
Frontiers in Genetics | www.frontiersin.org

Edited by:
Yi Zhao,

Beijing University of Chinese
Medicine, China

Reviewed by:
Ramona Lynn Walls,
University of Arizona,

United States
Christopher Fields,

University of Illinois at Urbana-
Champaign, United States

*Correspondence:
Pedro Milet Meirelles
pmeirelles@ufba.br

Specialty section:
This article was submitted to

Bioinformatics and
Computational Biology,
a section of the journal
Frontiers in Genetics

Received: 31 December 2018
Accepted: 09 December 2019
Published: 17 January 2020

Citation:
Mascarenhas R, Ruziska FM,

Moreira EF, Campos AB, Loiola M,
Reis K, Trindade-Silva AE,

Barbosa FAS, Salles L, Menezes R,
Veiga R, Coutinho FH, Dutilh BE,

Guimarães PR Jr., Assis APA, Ara A,
Miranda JGV, Andrade RFS, Vilela B
and Meirelles PM (2020) Integrating

Computational Methods to Investigate
the Macroecology of Microbiomes.

Front. Genet. 10:1344.
doi: 10.3389/fgene.2019.01344

REVIEW
published: 17 January 2020

doi: 10.3389/fgene.2019.01344
Integrating Computational Methods
to Investigate the Macroecology of
Microbiomes
Rilquer Mascarenhas1, Flávia M. Ruziska1, Eduardo Freitas Moreira1,
Amanda B. Campos1, Miguel Loiola1, Kaike Reis2, Amaro E. Trindade-Silva1,3,
Felipe A. S. Barbosa1, Lucas Salles4, Rafael Menezes3,5, Rafael Veiga6,
Felipe H. Coutinho7, Bas E. Dutilh8,9, Paulo R. GuimarãesJr.10,
Ana Paula A. Assis10, Anderson Ara11, José G. V. Miranda5,
Roberto F. S. Andrade5,6, Bruno Vilela1 and Pedro Milet Meirelles1,3*

1 Institute of Biology, Federal University of Bahia, Salvador, Brazil, 2 Chemical Engineering Department, Polytechnic School of
Federal University of Bahia, Salvador, Brazil, 3 Department of Ecology, Biosciences Institute, University of Sao Paulo, Sao
Paulo, Brazil, 4 Institute of Geology, Federal University of Bahia, Salvador, Brazil, 5 Institute of Physics, Federal University of
Bahia, Salvador, Brazil, 6 Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Muniz, Fundação
Oswaldo Cruz, Brazil, 7 Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad
Miguel Hernández de Elche, San Juan de Alicante, Spain, 8 Theoretical Biology and Bioinformatics, Utrecht University,
Utrecht, Netherlands, 9 Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen,
Netherlands, 10 Department of Ecology, Biosciences Institute, University of Sao Paulo, Butantã, Brazil, 11 Institute of
Mathematics, Federal University of Bahia, Salvador, Brazil

Studies in microbiology have long been mostly restricted to small spatial scales. However,
recent technological advances, such as new sequencing methodologies, have ushered an
era of large-scale sequencing of environmental DNA data frommultiple biomes worldwide.
These global datasets can now be used to explore long standing questions of microbial
ecology. New methodological approaches and concepts are being developed to study
such large-scale patterns in microbial communities, resulting in new perspectives that
represent a significant advances for both microbiology and macroecology. Here, we
identify and review important conceptual, computational, and methodological challenges
and opportunities in microbial macroecology. Specifically, we discuss the challenges of
handling and analyzing large amounts of microbiome data to understand taxa distribution
and co-occurrence patterns. We also discuss approaches for modeling microbial
communities based on environmental data, including information on biological
interactions to make full use of available Big Data. Finally, we summarize the methods
presented in a general approach aimed to aid microbiologists in addressing fundamental
questions in microbial macroecology, including classical propositions (such as “everything
is everywhere, but the environment selects”) as well as applied ecological problems, such
as those posed by human induced global environmental changes.
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INTRODUCTION

The purpose of macroecology is to describe spatial patterns of
species distribution and abundance, as well as the mechanisms
underlying such patterns (McGill, 2003; McGill and Nekola,
2010). The availability of large amounts of data (Hampton et al.,
2013) has helped to uncover global ecological patterns in species
distribution and abundance, greatly advancing the field of
macroecology. This is highlighted by several studies discussing
the contribution of microbial community investigations to a
unified macroecological theory (Barberán et al., 2014; Blaser
et al., 2016; Nelson et al., 2016; Shade et al., 2018). Strong
evidence suggests that micro-organisms in deep display
biogeographical patterns which are driven by dispersal
processes, climate and evolutionary history, such as species-area
and distance-decay associations (Horner-Devine et al., 2004;
Astorga et al., 2012; Barberán et al., 2015). The field of
microbial macroecology has therefore emerged as a promising
research path to the unified understanding of ecological processes
shaping patterns across different branches in the tree of life.

The contributions of microbiology to macroecology are
currently possible largely due to the methodological advances in
theoretical and computational tools for investigating
microbiomes. Advances in molecular biology and DNA
sequencing in the last decade have provided microbial ecologists
with new tools allowing the extraction of an unprecedented
amount of information from myriads of microbial communities
(Snyder et al., 2009). As a result of the growing amount of stored
data, new software has been developed for the systematic study of
microbial communities on a macroecological scale. Integration
among these tools, however, is not a simple task. Microbial
macroecology stands to benefit from a formal summary
describing the coupling of microbial community characteristics
with spatial environmental information.

In this review, we summarize important conceptual challenges
as well as computational and methodological opportunities in the
study of microbial macroecology, in order to facilitate data
integration. We begin by reviewing what has already been
described in this field, specifically addressing the conceptual
issues of transitioning from micro- to macro- scales when using
micro-organisms as model systems. Then, we provide a
comprehensive summary of computational tools for describing
microbial communities and predicting the distribution of taxa
across large spatial scales. Finally, we conclude by proposing a
general framework to aid microbiologists in incorporating the
peculiarities of micro-organisms into conceptual frameworks of
macroecology, in order to promote the unification of microbial
ecology and general ecology.

What Have We Done So Far: A Brief
Review of Macroecological Studies in
Microbiology
Most macroecological studies of microbial communities to date
sought primarily to describe patterns in large spatial scales,
investigating whether biogeographical patterns exist for the
microbiota (Noguez et al., 2005). Most studies were conducted
Frontiers in Genetics | www.frontiersin.org 2
in soil and marine environments and revealed that such patterns
do exist. They suggest that environmental predictors for
microbiomes could differ from those usually assumed for
macroorganisms (i.e., temperature, precipitation and altitude;
Fierer and Jackson, 2006); environmental features such as pH,
edaphic conditions and land usage are stronger and better
predictors for soil microbiomes. However, soil moisture and
temperature also appear to be important to predict microbial
community composition in some cases (Fierer and Jackson,
2006; Lauber et al., 2009; Drenovsky et al., 2010; Zhou et al.,
2016). In marine environments, spatial structure for microbial
communities appears to be less prominent (i.e., lower beta-
diversity) in comparison to terrestrial and freshwater systems,
which is probably due to the more homogeneous abiotic
structure of the open ocean (Soininen, 2012) in relation to
other environments. Additionally, temperature was a strong
predictor for a latitudinal gradient pattern found in planktonic
bacteria, with little importance from other variables, such as
productivity and salinity (Fuhrman et al., 2008). One study
suggested the influence of altitude—a factor that influences
that altitudinal patterns of macroorganisms (Lomolino, 2001)
—seem to be not relevant for micro-organisms (Fierer et al.,
2011). By contrast, Delgado-Baquerizo et al. (2016) stated that
altitude gradients are important drivers for microbial diversity
considering a wide spatial range (0–4600 m). Finally, it was
suggested that micro-organisms in the atmosphere follow a
precipitation gradient at continental scales (Barberán et al.,
2015). These studies show that some macroecological patterns
exist at microbial scales and that they may be similar to those
found for macroorganisms in some cases, but not similar in other
instances. This raises the question: to which extent are these
patterns ubiquitous through all domains of life?

Although much effort has been made to unravel microbial
macroecological patterns, so far there is no consensus on which
abiotic factors are good predictors of microbial community
compos i t i on , h ampe r i ng th e imp l emen t a t i on o f
macroecological models to microbial data. Additionally, even
though the studies above show strong correlations between
variables and microbiome composition, it is still unknown
whether the used variables are true drivers of the observed
processes, or whether they are actually correlated to
unmeasured, confounding factors (Rahbek, 2005). Biotic
interactions seem to be equally important in determining
community composition; a modeling approach using Artificial
Neural Network (Larsen et al., 2012) highlighted the importance
of such interactions for creating more accurate models, and a
recent study using large microbial community datasets suggested
that rarer taxa are better predictors of community structure than
environmental factors (Ramirez et al., 2018). Therefore, a
modeling framework based on the conceptual idiosyncrasies of
microbiomes is required.

