of spectral reflectance varied within and between sites due primarily
to moisture content. However, among the sites visited inendmember bundles (Bateson et al., 2000). Spectral mix-

ture analysis has proven useful for studying various geo- those studies, there were consistent spectral derivatives
for green vegetation, litter, and bare soils in the short-logical properties of arid and semiarid regions due to the

distinct spectral signatures of constituent rock and soil wave-infrared region between 2,100 nm and 2,400 nm
(the “SWIR2” region). Although the overall reflectanceminerals (Goetz et al., 1985). An important aspect of this

approach is that the spectral properties of minerals are of each cover type varied sharply within and across sites
and the spectral derivatives varied throughout most ofvery consistent, allowing mixture modeling approaches to

readily employ library endmembers (Clark, 1999). the visible and NIR (NIR), the SWIR2 spectral deriva-
tives varied little and were distinct between land-coverIn comparison to minerals, the spectral properties of

live and senescent plant canopies are much less consis- types (Fig. 1).
The consistency of the SWIR2 derivative spectra oftent. Variation in the condition, amount, and architec-

tural orientation of plant tissues create canopy-level spec- green vegetation canopies results from foliar water acting
as a very strong absorber of SWIR2 radiation (Wooley,tral variation that cannot be easily predetermined in a

spectral library. It is this variation that motivates much of 1971; Ustin et al., 1999). At LAI values of 1.0, the
SWIR2 region nearly saturates at the reflectance valuesthe biophysical remote sensing community, whose goals

include monitoring the dynamics of vegetation phe- typical of green vegetation, and the SWIR2 derivative
spectra are consistent at LAI of 1.0 and greater (Asner,nology, greenness, leaf area, and energy absorption (e.g.,

Field et al., 1995; Myneni et al., 1997; Running et al., 1998). The distinct features in SWIR2 litter reflectance
result from stretching, bending, and overtones of C-H1994; and many others). While the condition, amount,

and architectural placement of the tissues can all contrib- and O-H bonds associated with organic carbon com-
pounds interacting with shortwave radiation (Curran,ute to variability in canopy reflectance, in reality, a sub-

set of variables tend to dominate the variation within any 1989). Soil spectra collected by Asner (1998) had a dis-
tinctive absorption feature centered near 2,200 nm,given ecosystem or landscape (Asner, 1998). In arid and

semiarid ecosystems, the amount of green and senescent which results from combinations and overtones of hy-
droxyl absorption in the clay lattice structure of soils thatfoliage accounts for most of the spatial and temporal

variation in canopy-level reflectance and energy absorp- dominate many arid and semiarid environments (Ben-
Dor et al., 1999). Although the SWIR2 soil spectra var-tion (van Leeuwen et al., 1997; Asner et al., 1998b). In

addition, surface moisture and roughness strongly affect ied with mineralogy and clay content (cf., Drake et al.,
1999), this variation was limited to a much smaller rangethe soil reflectance (Jacquemoud et al., 1992; Pinty et al.,
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was first to quantify the biogeophysical variability of the
dominant endmembers at as many field sites and under
as many conditions as we thought necessary to ultimately
acquire statistical confidence in the subpixel cover frac-
tions. Recognizing the multitude of highly variable green
and senescent plant canopies and bare soil in these re-
gions, we felt that a thorough survey of their spectral
properties would yield the most generalizable endmem-
ber data set needed to establish the most predictable
spectral region for mixture modeling. The field spectral
survey included vegetation types from grasslands, shrub-
lands, woodlands, and savannas in desert, semidesert,
temperate, subtropical, and tropical climates (Table 1).
The data set included green and litter canopies of more
than 450 herbaceous and woody plant species, represent-
ing a wide array of growth forms, physiologies, canopy
architectures, intracanopy shading, tissue chemistries,
and tissue optical properties (Asner, 1998; Asner et al.,
2000; and unpublished data). LAI ranged from 0.2 to 7.9
among green canopies, while litter area index (litterAI)
varied from 0.3 to 6.6 for senescent herbaceous canopies.