Conceptual Challenges for Transitioning
Across Spatial and Temporal Scales
An issue arising in all studies addressing microbial macroecology
is the proper evaluation of spatial and temporal scales under
January 2020 | Volume 10 | Article 1344

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Mascarenhasz et al. Computational Methods for Microbial Macroecology
investigation. The idea that ecological patterns are scale-
dependent is pervasive in ecological theory (e.g., Levin, 1992;
Crawley and Harral, 2001; Chase and Leibold, 2002; Wu et al.,
2002). Two macroecological studies (Willig et al., 2003; Rahbek,
2005) performed at different spatial scales reported distinct
patterns for how species richness was associated with latitude
and altitude. Hump-shaped patterns dominate species richness
and altitude relationships, when the scale of the gradient survey
is higher than 1,000 km, but is an uncommon pattern when the
scale is below this value. The two studies cited above define two
attributes of the sampling design that determine the scale that is
being analyzed (Figure 1): the unit of sampling and the
geographic space covered. The sampling unit is determined by
the grain or focus size, i.e., the size of the common analytical unit
in the analysis, whereas the geographic space covered, also called
the extent, represents the geographical space on which inferences
can be made (Figure 1A), in other words, the spatial extent
covered by all sampling sites (Rahbek, 2005). Macroecological
studies investigate processes in large geographical spaces, e.g.,
continental or global scales (Fierer and Jackson, 2006; Fuhrman
Frontiers in Genetics | www.frontiersin.org 3
et al., 2008; Nelson et al., 2016), which in general define a large
extent for macroecological inference. The unit of sampling is
represented by the degree of resolution in both response and
predictor variables utilized, which can vary widely across studies.
Communities' abundance or richness profiles (the response
variable) might represent samples in a specific point in space,
or samples across different spatial points in the same assumed
community (Figure 1B). Equally, a single value in a predictor
variable (e.g., abiotic conditions, such as temperature, pH,
altitude, humidity, etc.) might represent either a 1 km2 or a 10
km2 geographic area, depending on how coarse the available
environmental information is (Nottingham et al., 2018). The
choice and evaluation of the available information is an
important step in macroecological studies and may have a
deep impact on the results obtained.

Several processes that might be important at local scales may
have little effect on, and sometimes even confuse, a pattern at
larger spatial scales. For example, Hillebrand (2004) compared
studies on the latitudinal species richness gradient, a long well-
recognized macroecological pattern, where species richness was
FIGURE 1 | Spatial extent and sampling unit in macroecological analyses. (A) Different spatial extents can be analyzed in a macroecological study, which will reflect
on the environmental information available for inference and how much extrapolation can be derived from the conclusions of the study. The figure shows annual
mean temperature per cell, ranging from low temperatures in blue and high temperatures in red. Notice that the lowest temperatures (blue and green cells) are
different for each extent. For instance, when studying Central America, the lowest temperatures can be found in Mexico highlands, whereas an extent focused on the
whole Neotropics show lowest temperatures around the Andes mountains. Therefore, caution is necessary when inferences from studies on the Central America are
extrapolated to the Neotropics extent. (B) Example of two different sampling units in macroecological studies: equally distant squared grids and local sites unevenly
distributed through the globe. As highlighted by Hillebrand (2004), squared grids consist of a value averaged across sites within the grid, which decreases the effect
of local scale factors (e.g., biotic interactions, dispersal and stochasticity) on the latitude gradient diversity pattern.
January 2020 | Volume 10 | Article 1344
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known from occurrences equally sized squared areas equally
distributed across space (i.e., grids) and studies where species
richness was known from sampling points from different studies
unevenly distributed across the globe (i.e., local sites). The results
demonstrated that the decline of diversity towards higher
latitudes was steeper in grid-based studies, suggesting the
pattern is easier to detect by using a coarse-grained metric of
diversity (as exemplified Figure 1B) because local processes (e.g.,
biotic interactions, dispersal and stochasticity) are averaged out.
Additionally, microbial communities seem to be spatially
structured mostly at larger study scales (Soininen, 2012), since
such scales encompass multiple biogeographical regions
separated by dispersal barriers and large variation in climate
(Martiny et al., 2006). Therefore, at a smaller spatial scale,
community composition may seem stochastic, or greatly vary
in short periods of time. The overall conclusion from these
studies is that different predictor variables will be biologically
relevant at different ecological scales. This suggests that selection
a set of predictor variables for model calibration must take into
account the ecological scale of the investigated process.
Traditionally, in macroecological species distribution models,
temperature and precipitation have been successfully used as
predictors for macro-organisms, although recent approaches
have successfully incorporated biotic interactions into such
models (e.g., Araújo and Luoto, 2007; Wisz et al., 2013). A
remaining question is whether these same variables are
biologically relevant for micro-organisms at large scales. At
least for specific and microbiologically diverse ecosystems such
as soils, climate—expressed both in terms of climatic factors such
as temperature and precipitation, as well as climate-associated
attributes such as soil pH, aridity and productivity—is
considered a key driver of the structuring and functioning of
global microbiomes (Delgado-Baquerizo et al., 2016; Delgado-
Baquerizo et al., 2018; Bastida et al., 2019).

There are two main aspects of micro-organisms, which
suggest that biologically relevant variables to predict micro-
organisms' distribution may indeed be different from those
used for macro-organisms. First, micro-organisms exhibit a
higher evolutionary rate. Second, due to the organism size, the
spatial scale at which micro-organisms perceive the environment
is different from that of macro-organisms (Barberán et al., 2014).
The first of these aspects indicates that micro-organisms readily
adapt to new environments, which means that the distribution
range of different microbial taxa is likely to be in equilibrium
with environmental variables, which is not always true for
macro-organisms (Araújo and Pearson, 2005). Additionally, a
high evolutionary rate in micro-organisms indicates that
temporal variability in microbiome composition may be high:
when environmental changes occur, the microbiome structure is
rapidly modified in response, whereas such responses in macro-
organisms (expressed in the arrival and disappearance of species,
as well as the rise of new adaptations in native species) may take a
longer time. This suggests that each microbial sampling is
invariably a narrow temporal snapshot of the microbiota,
highlighting the importance of time-series sampling to describe
for macroecological trends. The very reduced organism size
Frontiers in Genetics | www.frontiersin.org 4
implies that micro-organisms interact with different aspects of
the environment, indicating that relevant predictor variables
might include, but are certainly not restricted to, large-scale
environmental variation. This is still a debatable topic in
macroecology of micro-organisms, as some studies argue that
micro-organisms respond to continental-scale climatic and
environmental variation (e.g., Barberán et al., 2014; Delgado-
Baquerizo et al., 2018), whereas others highlight that microscale
environmental variation might be more important in predicting
distribution patterns (Hendershot et al., 2017). Therefore, when
implementing microbiome modeling, one should keep in mind
that there is no consensus on which predictor variables should be
used. For micro-organisms, the word “environment” might
reflect both biotic and abiotic factors surrounding individuals
of a species in a defined area, and the relative importance of these
two types of factors might be different from what is known for
macro-organisms.

The differences between micro- and macro-organisms need to
be considered when implementing any of the methods described
in this review. For each approach, it is necessary that the
macroecological question is clearly stated, and in a way that
the scale of sampling and the scale of the studied processes are in
agreement with the scale of the proposed questions. In the
following sections, we discuss different macroecological
approaches for microbiomes, focusing on the description of
macroecological patterns and the modeling of microbiomes at
macroecological scales. In each case, we highlight how available
methods and information can help researchers to answer
questions at different spatial and temporal scales.
DESCRIBING THE MICROBIOME IN
MACROECOLOGICAL SCALES

Taxonomic Profiling and Exploratory
Analyses in Microbial Macroecology
The basic input data for macroecological studies is a matrix
displaying the presence-absence or abundance data of a
biological entity in any taxonomic level across different
sampling units (usually a locality defined by a pair of
coordinates, but may reflect finer or coarser areas, depending
on the specific question, Shade et al., 2018). For microbial
communities, such a matrix is usually obtained through the
taxonomic annotation of several short DNA sequences (i.e.,
reads) derived from the high-throughput sequencing of an
environmental sample (Riesenfeld et al., 2004; Hugenholtz and
Tyson, 2008). Reads must first be filtered according to quality
and to remove possible contaminants, in order to minimize
annotation errors; these tasks can be accomplished using tools
such as Prinseq (Schmieder and Edwards, 2011) and
Trimmomatic (Bolger et al., 2014). A common and desired
practice is to deposit filtered reads in public repositories along
with associated metadata, providing public access to the
information. This is particularly important for macroecological
studies, which make use of secondary data for analysis at large
spatial scales. The most prominent repositories for metagenomic
January 2020 | Volume 10 | Article 1344
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data are the NCBI short read archive (SRA; Leinonen et al.,
2011b), MG-RAST (Meyer et al., 2008) and the European
Nucleotide Archive (ENA; Leinonen et al., 2011a), some of
which also provide bioinformatics tools for taxonomic
annotation and statistical analysis (e.g., MG-RAST and
MGnify; Mitchell et al., 2018). Is worth mentioning that the
metadata standard for sequences deposited in International
Nucleotide Sequence Database Collection (INSDC) is MIxS
(Yilmaz et al., 2011).

Multiple approaches currently exist for obtaining taxonomic
profiles from metagenomic sequences, and they mostly fall into
four categories depending on the type of data used: 1) amplicon
reads, 2) Whole Genome Shotgun (WGS) sequencing reads, 3)
assembled contigs and 4) Metagenome-assembled Genomes
(MAGs; Figure 2A). Each of these has unique advantages and
limitations and is suitable to address different scientific questions
(Table 1). Amplicon analysis consists mostly of PCR
amplification of the 16S rRNA gene through the use of
degenerate primers designed to cover as much of the diversity
of Bacteria and Archaea as possible (Schmidt et al., 1991;
McDonald et al., 2012). Next, amplicon sequences are mapped
to reference databases, such as RDP (Cole et al., 2014), SILVA
(Quast et al., 2013) and Greengenes (DeSantis et al., 2006), which
contain pre-computed high-quality alignments of 16S rRNA
genes, allowing for fast taxonomic assignments for millions of
sequences. This approach tends to be accurate at low
taxonomical levels (e.g., genera) and is cost effective,
Frontiers in Genetics | www.frontiersin.org 5
considering the coverage of sequencing per sample, making it
possible to sample many more replicates per study. On the other
hand calculating taxa abundances across samples can be a
limitation due to the presence of multiple copies of the 16S
rRNA gene in a single genome. Additionally, the so-called
universal primers used for amplicon analysis usually do not
amplify genes derived from major fractions of the diversity of
Bacteria and Archaea, such as the candidate phyla radiation
(Hug et al., 2016a).