The data were collected using a full-range (350–
2,500 nm) spectrometer with an 188 sensor foreoptic
(Analytical Spectral Devices, Inc., Boulder, CO, USA).Figure 1. Typical spectra of green

canopy (dotted), litter (solid), and This instrument collects data in 1.4-nm intervals from
bare soil (dashed) in SWIR2 region 350–1,100 nm and 2.2-nm intervals in the remaining
(2,000–2,400 nm). Primary causes of shortwave-infrared (1,100–2,500 nm). All measurementsmajor spectral features are provided.

were collected within 1 hour of local solar noon on clear-
sky days. The sensor was held 1.5 m above the top of
each canopy or soil surface in the nadir position. A lad-of values in the spectral derivatives. While the overall re-
der was used to obtain spectra of large shrubs and treesflectance of both litter canopies and bare soils varied
at some of the sites. Radiance measurements were con-sharply from place to place, their SWIR2 derivative spec-
verted to reflectance using a Spectralon (Labsphere,tra were consistent and distinct.
Inc., Stratton, NH, USA) calibration panel, which wasBased on these earlier observations, we sought to
measured immediately before each canopy or soil mea-capitalize on the apparent consistency of the SWIR2 de-
surement.rivatives by developing a spectral unmixing algorithm to

The 98,423-spectrum database was analyzed to findestimate vegetation and bare soil extent in arid and semi-
which wavelength region was most consistent for use inarid regions. Our approach was based on a three-compo-
a generalized spectral unmixing model. Endmembernent effort: (1) an expanded spectral survey of green veg-
bundles were then constructed to represent the variabil-etation, standing and surface litter, and bare soils at 17
ity in the selected wavelength region. Final preparationrepresentative sites in North and South America; (2) es-
of the endmember sets included high-frequency filteringtablishment of a reliable set of SWIR2 spectral signa-
and linear transformation to emphasize spectral shape.tures for each dominant land-cover types found in arid
Two possibilities were considered for characterizingand semiarid regions; and (3) development of a fast, au-
spectral shapes: derivative spectra and “tied” spectra,tomated spectral unmixing approach that includes statis-
with the latter defined as subtracting the value at onetical estimation of uncertainty in the derived subpixel
wavelength (the tie point) from all other wavelengths. Ascover fractions. This paper reports the results of each
will be demonstrated, the tied spectra can be advanta-step and a further extension to a spectral index method
geous because they are less sensitive to very narrowbandfor potential use with future multispectral imagers.
noise that can arise in derivative data.

METHODS Spectral Mixture Analysis
Field Spectroscopy Most spectral mixture models represent the reflectance

of an image pixel as the linear combination of endmem-To develop a broadly applicable spectral unmixing ap-
proach for arid and semiarid ecosystems, our strategy ber spectra [see Eq. (1)]:
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Table 1. Description of Field Sites Visited to Collect Canopy and Bare Soil Endmember Spetra

Ecosystem/Vegetation Annual Dominant Canopy-Level Spectral Data
Type Site Location Resource Area Precipitationa Soil Type LAI Rangeb Collectedc,d

Desert grassland Jornada LTER Chihuahuan Desert 230 Aridisols 0.1–0.8 GL (680)
B (142)

Desert scrub/shrubland Jornada LTER, NM Chihuahuan Desert 230 Aridisols 0.9–3.1 S (452)
B (1105)

Arid grassland Sevilleta LTER, NM Great Plains, 255 Entisols 0.2–1.6 GG (79)
Great Basin GL (394)
Shrub-Steppe B (91)

Desert shrubland, Sevilleta LTER, NM Great Plains, 255 Entisols 0.8–3.9 S (178)
shrub-steppe Great Basin B (1,340)

Shrub-Steppe
Desert scrub/shrubland Tucson, AZ Sonora Desert 290 Aridisols 0.6–4.4 S (262)

B (1,003)
Semiarid shortgrass Colorado Springs, CO Rollings Plains 385 Alfisols/Mollisols 0.4–1.7 GG (167)

Prairie GL (605)
B (202)

Semiarid woodland Colorado Springs, CO Front Range 402 Entisols 0.6–4.4 S (158)
Woodland-Grassland B (790)
Transition

Semiarid/temperate Boulder, CO Rolling Plains 485 Alfisols 0.5–3.6 GG (1,310)
tallgrass prairie GL (480)

Semiarid shrubland/ Sonora, TX Edwards plateau 575 Alfisols/Entisols 0.6–4.9 S (38)
woodland B (56)

Xeromorphic woodland San Carlos, CA Mediterranean 605 Entisols 1.1–5.6 S (45)
Chaparral B (192)

Annual grassland San Carlos, CA Coastal Hills 611 Entisols 0.6–3.7 GG (5,071)
GL (7,990)
B (32)