One common alternative to amplicon sequencing is Whole
Genome Shotgun (WGS), i.e., the sequencing of DNA fragments
covering the whole diversity of genes in an environmental
sample. Similar to amplicon based studies, WGS reads are
annotated by comparing them to previously characterized
sequences deposited in reference databases, encompassing
genes from multiple taxa. This comparison can be based on
homology or the search for similar k-mer profiles (i.e., the set of
all possible sub-strings of different lengths for a DNA sequence).
Due to redundancy in the genetic code, proteins are more
conserved than nucleotide sequences; using homology to detect
similar protein sequences is more sensitive and suitable for
detecting distant evolutionary relationships, allowing more
sequences to be classified. Because the degree of identity
between the sequences of naturally occurring microbes and
those available in reference databases is often very low,
annotations of WGS reads often require using permissive
cutoffs (i.e., reads are assigned to a taxon even if the identity is
FIGURE 2 | A workflow summary for taxonomic annotation and exploratory analyses. Taxonomic annotation methods are used to generate, for instance, presence-
absence matrices (A), which can be combined with environmental variables into correlation analyses (B). The biological variation in environmental variables can be
simplified through ordination analyses (such as PCA and MDS). Finally, distance matrices can be created for both ecological and environmental variation, and
distance matrix correlation can be used to infer if environmental distances correlate with ecological differences among sampling sites.
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low, e.g., only 30%), provided that it falls within other assumed
cutoffs of alignment, length and e-value. Several reference
databases are currently available, as well as tools to detect
protein-protein and protein-nucleotide homology (Table 1).
As an alternative to homology searches, k-mer composition
profiles are significantly faster and make it possible to rapidly
analyze a large number of samples (Table 1).

UsingWGS sequencing further allows for the assembly of raw
reads into larger contigs, and, in some cases, later binning into
metagenome-assembled genomes (MAGs; Figure 2). This
approach may improve taxonomic classification by assessing
longer genomic fragments that derive from such sequence
assembly. The Crit ical Assessment of Metagenome
Interpretation (CAMI) challenge reviewed several metagenomics
tools (Sczyrba et al., 2017). This study distinguished between
taxonomic binners (which allow taxonomic abundances to be
inferred by clustering individual sequences, then assessing longer
genomic fragments Lin and Liao, 2016; Wu et al., 2016), from
taxonomic profilers (which focus on predicting a taxonomic
abundance profile without necessarily classifying every
sequence, often assessing only raw reads Ounit et al., 2015;
Koslicki and Falush, 2016). They show that classifiers in general
were more accurate than profilers in estimating the relative
6

abundances of taxa. This increased performance is due to the
fact that longer sequences contain more phylogenetic information
than short reads, leading to less noise in the taxonomic profile.
Moreover, because sequence assembly reduces the total volume of
sequence data to be classified, more sensitive homology searches
that are computationally more demanding may be applied than
the rapid searches that are used for classification of short, raw
reads. Two recently developed tools that explicitly exploit the
added information in assembled contigs are MEGAN-LR (Huson
et al., 2018) and the Contig Annotation Tool [CAT, (von
Meijenfeldt et al., 2019); https://github.com/dutilh/cat] that
exploit all sequences in the full GenBank reference database for
taxonomic classification. A limitation of metagenomic assembly is
that it is susceptible to possible errors arising during the assembly,
which is aggravated when population diversity of the sampled
microbial community is high (Sczyrba et al., 2017). Moreover,
high levels of sequence heterogeneity between related strains may
lead to abundant genomes in the sample being misassembled as
chimeras, and potentially misclassified. The subsampling of
shotgun metagenomic reads before assembly has been applied
to resolve this problem (Hug et al., 2016b).

Once contigs have been assembled into longer fragments of
the genomes present in the community, metagenome-assembled
genomes (MAGs) may be reconstructed by binning contigs from
the same genome together. Several software tools are available to
perform MAG reconstruction (Table 1). At this stage,
phylogenetic and phylogenomic methods can be used to
determine the taxonomic affiliation of these MAGs with even
more confidence than that of individual contigs. Additionally,
MAGs and assembled contigs can be used to build custom
sample-specific reference databases for read mapping (e.g.,
Speth et al., 2016). The main advantage of using such
databases is that often many more reads can be assigned,
because the contig sequences represent the strains that are
reconstructed from the same sample, minimizing the
occurrence of false positives. Therefore, the obtained taxonomic
profile contains less noise and more comprehensively represents
the data.

The taxonomic profiles obtained from the methods above can
be assembled into presence-absence or abundance matrices and
further explored using classic multivariate exploratory analyses,
such as multivariate ordination/canonical methods (Hanson
et al., 2012; Xue et al., 2018). Under the macroecological
rationale, exploratory analyses are used to describe the
biological variation across a global or continental gradient in
potential explanatory variables (e.g., describing diversity or
abundance variation across the latitudinal temperature
gradient, continental atmospheric variation, etc.; Shade et al.,
2018). Correlation among explanatory variables is a common
issue in biological statistics, and multivariate ordination is then
used to reduce dimensionality and yield new mathematically
uncorrelated axis from the original correlated explanatory
variables (Legendre and Legendre, 2012; Figure 2B). A few
approaches widely used for this purpose are: 1) Principal
components analysis (PCA), which is based on covariance or
correlation matrices and is suitable for sets of linearly correlated
TABLE 1 | Approaches for obtaining taxonomic profiles from
metagenomic samples.

Input type Software Speed Reference
Databases

Confidence Advantages

Amplicon Qiime,
MOTHUR

Fast SILVA, RDP
and

Greengenes

Low Extensive
databases o
sequences
and samples

for
comparison

WGS
Homology

Diamond,
BLAST, BLAT,

MEGAN

Slow nr, Uniprot,
pfam

Medium Based on
the whole
genetic
diversity

WGS K-
mer

Kraken,
FOCUS

Fast RefSeq
Genomes

Medium Based on
the whole
genetic
diversity

Assembled
Contigs

Assembly:
SPAdes, ID-
BA_ud, Ray-
Meta Contig
Classification:
CAT, MEGAN,

Kaiju

Slow nr, Uniprot,
pfam

High Discovery o
new taxa,
more reads
assigned

MAG Assembly:
SPAdes,
IDBA_ud,
Ray-Meta
Binning:
Metabat,
GroopM,

ABAWACA,
CheckM

Classification:
CAT/BAT

Slow N/A High Yields draft
or complete
genomes,
discovery of
new taxa,
more reads
assigned
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measures; 2) principal coordinates analysis (PCoA), which differs
from the PCA by extracting eigenvalues from similarity or
distance matrices, therefore being appropriate for non-linear
relationships; 3) multidimensional scaling (MDS) that, unlike
PCA and PCoA, is not based on eigenvalues decomposition and,
like PCoA, is limited to Euclidean distances matrices and 4)
correspondence analysis (CA), based on contingency table of
categorical variables (Bray and Curtis, 1957; Clarke, 1993). The
new mathematical axes provide a mathematical space where
measurements from the actual environmental samples can be
placed and compared. The associations between variables (e.g.,
diversity and temperature) can also be tested by classic statistical
analyses like regression and correlation, which can be based on
both original explanatory variables and new mathematical axes
created by ordination analyses. Additionally, ecological similarity
between localities can be explored using distance measures (e.g.
Euclidean, Mahalanobis, Jaccard, and Bray-Curtis) and
compared against a distance matrix for a potential explanatory
variable in the same localities and statistical significance can then
be assessed by using a test such as the Mantel test (Figure 2B).
Such approaches are commonly used in macroecological studies
Frontiers in Genetics | www.frontiersin.org 7
to statistically assess the correlation between two distance
matrices based on variables of interest (e.g., Duarte et al., 2009;
Bell, 2010).

Describing Community Structure With Co-
Occurrence Networks
Co-occurrence networks (CNs) has been used to describe
associations within microbial community (Figure 3). Usually,
in these networks, the nodes represent taxa and the edges
represent statistically significant positive or negative
correlations in the abundance of taxa across several samples in
a given environment or host (Faust and Raes, 2012). A few
authors may also include abiotic factors as nodes (e.g. Li et al.,
2017). Using CNs can reveal insights about possible ecological
interactions and distribution patterns of microbial taxa (Faust
and Raes, 2012; Cardona et al., 2016). Two important types of
information can be retrieved from CNs: 1) changes in
community structure across environmental gradients, that is,
variation not only in the species abundance, but especially in the
degree of correlation between taxa across environmental
gradients; and 2) potential biotic interactions that can be useful
FIGURE 3 | Co-occurrence networks applied to microbial macroecology. (A) A hypothetical example of a co-occurrence network. Circles represent different taxa
and edges connecting two circles indicate statistically significant co-occurrence between those two taxa, i.e., they co-occur more than expected by chance in the
set of samples analyzed. Network structure can indicate ecosystem properties, and these can be translated into statistics summarizing network topology (see Box
1). For instance, this hypothetical network shows two subunits (or modules) separated by the taxon indicated as a red circle. This taxon is also a node with high
betweenness centrality (i.e., indirect connections between any two nodes in the network has a high probability of going through this node), whereas the green circle
represents a node with high degree (i.e., showing a connection to many other taxa). (B) A hypothetical example of a macroecological study using co-occurrence
networks. Red squares represent an area where several samples were gathered and analyzed, yielding a single abundance matrix and a corresponding co-
occurrence network (two sites pointing to the same network represent areas in which networks are highly similar). The topology of the network changes in different
ecosystems across the globe, and the overall hypothetical pattern is represented in the graphics below: network modularity (i.e., defined as the number of subunits
within the network, as well as the relative proportion between connections within and between modules) decreases as precipitation and temperature increases (but
the change is less intense for temperature).
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for macroecological modeling (Predicting Microbial Distribution
and Community |Composition). Since CNs are based on
abundance correlation, it is desirable that they are built over a
large number of sampling units, and therefore hold great
potential for application in macroecological studies (Berry and
Widder, 2014). Distinct approaches have been used to construct
CNs and derive information from their structure, such as
distance or similarity matrix metrics among the samples used
to construct the networks (Fan et al., 2018; Jackson et al., 2018;
Marasco et al., 2018; Box 1). Overall, the same matrix generated
by the software tools listed in the previous section can be used as
input for CN calculation. Samples can be grouped according to
the macroecological variable of interest (e.g., temperature
Frontiers in Genetics | www.frontiersin.org 8
variation across latitudes, atmospheric variation across a
continent, variation in land cover across the globe) and the
structure of CNs from each of these groupings can be compared
across global or continental scales (Figure 3). Note that
comparison of microbial community structure has often been
performed across different ecosystems (e.g., comparing the
structure of networks between fresh and saline water
environment), but the macroecological approach supports the
rationale of a comparison within the same environment (e.g., soil
samples) across an environmental gradient (e.g., temperature,
pH, etc.; Barberán et al., 2012). Several measures exist to describe
network structure, such as symmetry, degree distribution,
checkerboard index (Horner-Devine et al., 2007; Araújo et al.,
BOX 1 | Building and Interpreting Co-Occurrence Networks.

Several tools are available to build and interpret co-occurrence networks. The software CoNet (Faust and Raes, 2016), developed in Cytoscape (Shannon et al., 2003),
allows the usage of several measures for dependency, similarity and dissimilarity, to build and visualize co-occurrence networks. In order to build these CNs, the microbial
composition data is provided in relative abundances. Some annotation tools provide microbial composition in read counts, in this case one can use SparCC (Friedman
and Alm, 2012), which calculates abundance correlations among taxa without the issues associated with compositional data (Mendes et al., 2018), for further CNs
analysis. Alternatives to SparCC are REBACCA (Ban et al., 2015) and CCLasso (Fang et al., 2015). Kurtz et al. (2015) presented another tool: SPIEC-EASY, a pipeline that
transforms relative abundance data and estimates interaction graphs. Finally, a few approaches are based on information theory, for instance: using mutual information
combined with other metrics, implemented in CoNet (Lima-Mendez et al., 2015). Choosing a correlation method for network construction is critical once networks
generated by different methods can provide contrasting results (Weiss et al., 2016). Methods should be chosen taking into consideration if microbial community data are
presented as relative abundance or in absolute read counts.

Keystones in CN
There is no consensus on the operational definition of keystone for microbial ecology (reviewed in Banerjee et al., 2018). However, a usually proposed definition is that

keystones are highly connected microbial taxa presenting a unique and crucial role for community structure and functioning, so their loss or removal should have large
impacts on microbial community (Banerjee et al., 2018). In this sense, network theory provides us with quantitative ways to characterize how connected a given microbial
taxa is. One criterion, based in network theory, to determine a putative keystone taxon is high betweenness centrality (BC; e.g., Lupatini et al., 2014; Banerjee et al., 2016;
Jiao et al., 2016; Li et al., 2017; Mendes et al., 2018), albeit an investigation based on dynamical modeling found lower BC to be correlated with higher probability of a
taxon being keystone (Berry and Widder, 2014). The BC of a node A is the number of shortest paths connecting two nodes which pass through the node A. Nodes with
high BC connect portions of the network that would otherwise be sparsely or not connected at all. Therefore, removing high BC nodes leads to a sparser network,
disconnecting modules in several cases. The number of connections a node presents, which is called the node's degree, is also a frequent metric used as a keystone
index (Comte et al., 2016; Hartman et al., 2018). This is based on the idea that, taxa (nodes) that are connected with multiple others are important to network structure,
and their potential removal would have a high impact to the community. It is interesting to highlight that, whereas one node can have both high degree and high BC (in
which case this taxa would be considered keystone by both definitions), it is also possible to find nodes in which BC is high and degree is low, or vice-versa, leading to a
disagreement between these two keystones definitions. Therefore, it is important to have in mind the biological process of interest because this will determine the more
important features in a given community and what keystone definition one should use.

A different approach, based on metabolic networks (Guimera and Amaral, 2005), assumes that the network is formed by modules (i.e., semi-independent groups of
cohesive, interacting taxa). In this approach, one can calculate the z-score, which is a measure of the number of interactions a taxon has within its module; and the c-
score, which describes how evenly distributed are the interactions of a given taxon across multiple modules. These two values allow us to classify the taxa in network hubs
(z-score > 2.5; c-score > 0.6), module hubs (z-score > 2.5; c-score < 0.6), connectors (z-score < 2.5; c-score > 0.6) and peripherals (z-score < 2.5; c-score < 0.6) (Poudel
et al., 2016; Fan et al., 2018). Putative keystones taxa would then be the nodes identified as network hubs, module hubs and connectors. One advantage is that this
definition takes into account multiple features that might make a node important to a network (e.g., participating in a network within a hub or as connectors between hubs),
whereas, when one looks only at BC or high degree, a single type of keystone feature is taken into account.

Indirect Effects From CNs
In networks, species that do not directly interact can influence each other through cascading effects that spread through the network (indirect effects). Guimarães et al.

(2017) developed an analytical framework to quantify the total amount and the importance of the indirect effects in a given network. Their results show that network
structure is what drives how the indirect effects spread through the network (Guimarães et al., 2017). Networks of micro-organisms, which are species-rich networks
formed by a small core of highly connected species and many species poorly connected (Banerjee et al., 2018), are predicted to show a higher amount of indirect effects
than poor, highly modular networks. Therefore, quantifying indirect effects might be an important aspect in the study of which micro-organisms are keystones to a given
community relevant to maintain relevant ecosystems functions and contribution to resilience and stability in face of global environmental changes (Berry and
Widder, 2014).

In addition to measuring indirect effects, it is possible to explore the consequences of such effects. Resilience and stability are important aspects of network structure
that can be measured by using approaches derived from the study of dynamical systems. Coyte et al. (2015) proposed an extremely general and suitable framework that
can be used to analyze species-rich microbial networks. Their approach uses the eigenvalues of the matrix that describes the effects of ecological interactions at the
equilibrium (Jacobian matrix) associated to a given network, to analyze the stability and resilience of microbiome networks. Their approach can be used in networks that
possess any combination of different types of interactions (cooperation, competition, exploitation, amensalism and commensalism). One important result of their analyses
is that cooperation tends to destabilize microbial networks. The destabilization effect happens because of the presence of positive feedbacks between the species when
they cooperate, which leads to cascading effects. For example, a decrease in population size of one species might lead to all the species they positively interact with to
decrease as well. On the other hand, competition gives a stabilizing effect in the network; compensating the destabilizing effect that increasing richness can have in an
ecological community (May, 1972).
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2011; Layeghifard et al., 2017), but the best usage of such metrics
is an ongoing debate (Layeghifard et al., 2017) and is highly
dependent on the ecological question being asked.

Co-occurrence networks may also be used to identify
keystone taxa (Box 1). The keystone concept was first coined
by Paine (1966), who demonstrated that the removal of the sea-
star Pisaster ochraceus caused a dramatic change in community
structure on a rocky shore, concluding that the species
functioned as an important element for maintaining
community integrity, most likely due to its non-redundant role
(Paine, 1969). This definition can be applied in the microbial
ecosystem and be empirically investigated by using network
approaches. Keystone taxa can be compared across
macroecological scales to investigate whether and how the
importance of specific groups as key taxa in communities
across an environment varies on global scales. Since keystone
taxa usually perform important and non-redundant functions,
their identification may be important to understanding
ecosystem functioning.Thus, an approach coupling keystone
identification with measurements of functional diversity across
macroecological scales holds potential to bring numerous
insights (see below). Finally, another insight derived from CNs
is how the network structure may favor or constrain cascading
effects (Box 1), which may favor or imperil the resilience of the
communities against perturbations (another ongoing debate
within ecosystem ecology; Oliver et al., 2015). Cascading effects
often propagate across networks, connecting the dynamics of
taxa that do not directly interact with each other. In fact,
networks of taxa are subject to influences from taxa they
directly interact with, as well as to indirect effects that pervade
the network, i.e. from taxa with which they do not interact
directly. Under certain conditions, indirect effects can be more
important to the network dynamics than the direct effects
(Ohgushi, 2005). Indirect effects can be measured across
macroecological scales to assess, in a spatially explicit manner,
in which ecosystems indirect effects seem to play a more
important role to maintain microbial community stability
(Guimarães et al., 2017).

Revealing Macroecological Patterns From
Microbiome Functional Diversity
Functional ecology, defined as the study of the roles that
organisms play in their ecosystems, also holds great potential
for microbial macroecology. Studies investigating levels of
functional diversity across macroecological scales are already
common for macro-organisms (Fu et al., 2017; Jarzyna and Jetz,
2018), both in theoretical investigations of processes determining
functional diversity (Safi et al., 2011) and in more practical
inquiries such as the conservation of ecosystem functions
(Devictor et al., 2010). Yet similar studies have not been
performed for micro-organisms. For instance, previous studies
have explored like global patterns of mammalian functional
diversity (Safi et al., 2011) as well as global scale marine
macroecological patterns (Amend et al., 2013) have no
equivalent investigation concerning microbial functional
diversity. Macroecological studies might yield insights on the
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patterns observed for the functional diversity of micro-
organisms across different environments in the globe, and
address their relation to ecosystem functioning and service
provision (Mace et al., 2012).