Temperate tallgrass Vernon, TX Rolling Plains 640 Mollisols/ 0.3–4.2 GG (4,203)
prairie Entisols GL (3,764)

B (230)
Temperate savanna Vernon, TX Rolling Plains 640 Mollisols/ 0.9–5.1 S (691)

Entisols GG (7,659)
GL (4,760)
B (10,050)

Subtropical savanna Alice, TX Rio Grande Plains 720 Alfisols/Ultisols 0.7–5.4 S (76)
GG (123)
GL (2,210)
B (535)

Tropical savanna Brasilia, Brazil Cerrado 1490 Ultisols/Oxisols 0.4–3.2 S (61)
GG (6,440)
GL (9,780)
B (5,051)

Tropical woodland Brasilia, Brazil Cerradao 1490 Ultisols/Oxisols 0.7–4.8 S (26)
B (884)

Tropical grassland Brasilia, Brazil Campo Limpo/ 1490 Oxisols/Ultisols 0.6–6.9 GG (7,650)
Campo Sujo GL (10,058)

Cover types and number of spectra are listed in far right column.
a Measured using Licor LAI-2000 Instrument (e.g., Asner et al. 1998b).
b Values in mm.
c S5green shrub or tree canopy, GG5green herbaceous canopy, GL5senescent herbaceous canopy (litter), B5bare soil.
d Values in parentheses indicate number of spectra collected.

qpixel5r[qe·Ce]1e5[qveg·Cveg1qsoil·1qlitter·Clitter]1e (1) spectral database includes canopies and small areas with
mixed sunlit and shaded surfaces. We also recognizedwhere q and C are the reflectance and cover fraction of
that shade causes the overall reflectance of the underly-each endmember, respectively, and e is an error term.
ing material to decrease but does not sharply alter theAn additional endmember is often included in these al-
shape (derivatives) of the SWIR spectra. By assuminggorithms to account for the contribution of intra- and in-
that the effects of shade on the reflectance of vegetationtercanopy shadow. However, this fraction is difficult to
and soil surfaces are independent of their scale, fieldisolate in the field or in image pixels; thus, it is often
spectra that include a sufficiently heterogeneous mix ofused as a residual endmember. Our field experience in-

dicated that shadow can be taken into account if the sunlit and shaded surfaces can account for the presence
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of shade at the pixel level. Both radiative transfer (for mospheric gases and aerosols (Vermote et al., 1997). The
atmospherically corrected AVIRIS data were comparedintracanopy shade) and geometric-optical (for intercan-

opy shade) theories and experiments have shown this to to field spectrometer data collected at a large dry river-
bed area near Sevilleta and a bare soil parking lot at Jor-be a reasonable assumption (Caulfield et al., 1992; My-

neni et al., 1989; Ross, 1981). nada. The AVIRIS and field spectrometer data were
found to be statistically similar, indicating good account-In an effort to incorporate both spectral endmember

variability and uncertainty in the unmixing approach, we ing of atmospheric constituents, such as aerosol and wa-
ter vapor, in the AVIRIS correction.devised a probabilistic method using endmember sets

that embodied the range of variation present in the field. During the time of AVIRIS overflight, field spectro-
metric data were collected for each major land-coverA Monte Carlo unmixing (MCU) strategy was developed

to derive subpixel cover fractions with statistical confi- type found at Jornada and Sevilleta LTER sites (Table
1). In addition, canopy and landscape structural proper-dence intervals. The MCU approach involves generating

a large number of endmember (green vegetation, litter, ties were assessed using a variety of instruments and
techniques. Details of the measurements and methodsand soil) combinations for each pixel (n550–200 or

more) by randomly selecting spectra from the database were provided by White et al. (2000) and Asner et al.
(2000), but they included: (1) LAI using both direct andof field spectra. The performance was evaluated using
indirect measurement methods; (2) vegetation coverraw reflectance, derivative, and tied endmember spectra.
fraction using transect surveys, quadrat analysis, digitalBased on a series of preliminary tests of the model, the
camera, air photos, and airborne laser altimetry tech-cover fractions resulting from the MCU procedure in-
niques; (3) plant tissue optical properties using a spec-variably had a normal distribution for each pixel. We
trometer and integrating sphere; (4) canopy architecturaltherefore used the mean values to estimate the fractional
properties; (5) plant height and width; and (6) speciescover of each endmember and the standard deviation to
composition surveys. A subset of these measurementsform a confidence interval for the true fraction. As a re-
were used to evaluate the sensitivity of the MCU proce-sult, this approach allowed for a quantitative measure of
dure to both canopy and landscape characteristics. In ad-how well the cover estimates were constrained using the
dition, Sevilleta LTER personnel regularly collect de-reflectance, derivative, and tied spectral endmembers
tailed vegetation, litter, and bare soil cover data alongfrom an entirely general endmember database and in any
1,600-m transects from five diverse grassland andwavelength interval.
shrubland ecosystems (see http://sevilleta.unm.edu/). Sev-
illeta cover data collected in May 1997, very near in timeEvaluation Using AVIRIS Imagery
to the AVIRIS overflight, were used in addition to ourThe MCU approach was evaluated using Airborne Visi-
own data to evaluate the MCU approach.ble and Infrared Imaging Spectrometer (AVIRIS) data

collected over two arid grassland-shrubland regions in
New Mexico. The Jornada and Sevilleta Long-Term Eco- RESULTS AND DISCUSSION
logical Research (LTER) sites are located near Las

Monte Carlo Unmixing ApproachCruces and Socorro, NM, respectively. Each site con-
tains spatially complex gradients of grassland, mixed The spectral properties of green canopies, standing and

surface litter, and bare soils measured at the sites listedgrass-shrubland, and shrubland ecosystems (see
www.lternet.edu). The AVIRIS data were collected in in Table 1 were statistically similar to the subset of spec-

tra collected by Asner (1998). Moreover, for each surfaceMay 1997 when most of the grasslands canopies were se-
nescent, while the shrub canopies were predominantly type, the spectral variability at any given site was usually

equal to that of the entire data set (t-tests by wavelength,green. Bare soil is ubiquitous throughout both sites, but
varied in spatial extent from 1% to 50% in some grass- p,0.05). Green canopy reflectance varied the most in

the NIR between 700 nm and 1,300 nm and the least inland areas to 40% to 95% in various shrubland sites
(Schlesinger et al., 1996; White et al., 2000; Asner et al., the SWIR2 region (Fig. 2). Both litter canopy and bare

soil reflectance were most variable in the SWIR (1,300–2000). Other characteristics of the Jornada and Sevilleta
LTER sites are provided in Table 1. 2,500 nm); however, upon converting the data to spectral

derivatives (approximated as finite differences), the mostThe AVIRIS instrument collected upwelling radi-
ance data in 224 optical channels [~10-nm bandwidth at consistent spectral region was the SWIR. Green canopy

spectral derivatives were also very consistent in thisfull width half maxima (FWHM)] covering the 380-nm
to 2,500-nm region. The AVIRIS was carried onboard wavelength region. The consistency of the SWIR deriva-

tives for each cover type indicated the strong potentialthe NASA ER-2 aircraft, which flew at 20-km altitude
during image acquisition, creating approximately 20-m for using this spectral region in a mixture decomposition

of arid and semiarid environments.pixels. Radiance data were converted to apparent surface
reflectance using the ATREM atmospheric code (Gao et Of equal importance to the consistency of endmem-

bers in a spectral unmixing method is the separability ofal., 1993), which employs the 6S scattering code for at-
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Figure 2. Sample nadir reflectance
and derivative spectra (400–2,500
nm) of (A) green and (B) senescent
(litter) canopies and (C) bare soils
collected at 17 arid and semiarid
sites in North and South America.
Full range of variability is shown.

those endmembers. The distinctness of each endmember other herbaceous species, its senescent canopy spectra
were distinct from other standing litter canopies. Blacklargely determines the success or failure of the spectral

unmixing approach. Of the possible spectral regions, the grama turns to a brown-black color during senescence,
resulting in both lower reflectance throughout the short-SWIR2 remained the best option for unmixing using de-

rivative spectra. Green canopy, litter, and bare soil covers wave spectrum and a flattened (small derivatives) SWIR2
spectral region. For this reason, the derivative spectra ofwere distinct in the SWIR2 due to the features described

in Fig. 1. In other spectral regions, two of the dominant senescent black grama can look similar to that of green
vegetation in the SWIR2, and a SWIR2 spectral unmix-cover types often showed distinct and readily separable

features, but only in the SWIR2 were all three endmem- ing algorithm will tend to place the areas covered by
black grama litter into the “green canopy” results. As ex-bers consistently distinct (Fig. 2). For example, the visi-