Functional diversity is one of the three main biodiversity
dimensions investigated in macroecology, alongside taxonomic
and phylogenetic diversity (Webb et al., 2002; Devictor et al.,
2010). Functional diversity is usually defined as the amount,
variation and distribution of traits in a community (Dıaz and
Cabido, 2001), originally measured by the calculation of the total
branch length of the functional dendrogram constructed from
information about taxa' functional traits (Petchey and Gaston,
2002). From this initial method, several new conceptual and
mathematical approaches have been developed and implemented
(a few revised in Petchey et al., 2004), but none of them dismiss
the need to 1) choose the functional traits through which
organisms will be distinguished, 2) define how the diversity of
the trait information will be summarized into a measure of
functional diversity, and 3) validate the measurements through
quantitative analyses and experimental tests (Petchey and
Gaston, 2006). In micro-organisms, functional traits are
usually viewed as the genetic and biochemical characteristics of
organisms affecting ecosystem functioning, such as the
production of metabolic inhibitors or enhancers, or enzymes
playing a role in ecosystem metabolic pathways (Dıaz and
Cabido, 2001). In this sense, the function of micro-organisms
in an ecosystem is defined by their genetic composition, which
ultimately dictates the molecules they metabolize (Faure and
Joly, 2016). Similar to taxonomic annotation, functional traits
can be derived by direct functional annotation of metagenomic
short-reads from an environmental sample (with no taxonomic
annotation). Alternatively, prior metataxonomic approaches
(e.g., 16S rRNA) can be used to taxonomically assign
individuals in a sample, and then functional annotation can be
derived from their phylogenetic position. Software tools to
perform both approaches are summarized in Table 2, with
their respective references. All of these metagenomic and
metataxonomic functional annotation approaches are based on
genomic databases and the accuracy of annotation depends on
the quality of software databases. Furthermore, many genes are
still unassigned, and their functions are unknown, making it
challenging to infer ecological functions from genetic content
alone (Faure and Joly, 2016).

The degree of functional diversity has been used to investigate
two main macroecological patterns in microbial communities: 1)
relationships between community taxonomic and functional
composition among microbial communities (Louca et al., 2016;
Vieira-Silva et al., 2016; Galand et al., 2018) and; 2) how
microbial functions vary in time and space (Dinsdale et al.,
2008; Ren et al., 2017; Galand et al., 2018). Usually the most
accessed functional measures are diversity (including functional
richness, evenness and divergence), composition, redundancy
and rarity. Several algorithms and computational tools have been
published in order to assess and quantify these functional
features (Table 3, also reviewed in Mouchet et al., 2010;
Schleuter et al., 2010; Song et al., 2014; Bond-Lamberty et al.,
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2016; Ricotta et al., 2016). Addressing the above-cited questions,
one of the emerging patterns in micro-organisms is a decoupling
between functional and taxonomic composition (Louca et al.,
2016). This trait suggests that microbial communities may
present a high degree of functional redundancy, meaning that
shifts in taxonomic community composition do not lead to shifts
in functional community composition. It has been hypothesized
that the mechanisms underlying microbial assemblage are
distinct from mechanisms governing functional composition,
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and that environmental factors are potential predictors of
functional composition (Louca et al., 2018). We further suggest
that approaches for characterizing functional diversity should
also be coupled with estimates of function turn-over and
nestedness; metrics that in macroecology are commonly used
to measure shifts in species composition mostly along abiotic
gradients, the so called beta-diversity (Legendre et al., 2005;
Anderson et al., 2006; Jost, 2007). This information would allow
us to answer questions such as whether a specific subset of
TABLE 2 | Tools used to annotate functional potential profiles from metagenomic reads or to infer them from 16S taxonomic annotation.

Tool Approach Synopsis Features Reference

BLASTx Read
annotation

Uses alignment approach to annotate nucleotide reads into
potential proteins

+ great sensitivity
- it can be very slow for high-throughput data

Altschul et al.
(1990)

MetaGeneAnnotator Read
annotation

Identify putative proteins by estimating di-codon frequencies
through the GC content of a nucleotide read

- not precisely estimate de Domain of a given
sequence

Noguchi et al.
(2006)

DIAMOND Read
annotation

Uses double indexing alignment to annotate nucleotide reads
into potential proteins

+ 2000 to 20000 times faster than BLASTx Buchfink
et al. (2015)

SUPER-FOCUS Read
annotation

Functional profiling of metagenomes + output consists in a three hierarchical level
functional profile, useful to choose your level of
functional resolution

Silva et al.
(2016b)

MGS-Fast Read
annotation

Preprocess and analyses WGS reads into functional profiles by
using stringent DNA-DNA matching to the IGC database.

+ includes preprocessing steps (read trimming and
removal of low-quality sequences) and taxonomic
profiling

Brown et al.
(2019)

MetaCLADE Read
annotation

Uses a multi-source domain annotation strategy to profile reads
into protein domains.

+ designed to also annotate metatranscriptomic
reads

Ugarte et al.
(2018)

PICRUSt 16S
inference

Uses evolutionary modelling to predict community putative
functional profiles from 16S marker gene using a genome
reference database

+ online interface to users unfamiliar with
programming

Langille et al.
(2013)

PAPRICA 16S
inference

Places reads into a 16S phylogenetic tree of consensus
genomes to predict the functional profile

+ very accurate to infer functional profile of well-
known organisms that have plenty of genomes in
the database

Bowman and
Ducklow
(2015)

FAPROTAX 16S
inference

Extrapolates community taxonomy into putative functional
profiles

- database used from cultivated organisms only Louca et al.
(2016)

QIIME Functional
pipeline

Provides a wide range of microbial assembly analysis and
visualizations from raw nucleotide sequences

+ network and phylogenetic analysis and core
assessment

Caporaso
et al. (2010)

MOCAT2 Functional
pipeline

Assemble and quality-filter reads to comprehensively predict
them functionally and quantify them

+ also annotate metagenomes taxonomically Kultima et al.
(2016)
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TABLE 3 | Tools to calculate functional diversity features.

Tool Approach Synopsis Features Reference

PHYLOCOM Software Calculates trait distribution to compare with random community consortia as
well as uses evolutionary models to simulate trait and phylogenetic evolution

+ uses null models to test hypothesis of trait
similarity
+ integrates trait information with
evolutionary analysis
+ able to deal with polytomies

Webb et al.
(2008)

FDiversity Software Focuses on calculation of functional diversity indexes and statistically analyze
them

+ user friendly interface
+ accepts different input data formats

Casanoves
et al. (2011)

FD R-
language
package

Uses functional dispersion index and measures diversity based on distances
of traits in a multidimensional space

+ allows missing values on calculation
+ allows weighting traits per abundance

Laliberté and
Legendre
(2010)

SYNCSA R-
language
package

Uses matrix correlation to estimate trait patterns, phylogenetic signal and
environmental variations for metacommunities

+ allows environmental characteristics to be
considered

Debastiani and
Pillar (2012)

cati R-
language
package

Estimates community assembly patterns by species interactions and
environmental filtering

+ allows differentiation among individuals
+ can integrate phylogenetic information into
analysis

Taudiere and
Violle (2016)

funrar R-
language
package

Estimates functional rarity based on abundance and/or spatial frequency of
species

+ estimates functional uniqueness,
distinctiveness and taxon scarcity and
restrictedness

Grenié et al.
(2017)
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functions is filtered and maintained in a specific environment; or
how functions are changing across abiotic gradients.
PREDICTING MICROBIAL DISTRIBUTION
AND COMMUNITY COMPOSITION

Macroecologists describe spatial patterns of biodiversity aiming
to ultimately create accurate models that can predict biodiversity
under different scenarios. The patterns described are analyzed,
and the underlying biotic and abiotic drivers of species
distribution and abundance are tested in a statistical
framework. Understanding the mechanisms behind these
patterns allows macroecologists to predict biodiversity in
geographic areas not yet studied, contributing to decrease
biodiversity shortfalls (Hortal et al., 2015) as well as how
biodiversity would respond to changes in the environment
(Kerr et al., 2007). The BAM (as an abbreviation for ‘biotic,
abiotic and movements') diagram is a conceptual framework used
in macroecological modeling to summarize the determinants of
species distribution on global scales (Figure 4; Soberón and
Nakamura, 2009).

In the BAM framework, the presence of a focal species in a
specific site is determined by: (1) the presence, absence and/or
Frontiers in Genetics | www.frontiersin.org 11
abundance of other species in the same environment (i.e., biotic
factors, the B in BAM); (2) the availability of the environmental
attributes that are suitable for the focal species (i.e., abiotic
factors, the A in BAM) and; (3) the focal species capacity to
migrate into biotically and abiotically suitable areas (i.e.,
movement capacity, the M in BAM; Figure 4). This idea is
described in a more formal manner in the Hutchinsonian
concept of ecological niche, i .e . , the n-dimensional
hypervolume in which a species can exist (Colwell and Rangel,
2009; Holt, 2009; Figure 4). This conceptual framework is
important for models that attempt to predict the occurrence of
taxa, since it highlights which factors are expected to affect taxa
presence in different locations. For macroorganisms, models are
usually calibrated with the usage of abiotic factors at large spatial
scales, specifically temperature and precipitation, which were
shown to be good predictors of terrestrial species distribution
range (e.g., Soberón, 2010). Such models usually show acceptable
accuracy, but several studies highlight the importance of
accounting for migration capacity and species interactions in
distribution modeling (Araújo and Luoto, 2007; Wisz
et al., 2013).