ble-NIR region provided good separation of green cano- plained later, we devised a separate approach for deline-
ating senescent black grama from green canopy cover topies from litter or bare soils, but differences between

litter and bare soil were exceedingly difficult to detect in remedy this problem.
Despite this exception, the SWIR2 remained thethis part of the spectrum (also found by van Leeuwen

and Huete, 1996; Asner, 1998; Asner et al., 2000). best choice for separating green canopies, standing and
surface litter, and bare soils in the arid and semiarid en-Overall, the SWIR2 spectral region provided the

most consistent and distinct endmembers (as deriva- vironments visited during the field survey (Table 1).
Based on these results, we tested the MCU proceduretives). Of over 98,000 spectra collected, there was one

major exception to this finding. Black grama (Boutelua for estimating the fractional abundance of these cover
types in simulated SWIR2 data. The mean green canopyeriopoda) is a common forage grass found in arid ecosys-

tems of the Southwest United States (USDA, 1934). and litter and soil spectra collected in the field were con-
volved to AVIRIS spectral channels and then used in aWhile its green canopy spectra were similar to those of
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Table 2. Effect of Noise on Calculated Cover Fractions Using Tied and Derivative Spectra

Litter Fraction Leaf Fraction Soil FractionNoise level
Modeled Fractions (%) Tied Derivative Tied Derivative Tied Derivative

(a)
Litter50.333 0 0.34 0.34 0.33 0.33 0.34 0.34
Green canopy50.333 5 0.34 0.33 0.33 0.34 0.34 0.34
Soil50.333 10 0.33 0.34 0.33 0.32 0.34 0.34

15 0.32 0.24 0.33 0.42 0.35 0.34
(b)

Litter50.8 0 0.82 0.81 0.08 0.10 0.10 0.09
Green canopy50.1 5 0.81 0.79 0.09 0.12 0.10 0.09
Soil50.1 10 0.80 0.80 0.09 0.11 0.10 0.09

15 0.78 0.63 0.11 0.28 0.11 0.09
(c)

Litter50.1 0 0.11 0.12 0.80 0.77 0.09 0.11
Green canopy50.8 5 0.11 0.11 0.80 0.78 0.10 0.11
Soil50.1 10 0.11 0.11 0.80 0.78 0.10 0.11

15 0.11 0.08 0.80 0.81 0.09 0.10
(d)

Litter50.1 0 0.09 0.08 0.10 0.11 0.82 0.81
Green canopy50.1 5 0.09 0.08 0.10 0.11 0.82 0.81
Soil50.8 10 0.08 0.09 0.10 0.08 0.83 0.83

15 0.07 0.01 0.10 0.16 0.84 0.83

Four different spectral mixing scenarios were tested. Specified noise level signifies the standard deviation of normally distributed noise as a percent
of the modeled spectra at each wavelength.

sensitivity analysis. We first investigated the effects of In the baseline case (0% noise), both the tied and
derivative methods yielded accurate fractions for each ofvarying noise levels on the MCU-derived fractions using

both derivative and tied spectra. Normally distributed the four modeled spectra (Table 2). However, the tied
spectra were much less susceptible to noise in compari-noise with a mean of zero and a standard deviation rang-

ing from 0% to 15% of the signal was added to each son to the derivative spectra. For example, in the case
where the modeled spectra contained 80% litter, the lit-of four modeled spectra (each of which was a different

combination of the three mean endmember spectra; Ta- ter fraction calculated using derivative spectra was 63%
(at 15% noise level), while the fraction from the tiedble 2). The noise represented errors that could arise

from sources such as insufficient signal-to-noise detector, spectra was 78%. The results using the tied spectra were
more reliable because they emphasize the broad shapeinaccurate atmospheric removal, and the presence of un-

accounted cover types. The MCU procedure was then of the spectra, while the derivative spectra concentrate
on local differences and are thus more vulnerable toperformed on each simulated spectrum using 100 end-

member-database runs in the 2,078-nm to 2,278-nm high-frequency noise. Overall, the method displayed out-
standing performance even at 15% noise level, which wewavelength interval.