When it comes to micro-organisms, it is necessary to clearly
understand which factors affect the distribution of microbial
species. The BAM diagram offers an adequate conceptual
framework to start addressing this question. Several authors
FIGURE 4 | The BAM Diagram. (A) A scheme of a hypothetical BAM diagram (abbreviation for “biotic, abiotic, and movements”), highlighting the intersection
between the different aspects determining the presence-absence of species. The b circle, colored in green, represents biological aspects allowing the presence of
the species; the a circle, colored in blue, represents the abiotic aspects; finally, the m circle, colored in orange, represents the movement aspect, which consists in
the dispersal capacity of the species. The intersection represents areas where more than one of those aspects allows the existence of the species. For instance, the
green intersection represents an area where both biotic and abiotic conditions allow the species to exist, but the species is unlikely to disperse to that area. Similarly,
the purple intersection represents an area where abiotic conditions allow the species to exist and is within the species' dispersal capacity; however, biotic conditions
(for example, presence or absence of important species with which it interacts) do not allow their existence. All species occur only in areas represented by the dark
green intersection, i.e. the intersection of all three factors. Mathematical models, however, can calibrate species niche based, solely on abiotic factors (which is the
case of most SDM approaches), and, in these cases, the BAM diagram is a good conceptual framework to interpret the results. (B) A geographical projection of the
BAM diagram for a hypothetical microorganism in South America. The grey areas across the continent represent sites to where the species can potentially disperse
to (based on the idea that micro-organisms have high dispersal capacity, see Predicting Microbial Distribution and Community Composition in text). Assuming our
hypothetical species prefer freshwater conditions, rivers in South America are colored in brown, to represent the intersection between factors a and m in the
diagram. Finally, the green color of the Amazon river indicates an area where all factors allow the existence of the species (i.e., the species can disperse to the area,
it is a freshwater environment, and it shows biotic conditions favorable to its establishment, e.g. the presence of specific species with which it cooperates).
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have suggested that the dispersal capacity of micro-organisms is
much higher than that of macroorganisms (Finlay and Clarke,
1999; Martiny et al., 2006; Barberán et al., 2014). In this aspect,
the movement feature of the BAM diagram would have little
effect on the distribution of species, since several studies indicate
that micro-organisms are highly dispersive (Bovallius et al., 1980;
Fenchel and Finlay, 2004; Martiny et al., 2006; Barberán et al.,
2014; but see, e.g., Peay et al., 2010), and that spatial structuring
of microbial communities are only perceivable on large spatial
scales. This leaves us with the biotic and abiotic factors as major
drivers of micro-organisms' distribution. As previously discussed
in Conceptual Challenges for Transitioning Across Spatial and
Temporal Scales, a few studies have highlighted the importance
of different abiotic factors in structuring microbial community,
which are not always related to the environmental predictors
used in distribution modeling of macroorganisms. Such variables
include, besides temperature and precipitation, edaphic
conditions, soil pH and concentrations of different chemical
molecules (Lauber et al., 2009; Drenovsky et al., 2010; Zhou et al.,
2016). Additionally, the biotic interactions among species have
been advocated as important determinants of species occurrence
(Larsen et al., 2012; Ramirez et al., 2015; Ramirez et al., 2018).
Therefore, in the following sections we describe how to access
available spatial-explicit environmental data for micro-
organisms modeling, as well as modeling approaches that can
account for both biotic and abiotic factors.

Using Abiotic Variables to Model
Microbial Communities
Each sample taken from the environment is under the influence
of a huge number of variables in many spatial and temporal
scales. In order to model the composition of microbiomes, and
therefore the distribution of micro-organisms across the globe, it
is important to have available environmental data on the relevant
spatial and temporal scales. The variables used to model micro-
organisms will depend on the specific environment under study.
Micro-organisms living in the soil are affected by different
environmental factors than those living in a freshwater lake or
in the ocean. This is different than what is seen for
macroorganisms, where global temperature and precipitation
play major roles defining biogeographic realms (McGill, 2010).
While acknowledging that global variation in temperature and
precipitation might define biogeographic areas for micro-
organisms (Martiny et al., 2006), we argue that this definition
will differ when comparing between micro-organisms living in
different environment types (e.g., soil vs freshwater
micro-organisms).

Physical properties are usually important in several
environments, such as temperature, precipitation, moisture and
solar radiation. These variables can be measured or modeled via
remote sensing platforms and remote sensing-based modeling
tools. Due to the advent of environmental monitoring satellites
and the creation of on-line data processing and distribution
platforms, there is a wealth of environmental data with global
coverage available to the general public, ranging from raw
satellite images to validated measurements of parameters, such
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as land surface temperature, precipitation rates, the
concentration of gases such as CO2 in the troposphere and
photosynthetic activity (Table 4). These databases contain
climatic spatially explicit information such as land surface
temperature, net primary productivity, vegetation and leaf area
indexes, evapotranspiration, detailed landcover map and
precipitation rate. Additionally, since other aspects of soil and
atmosphere might also be necessary to fully characterize the
abiotic environment of micro-organisms. Information pertaining
to soil physical (e.g., clay content) and chemical (e.g., pH)
conditions, as well as soil classification across the globe can be
retrieved from these databases. Similarly, when investigating the
atmosphere microbiome, the atmospheric chemical composition
may play a large role on community composition by changing
the chemical properties such as pH and playing an important
role on ecological processes, such as nitrification (Keller et al.,
2006; Hutchins et al., 2009; Hatzenpichler, 2012). An example of
atmospheric chemical composition data available, such as the
products based on the Atmospheric Infrared Sounder (AIRS), is
a hyperspectral instrument on board of Aqua satellite (Table 4).
By decomposing the infrared radiation in 2,378 bands, AIRS can
provide daily measurements of trace components abundances in
the atmosphere, including ozone, carbon monoxide, carbon
dioxide, methane, and sulfur dioxide in different strata of the
atmosphere, among other parameters (Morgan et al., 2004;
Maddy et al., 2008; Xiong et al., 2008; Engelen et al., 2009; Lin
et al., 2013).

Furthermore, the data gathered from satellites and ground
observations, are used in the parameterization of climatic
models, which allows the calculation of additional climatic
variables. The Global Land Data Assimilation System (GLDAS)
is a good example of this kind of climatic modeling (Rodell et al.,
2004; Rodell et al., 2009). It models land surface states and fluxes,
using advanced land surface modeling techniques based on
optimal fields (Rodell et al., 2004). Currently GLDAS includes
datasets from four land surface models implemented in NASA's
software LIS (Land Information System), namely Mosaic, Noah,
the Community Land Model (CLM), and the Variable
Infiltration Capacity (VIC), resulting in massive archive maps
of up to 40 climatic parameters, water and energy flux, as well as
underground temperature and moisture, with maximum depth
of 1.1 m and with temporal coverage ranging from 1979-01-01 to
nowadays (Kumar et al., 2006; Peters-Lidard et al., 2007).
Another good example of a climatic model available is the
Worldclim, one of the most used climatic datasets in ecological
modeling. It comprises a set of 19 climatic variables relevant to
many ecological processes, with a global coverage of 1000 m
spatial resolution (Fick and Hijmans, 2017). This set of variables
is a result of the averaging of climatic parameters from 1970 to
2000, modeled through the usage of general circulation models
(GCM), which are suitable to model worldwide geographic
variation in ecological processes that respond to spatial
patterns of climatic heterogeneity. The calculation methods to
produce this set of variables were implemented in R and are
available through the function biovars, from the Package ‘dismo',
version 1.1-4 (Hijmans et al., 2017). In addition, Worldclim also
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provides future projections for the same set of 19 climatic
variables for two periods, 2050 (average for 2041–2060) and
2070 (average for 2061–2080), based on the set of models used in
the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC) for the four scenarios of greenhouse
gases concentration (Stocker et al., 2014). These future
projections provided by Worldclim have the advantage of
being bias corrected, using the current climate Worldclim data
as base line, making the three sets of variables compatible. In
addition, the AIRS, TRMM, GPM, and GLDAS products are
available in NASA’s Goddard Earth Sciences Data and
Information Services Center (GES DISC), which is part of the
Earthdata platform, specialized in processing and distribution of
climatic data.

Given the huge amount of climatic and environmental data
available to the global landscape, microbial ecologists are now
using those same analytical tools used in traditional
macroecological studies. This allows them to select the most
important drivers in predicting microbial diversity
distribution patterns and to predict the structure of
microbial communities across the globe, thereby accessing
Frontiers in Genetics | www.frontiersin.org 13
cause and effect associations. In these efforts, machine
learning approaches, especially classification or regression
Random Forest analysis and structural equation modeling
(SEM) should be highlighted (Breiman, 2001; Grace, 2006).
Specifically, Random Forest analysis constitutes specific
algorithms of statistical methods of classification and
regression trees (CARTs) that use binary division or
regression, respectively, to form a set of trees where the
importance of each predictor is inferred by decreased
prediction accuracy through the random permutation of the
values of these predictors (Liaw and Wiener, 2002; Wei et al.,
2010). SEM routines are then used in microbial ecology studies
coupled with Random Forest in order to reveal the relation
between those ‘a priori' selected abiotic drivers and the target-
variable in question, such as the Shannon Index, used as a
proxy for microbial diversity (Delgado-Baquerizo et al., 2016).
Therefore, SEM is a valuable alternative when the objective is
to detail the specific relationships between multiple predictors
and the modeled variable, separating them as individual
pathways in the network of relationships that characterizes
natural systems (Delgado-Baquerizo et al., 2017).
TABLE 4 | Databases for spatially explicit abiotic ecological data for use in community modeling.

Database Data Synopsis References Data access

Atmospheric Infra-
Red Sounder
(AIRS)

Greenhouse gases concentration
in troposphere (CO2, CO, CH4,
O3); etc.

Provides atmospheric chemical composition
measurements by decomposing the infrared
radiation in 2378 bands

AIRS Science team and Texeira,
2008; Morgan et al., 2004; Maddy
et al., 2008; Xiong et al., 2008;
Engelen et al., 2009; Lin et al., 2013

https://search.earthdata.
nasa.gov

Tropical Rainfall
Measuring Mission
(TRMM)

Precipitation Precipitation rate and rainfall rate. Was
operational from 1997-12-01 to 2015-03-31

Wilheit et al., 1991 https://search.earthdata.
nasa.gov

GPM (Global
Precipitation
Measurement)

Precipitation Global observations of rain and snow.
Operational from 2014-03-01 until the
present

Hong et al., 2004; Huffman et al.,
2007; Stocker et al., 2018

https://search.earthdata.
nasa.gov

MODIS (Moderate
Resolution Imaging
Spectroradiometer)

Land surface temperature;
Vegetation idexes (NDVI, EVI,
LAI); Primary production;
Evapotransiration; Ocean
chlorophyll; etc…

Produces a huge list of high precision
environmental products, with high temporal
resolution, that are validated with field data

Cohen et al., 2003; Didan, 2015;
Friedl and Sulla-Menashe, 2015;
Giglio et al., 2015; Running et al.,
2017; Savtchenko et al., 2004;
Turner et al., 2006; Wan et al.,
2015

https://search.earthdata.
nasa.gov

SOILGRID Bulk density; Soil granulometry;
Soil classification; Cation
exchange capacity; Soil organic
content; pH; etc…

Models a set of soil's physical and chemical
properties through the combination of soil
samples data with a large set of soil
covariates using machine learning
techniques

Hengl et al., 2017 https://soilgrids.org

GLDAS—Global
Land Data
Assimilation
System Version 2

Rain precipitation rate;
Evapotranspiration; Root zone
soil moisture; Soil moisture (in
various depths); Soil temperature
(in various depths); etc.

Models land surface states and fluxes using
optimal fields. Includes 40 climatic
parameters with temporal coverage from
1979-01-01 to present with high temporal
resolution

Rodell et al., 2004; Rodell et al.,
2009; Kumar et al., 2006; Peters-
Lidard et al., 2007

https://search.earthdata.
nasa.gov

WorldClim
Version2

Annual Mean Temperature; Mean
Diurnal Range; Temperature
Seasonality; Temperature Annual
Range; Annual Precipitation;
Precipitation Seasonality; etc…

Set of 19 bioclimatic variables averaging of
climatic parameters from 1970 to 2000,
modeled through general circulation models
(GCM).

Fick and Hijmans, 2017 http://worldclim.org/
version2

WorldClim 1.4
downscaled
(CMIP5) data

The same as WorldClim Version2
projected to the future

Future projections for the same WorldClim
19 bioclimatic variables for two periods,
2050 (average for 2041–2060) and 2070
(average for 2061–2080), based
Intergovernmental Panel on Climate Change
(IPCC)

Stocker, 2014 https://www.worldclim.
org/cmip5v1
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Incorporating Biotic Interactions in
Modeling Microbial Communities
Another important issue in macroecological modeling is the
inclusion of biotic interactions as predictor variables. There is an
increasing evidence that species interactions improve the
explanatory and predictive power of species distribution
models, based on environmental variables for macroorganisms
(Araújo and Luoto, 2007). Usually the inclusion of biotic
interactions in species distribution models is based on
previous biological knowledge of the studied species and uses
a limited number of species/taxa per model, while considering
their geographical distribution (Araújo and Luoto, 2007; Wisz
et al., 2013; de Araújo et al., 2014). These models are usually
based on species distribution models and use a maximal entropy
approach—e.g., Maxent for modeling (Phillips and Dudík,
2008). However, there are also integrative modeling
approaches that incorporate co-occurrence patterns into
species distribution models (Pollock et al., 2014). Other
modeling techniques use machine learning approaches, such
as neural networks, which do not make assumptions related to
species occurrence probabilities and linear relationships among
environmental and biological variables, and so provide more
realistic assemblage models (Harris, 2015).

Studies with micro-organisms have also suggested that
including biotic interactions is necessary to build suitable
predictive models (Larsen et al., 2012). However, despite their
importance, these interactions can be elusive to detect, and
unraveling the interactions network in microbial communities
is an ongoing challenge (Faust and Raes, 2012). Biotic
interactions can be inferred to some extent from co-occurrence
networks (Describing Community Structure With Co-ccurrence
Networks), but the increase of computational capacity and the
development of accurate machine learning and network
modeling methods has made possible to explore new
approaches to statistically assess biotic interactions from large
abundance datasets, such as Bayesian networks (BNs) and
Genetic Algorithms (GA). The BNs are graphical models
consisting of a set of variables (represented as nodes in the
network) and directed arcs that describe the sets of conditional
dependencies between these variables, as well as the joint
probability distribution among then (Pearl, 2014; see also
Figure in Box 2). The variables set in BNs may be both abiotic
factors as well as biotic interactions, and the model can be
calibrated with the same input abundance matrices generated
by taxonomic annotation methods (Taxonomic Profiling and
Exploratory Analyses in Microbial Macroecology). Additional
columns representing abiotic aspects of each sampling site can
be added to the abundance matrix to represent the abiotic
environment experienced by a specific microorganism. This
approach allows the creation of species distribution models by
taking into account both biotic and abiotic aspects
simultaneously in a model across large geographical scales
(Staniczenko et al., 2017). These models can be further used to
predict the change in the abundance of an organism when any
other node (either an abiotic aspect or another species
Frontiers in Genetics | www.frontiersin.org 14
abundance) changes in the environment. A few microbial
studies have already used a BN approach to study, e.g., the
bacterial diversity in gut microbiota for patients with psoriatic
arthritis (Scher et al., 2014) and the gut microbiota in HIV
positive patients (Vázquez-Castellanos et al., 2015). Similarly, in
macroecology, a few studies have used the BN approach, e.g., for
range prediction of California grassland community
(Staniczenko et al., 2017) and assessment of threat status of
pacific walrus population in Russian and Alaskan waters at four
different time periods (scenarios) throughout the twenty-first
century (Jay et al., 2011).

Similarly, the use of predictive models based on the genetic
algorithm (GA) method holds great potential to infer microbial
interactions but has not been explored by microbiologists so far,
to the best of our knowledge. The GA is an approach to solve
problems inspired by the process of natural selection. Genetic
programming (GP) is a particular type of GA that can be used to
generate computational artifacts, such as computer programs,
mathematical models, and logical models, that help to explain an
observed data (Koza, 1992). The GP approach usually starts from
a population of programs (algorithms) that show random levels
of success in solving a task (in this case, describing the significant
biotic interactions observed in a microbiome dataset). The fittest
programs, that is, those best describing the data, are selected for
reproduction and may undergo some “mutation” according to
predefined parameters. This process is repeated over several
generations in an analogy to natural selection, and the final
generations are expected to show a population of much fitter
programs than the initial ones. This procedure is essentially a
heuristic search technique that looks for an optimal or at least
suitable program among the space of all programs available.
Since the construction of the models is totally guided by data,
without the need of a priori hypotheses, the greatest potential of
this technique is to generate hypotheses about the relationship
between micro-organisms, as well as between micro-organisms
and environment, that can be assessed by other approaches (such
as BNs, dynamical modeling or common correlative statistics,
described above). Applications of GP include designing electrical
circuits (Koza et al., 2000), reverse engineering biochemical
reac t ions (Sug imoto e t a l . , 2005) and descr ib ing
epidemiological relationships (Veiga et al., 2018).

Another promising approach to resolve microbial
interactions is the use of dynamical models (Widder et al.,
2016), which can bridge the gap between fundamental
ecological knowledge and empirical interactions between taxa,
by relying on explicit and mechanistically sound hypotheses. For
such purpose, several modelling approaches are available
(reviewed by Song et al., 2014 and by Succurro and Ebenhöh,
2018), each presenting its own set of assumptions concerning
biotic and abiotic components of community. The most
widespread approach is assuming direct biotic interactions
among taxa and representing these interactions by using the
generalized Lotka-Volterra model (gLV). This is a particular case
of the population dynamic model, which can then serve to
investigate concepts related to community dynamics such as
January 2020 | Volume 10 | Article 1344
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co-occurrence networks and keystone taxa (Berry and Widder,
2014; see Box 1). Some authors also advocate the use of
metabolic-explicit dynamical models that integrate aspects of
community and environmental variables, such as stoichiometry-
based models and flux balance analysis (FBA; Song et al., 2014).
While these approaches avoid black-box modeling and provide
valuable insights into community functioning across
environments, they present parameterization challenges, in
gLV for instance, the number of parameters increases with the
square of the number of interacting species, hindering model
analysis. Future developments integrating dynamical modeling
and statistical parameterization techniques are thus poised to
improve the suitability of dynamical modeling approaches to
exploration of microbial community interactions; meanwhile,
Frontiers in Genetics | www.frontiersin.org 15
dynamical modeling is readily available to investigate important
subsystems with fewer interacting organisms.