Figure 3. Examples of SWIR2 tied endmember spec-
tra, showing full range of variability within endmem-
ber classes.
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Figure 4. Mean and standard deviation of green
canopy (dotted), litter (solid), and bare soil
(dashed) fractions versus number of runs in the
MCU algorithm.

considered to be very high and unlikely. Therefore, the from equal fractions of each field endmember. The re-
sults showed that additional runs beyond 30 have littletied SWIR2 spectra were adopted for use in all subse-

quent unmixing applications (Fig. 3). effect on the derived fractions. A conservative value of
50 runs was therefore chosen for the remainder of theThe MCU approach was used to propagate uncer-
study.tainty in endmember spectra to the final subpixel cover

fraction results. Monte Carlo methods are popular due
AVIRIS Imageryto their simplicity and interpretability, but they can be

cumbersome if too many iterations are required to de- The MCU technique was used with the tied SWIR2
velop confident statistics. Thus, an important factor to spectra to estimate the fractional cover of green cano-
consider was the minimum number of inversions, or pies, litter, and soil in the Jornada and Sevilleta AVIRIS
runs, in the MCU needed to converge to a given mean scenes. At the Jornada site, the relatively small standard
and standard deviation. Figure 4 shows the calculated deviations (~5%) of the cover fraction values indicated
means and standard deviations from MCU performed that the SWIR2 region provided the spectral endmember

consistency and distinctiveness needed to estimate thewith a varying number of runs on a spectrum modeled

Figure 5. Cover fraction images
derived from SWIR2 MCU of
AVIRIS data collected over Jor-
nada LTER site. (A) Mean cover
fraction images from MCU of
green canopy, litter, and bare
soil are shown (left to right). (B)
Standard derivation images of
cover fractions.
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Figure 6. SWIR2 tied endmember spectra
of black grama in comparison to
endmember spectra of green canopy and
litter. Spectra are offset by 0.05 for clarity.

subpixel cover fractions with statistical confidence (Fig. Figure 7. True green canopy (A) and black
5). Had the endmembers been less consistent or distinct grama (B) cover fractions for Jornada AVIRIS

scene, derived from fractions in Fig. 5 andfrom one another, the Monte Carlo technique would
red-edge MCU.have produced much larger standard deviation images.

We tested a variety of other spectral regions, such as the
visible and NIR, but none resulted in the narrowness The second-stage MCU correctly predicted the spa-
and accuracy (compared to field data) of resultant end- tial extent of black grama grasslands that otherwise
members as was found when using the SWIR2 region. would have been lumped into the “green canopy” cover

As expected, the green canopy fraction was overesti- fraction (Fig. 7). For many applications, separation of
mated in some areas of Jornada and Sevilleta because the black grama from true green canopy may not be needed,
tied spectra of black grama litter look similar to those of such as in monitoring the broad rates of desertification,
green canopies in the SWIR2 region (Fig. 6). To account which is known to be occurring in these regions and oth-
for this situation, a second wavelength interval was used ers worldwide (Schlesinger et al., 1990; UNEP, 1992).
to partition the green canopy fraction into black grama Desertification tends to increase the bare soil extent, so
litter and true green canopy. An ideal location for this this first level of monitoring is satisfied by the single-
separation is the “red-edge,” where green vegetation has stage MCU approach presented here. For analyses of cli-
a very consistent and steep slope, while soil and litter mate and land-use effects on vegetation phenology, di-
spectra are relatively flat (Hall et al., 1990). A second- versity, abundance, and condition, the second-stage
stage Monte Carlo unmixing was performed in a 20-nm MCU is required to separate functionally diverse vegeta-
(692–712 nm) section of the red-edge, while the bare soil tion types, such as senescent black grama and actual
and litter fractions derived from the original SWIR2 un- green canopies, which denoted shrubland cover in these
mixing were used to constrain the inversion. The red- particular AVIRIS scenes. It is also highly useful for
edge was not simply added to the SWIR2 for a single rangeland ecology and management efforts (NMAES,
unmixing. We found that soil and litter spectral variabil- 1970).
ity in the red-edge was far greater than in the SWIR2, The final resultant Jornada and Sevilleta regional
which would have led to erroneous estimates of all end- fractions were consistent with available GIS and vegeta-
members had a single unmixing been performed. The tion maps derived from field surveys and air photos
second-stage unmixing was thus used to isolate black (Figs. 8 and 9). For example, the Jornada results agreed
grama as an optional second step, necessary only in areas with a vegetation map recently completed by LTER site

personnel (Fig. 8; map courtesy of B. Nolen). Green can-where it is likely to be a major scene component.



Figure 8. Color composite of true green canopy, total litter, and bare soil fractions in comparison to a field-based veg-
etation map for Jornada LTER site. Locations and names of field sites are also shown. Map courtesy of B. Nolen.

Figure 9. Color composite of true green canopy, to-
tal litter, and bare soil fractions derived from MCU
for nine geo-referenced AVIRIS scenes from Sevil-
leta LTER site. Location and names of field sites are
also shown.
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opy cover fractions corresponded spatially with woody (e.g., Bateson et al., 2000), so this development is not
fully unique. However, in combination with the estab-species, such as Prosopis glandulosa (mesquite), which

were green during the AVIRIS overflight in May 1997. lishment of SWIR2 tied spectra, whose selection was
based on the stability of the spectral endmembers in aLitter cover fractions were consistent with grassland ar-

eas dominated by Boutelua eriopoda (black grama), biogeophysically diverse field survey, our approach is
both physically robust and computationally efficient,which was highly senescent at that time. Similar compar-

isons of the Sevilleta results (Fig. 9) showed consistency lending itself to complete automation. Our method pro-
vided verifiably accurate results without ground calibra-with existing vegetation maps derived from aerial photo-

graphs and field surveys (map comparison not shown). tion or excessive image preparation. While we think that
the approach is especially robust in arid and semiaridThese results also emphasized the strategic utility of ac-

quiring imaging spectrometer data of these ecosystems vegetation and soil types, we also have strong evidence
in the late spring season when functionally unique vege- suggesting its utility in other scenarios, such as forested
tation types (woody and herbaceous communities) are in ecosystems (Asner, unpublished data).
different phenological stages and are thus spectrally sep-
arable. Derivation of a Three-Channel

Comparison of the MCU and field-derived bare soil Multispectral Approach
and vegetation fractions showed a high degree of accu- The observation that soil, litter, and green canopy spec-
racy at the site level (Fig. 10). In this study, green plus tra possess consistent shapes in the SWIR2 is the key
senescent vegetation cover was not well correlated with to our probabilistic spectral unmixing method. The small
the plant area index (5LAI1LitterAI) of the individual variability within each endmember class suggests that
canopies (Fig. 11). These results indicated that the representative spectra (e.g., the average from each end-
SWIR2 region and MCU approach were primarily sensi- member set) can be used for quick fraction estimation.
tive to the horizontal extent of vegetation types, and not This results in a fixed endmember matrix that can be
to the vertical density (LAI) of the individual canopies conveniently transformed into an index through inversion
present within pixels. Isolation of the vegetation and bare of the singular value decomposition (SVD) of the end-
soil cover fractions within image pixels is needed for hy- member matrix. We employed this strategy to test the
drological and biogeochemical analyses in arid and semi- possibility of using a small number of wavelengths that
arid regions (Asner et al., 1998a; Asner et al., 1998b; might best characterize the different spectra. The goal
Schlesinger and Pilmanis, 1998). It also provides a means was to determine if a simple multispectral SWIR2 ap-
to monitor changes in vegetation cover associated with proach could yield results that are as accurate as those
land-use and climate impacts such as desertification derived using continuous SWIR2 spectral signatures. A
(UNEP, 1992). major consideration in this analysis was the width of the

We contend that the SWIR2 Monte Carlo unmixing band passes, because broadening the bands can both in-
method is robust for two reasons. First, the method pro- crease the amount of signal received at the sensor and
vides a means to directly incorporate endmember vari- significantly lower the cost of hardware development.
ability into the spectral unmixing effort. Analogous meth- We explored the use of three bands with varying FWHM
ods have been used to account for endmember variability centered at 2,080 nm, 2,210 nm, and 2,270 nm. The first

Figure 11. Comparison of predicted cover fraction and
total plant area index (5leaf1litter area index) collected
at Jornada and Sevilleta LTER sites.

Figure 10. Comparison of actual and predicted cover fractions
from field sites at Jornada and Sevilleta LTER sites.
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Table 3. Regression Coefficients and R2 Values for Cover CONCLUSIONS
Fractions Derived from the Full 21-Channel Compared to a
three-Channel Index in the Monte Carlo Unmixing of the We have developed and successfully tested an efficient
Jornada LTER site, NM probabilistic approach for quantifying the subpixel spatial

extent of vegetation and soils in arid and semiarid ecosys-Bandwidth
tems using spectral reflectance signatures from the short-Endmember (FWHM) Slope Offset R2

wave-infrared region between 2,100 nm and 2,400 nm(a) Litter 10 nm 1.004 20.001 0.848
(the SWIR2 region). We believe the method provides ac-20 nm 0.895 0.078 0.967

30 nm 0.938 0.007 0.956 curate cover estimates independent of the factors that
40 nm 0.917 0.019 0.946 typically confound spectral unmixing algorithms utilizing

full-optical range multispectral or hyperspectral reflec-(b) Green canopy 10 nm 0.946 0.009 0.937
20 nm 0.969 0.001 0.953 tance signatures. These factors, such as soil moisture,
30 nm 0.869 0.126 0.961 leaf and litter area index, canopy architecture, and tissue
40 nm 0.845 0.154 0.952 optics, do not cause significant variation in the SWIR2

(c) Soil 10 nm 0.950 0.028 0.965 derivative or “tied” spectra. Thus, our approach benefits
20 nm 0.918 20.006 0.986 from the consistency with which the endmembers can be
30 nm 0.900 20.037 0.988 predicted. The variation that does exist is propagated40 nm 0.881 20.057 0.989

throughout the method using a fast Monte Carlo ap-
The index consists of three bands centered at 2,080 nm, 2,210 nm, proach. Methods that employ full-optical range spectraand 2,270 nm.

are prone to inaccuracies due to albedo and visible-NIR
derivative variation, or they provide very wide ranges of
fractional cover results when endmember variation isband was chosen as a reference or tie point; the second
taken into account.to distinguish soil from plant material; and the third to

This approach represents more of a philosophyseparate litter from green canopy (see Fig. 4). For each
about how pixel-scale spectral signatures can be decom-bandwidth, the endmember spectra were resampled to
posed into vegetation and soil estimates than it does anthe given band positions and FWHM and then averaged
algorithm for spectral unmixing. It represents a method-to produce a mean endmember spectrum at the simu-
ology that includes: (1) defining the spectral variability oflated resolution. The indices resulting from these average
major component endmembers across broad biogeophy-spectra were then applied to the entire Jornada AVIRIS
sical gradients; (2) seeking out the type of endmemberscene, which was also resampled to the given wave-
signature (e.g., reflectance, derivative, tied in a givenlengths and FWHM.
spectral region) that is most consistent as vegetation andTable 3 shows the regression coefficients between
soil properties, such as leaf angle, tissue optics, LAI, andthe fractions derived in this manner and the fractions de-
soil moisture, vary spatially and temporally; and (3)rived from the full 21-channel SWIR2 unmixing. In gen-
allowing for the variability in the selected endmembereral, the fractions derived from these simple indices
spectra to propagate through to the final unmixing re-were in agreement with the full MCU results. Moderate
sults. While no linear spectral unmixing approach will getbandwidths (e.g., 20–30 nm) appeared to yield optimal
the answer correct every time an image is processed, weresults, since wider bandwidths tended to confuse litter
feel that the MCU approach provides the physical con-and green canopy and narrow bandwidths were more in-
sistency needed to develop reliable estimates of bare soilfluenced by high-frequency noise. Of particular interest
and total vegetation (live1litter) extent on an “opera-was the stability of the soil fraction results which had an
tional” basis. It will also provide verifiable estimates ofR2.0.95 and offset ,6% at all bandwidths. We believe
individual live and senescent canopies in most situations.that these indices, derived directly from a spectral un-
This implies that very large regions can be observed andmixing framework, suggest a promising avenue for physi-
processed without significant manual effort. Therefore,cally consistent cover estimates from future multispectral
the approach could have major implications for monitor-sensors. However, we also emphasize that a three-band
ing arid and semiarid environments on a regular basis,SWIR2 approach may not fully account for endmember
an effort called for by the United Nations Environmentvariability, which could arise from pixel to pixel or site
Program (UNEP, 1992).to site. Thus, we qualify the three-band results presented

here and reserve future efforts to verify the stability of
We thank Barbara Nolen for providing the Jornada vegetationsimpler multispectral index approaches such as this one.
map and the Sevilleta LTER personnel for providing their in-Nonetheless, these preliminary results are promising and
valuable field data. We also thank the NASA EOS Validationmay warrant an extension of Landsat-like instruments by
PROVE campaign organizers and members for providing logis-

replacing the typical single SWIR2 channel with three tical support, data, and feedback for our study. This work was
channels that are sensitive to vegetation and bare soil ex- supported by NASA New Investigator Program grant NAG5-

8709 and NASA Land-cover/Land-use Change grant NAG5-6134.tent in arid and semiarid ecosystems.
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