Species Distribution Modeling for
Community Prediction
The steps described in Using Abiotic Variables to Model Microbial
Communities and Incorporating Biotic Interactions in Modeling
Microbial Communities allow us to highlight important abiotic
environmental factors as well as biotic interactions necessary to
model our focal microbial communities. Although few of the
techniques presented, such as BNs, can model community
composition on their own, another approach largely used in
macroecology for this purpose is the set of modeling tools
known as species distribution modeling (SDM). The use of
BOX 2 | Bayesian Networks: Advantages and Drawbacks.

Bayesian networks show several advantages that support their recent application in complex fields, such as: 1) network modularity, being able to integrate multiple
ecosystem components (Chen and Pollino, 2012; Nojavan et al., 2014; Nojavan et al., 2017; Uusitalo, 2007), such as in management decisions field, where it is possible to
integrate several sub-models as social, ecological and economic aspects (Chen and Pollino, 2012); 2) the capability of dealing with complex and nonlinear systems
(Uusitalo, 2007; Aguilera et al., 2011; Phan et al., 2016; Beuzen et al., 2018); 3) possibility of incorporating expert knowledge (Uusitalo, 2007; Aguilera et al., 2011;
Alameddine et al., 2011; Death et al., 2015; Phan et al., 2016), through blacklists (i.e., unrealistic relationships that are not allowed in the model) and whitelist (i.e.,
relationships already known in the literature); 4) being able to use a small number of samples (Uusitalo, 2007; Phan et al., 2016) 5) simplicity and little difficulty in interpreting
outputs, even for non-modelers (Aguilera et al., 2011; Death et al., 2015); 6) being a rather “open” approach, different from other methods, which can be considered
complicated “black-box” approaches (Chen and Pollino, 2012); 7) being able to handle high dimensional systems with the proper number of samples (Aguilera et al.,
2011); 8) dealing with missing data through conditional probabilities or Bayes theorem (Uusitalo, 2007; Aguilera et al., 2011; Death et al., 2015), and finally 9) presenting
less computational cost to analyze and compare different scenarios, such as climatic changes, by setting variables states in the model (Chen and Pollino, 2012; Death
et al., 2015).

The main weakness of the BN approach is the lack of feedback possibilities in the model, due to it being directed acyclic graph (DAG; Phan et al., 2016). This can be
bypassed by integrating models. The most critical drawback pointed in most studies is the discretization of continuous variables (Uusitalo, 2007; Aguilera et al., 2011;
Nojavan A. et al., 2014; Death et al., 2015; Phan et al., 2016). The principal argument is that it causes an inevitable loss of information from data, linear relationships and
consequently model performance (Uusitalo, 2007; Nojavan A. et al., 2017; Beuzen et al., 2018). However, using discrete values allows for better modeling of non-linear
relationships between variables, as well as complex distributions such as bi- or multimodal distributions and can introduce greater robustness against error (Hartemink,
2001). As alternatives, there are models that could handle continuous data and not have mathematical restrictions, such as Mixture of Truncated Exponentials (MTE)
models and the BN created for continuous variables (Qian and Miltner, 2015). However, it is hard to find simple examples and they are not easily found in any commercial
software, which makes implementation difficult for non-modelers.
FIGURE IN BOX 2 | A graphical example of a hypothetical Bayesian Network (BN), showing both biological taxa (green circles) and predictor abiotic variables (blue
circles). NDVI = Normalized difference vegetation index.
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SDM has been regarded as a well-established approach that can be
used to overcome the lack of species spatial data, and holds great
advantages for micro-organisms, a group in which the Wallacean
deficit (i.e., the lack of information about species distribution)
tends to be high. The SDM techniques are generally based on the
concept of species ecological niches, which is the set of biotic and
abiotic conditions that allows a species to persist indefinitely in a
location (Soberón, 2007). Evidence so far suggests that biotic
interactions should have a larger importance at smaller scales (but
see Gotelli et al., 2010 and Araújo and Rozenfeld, 2013), while
abiotic conditions, such as climate, should have a larger influence
at larger spatial scales (McGill, 2010). Based on this,
macroecologists have used the set of climatic conditions where a
macroorganisms lives to estimate its potential geographic
dis t r ibut ion . Whereas this i s large ly e ffic ient for
macroorganisms, more empirical evidence is necessary to
evaluate these premises for micro-organisms.

Two sets of approaches can be used for SDMs: the mechanistic
and correlative species distribution modeling (Figure 5).
Mechanistic SDMs use information obtained from ex-situ
experiments that indicate the environmental conditions that a
species can tolerate (e.g., maximum and minimum temperature).
Frontiers in Genetics | www.frontiersin.org 16
This information on physiological tolerances can then be used to
map areas that are environmentally suitable for the species, which
can be transformed into presence/absence information (Kearney
and Porter, 2009; Figure 5). The lack of experimental information
indicating species tolerance have limited the use of mechanistic
approaches; however, in areas where experimental data is
abundant, such as agricultural science, mechanistic models have
been used to predict potential areas for determined crop varieties
(e.g., Nabout et al., 2012). This approach can be potentially useful
for microbial macroecology, since these organisms can be easily
manipulated ex-situ, because of their small, short life span and
large population sizes (Jessup et al., 2004).

The correlative approach, on the other hand, uses statistical
associations between acknowledged species occurrences and
environmental conditions to estimate the Grinellian Niche
(Figure 5). The type of statistical model used for this approach is
then chosen upon the type of occurrence data available: continuous
(abundance data), binary (i.e., presence/absence data) or presence-
only data (usually the latter, since abundance information is not
always available and real absence data is challenging to confirm).
Presence-only models of species distributions are largely used for
macroecological studies, with several algorithms available, from
FIGURE 5 | A workflow on techniques for species distribution modelling. Ecological niches can be modeled both by using mechanistic models (upper left figure,
representing temperature laboratory manipulative experiments on plants) or by using correlative models (lower left figure, representing the use of spatial-explicit
environmental data combined with the knowledge about occurrence points for the species). The ecological niche is then calibrated on an n-hyperdimensional volume
defined by all predictor variables used in the study (only three dimensions are shown in the cube to the center). Green points indicate known occurrence for the
species projected into the environmental space; dashed green lines represent the ecological niche inferred from those points. The inferred ecological niche can then
be projected into geographical space, which consists on the geographical areas having environmental conditions within those inferred to be the species' niche (are
highlighted as suitable areas for the species in the map). Since the niche is statistically calibrated, i.e., as a statistical relation between predictor environmental
variables and presence-absence response variables, the final map shows a gradient of environmental suitability for the species across the space.
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simple ones, such as the BIOCLIM, up to more complex models
based on machine learning techniques - e.g, Random Forest and
MAXENT (Elith and Leathwick, 2009). While some authors claim
that some algorithms have a better performance than others, the
Frontiers in Genetics | www.frontiersin.org 17
current view is that the choice of the algorithm also depends on the
context in which SDMs are applied (see Peterson et al., 2010).
Despite the known importance of abiotic conditions to determine
large-scale species distributions, one must consider also current
FIGURE 6 | A methodological framework to investigate the macroecology of micro-organisms. The framework shows methods related to (A) gathering taxonomic
data on environmental samples, (B) exploring the data with exploratory analyses as well as statistical tests (e.g., correlation and regression analyses), and (C) using
the data to create predictive models about the presence/absence of species across different environments. Solid red arrows indicates input and output data that is
used as input for analyses, and blue arrows indicate the output of these analyses. Dashed red arrows indicate data that can yield indirect insights for an analysis
(although they are not commonly used as direct data input for the method). Grey boxes indicate external information sources and green boxes indicate the
methodological approaches reviewed in this manuscript. Dark green boxes within green boxes indicate the specific techniques used in each approach. White boxes
indicate the final outputs for the macroecological approach, i.e., models explaining how environment and biotic interactions affect species presence-absence and
ultimately community composition. (A) Data from metagenomic databases can be annotated taxonomically to yield presence-absence or abundance matrixes for
several ecosystems. (B) Spatial-explicit environmental data can be incorporated into exploratory analyses (such as PCA and MDS) as well as correlation analyses
(such as regression and Mantel test) to investigate micro-organisms diversity patterns on global scales. Functional diversity can also be investigated on
macroecological scales (both directly inferred from sequence reads or from the taxonomic annotation of samples). Co-occurrence networks are commonly used in
microbiology studies and can yield interesting insights when different groups of samples are compared across an environmental gradient. The understanding of
functional diversity and functional redundancy can be coupled with co-occurrence networks to infer the existence of keystone taxa, as well as the extent of direct
and indirect effects throughout a network, and then describe the community structure and ecosystem functioning. Such structure can then be compared across
macroecological scales (e.g., analyzing how the importance of specific taxa as keystone taxa varies across different environments). (C) Spatial-explicit environmental
data can also be incorporated into models to understand community structure (such as Bayesian network modeling and genetic programming) as well as models to
calibrate ecological niche (such as mechanistic and correlative niche models). These models can incorporate insights from analyses shown in (B). Similarly, insights
on biotic interactions, derived from community structure models, can be incorporated into ecological niche models (which commonly only use abiotic environmental
variables as predictors). The final predictive models will allow microbiologists to understand interaction rules structuring microbial communities, predict the present of
important taxa in different environments and infer microbial community composition across the globe.
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and historical movement limitations, such as geographical barriers,
dispersal capacity and biogeographical history (Barve et al., 2011).
However, it is still necessary to identify whether and how
movement limitations are important to model microbial
distributions, because of their overall high dispersal capacity.

Several computational tools can be used to apply SDMs, many
of them freely available, open source, and collaborative (e.g.,
Naimi and Araújo, 2016; Kass et al., 2018). Microbiology can
benefit from these methods in many research lines, since SDMs
have been used not only to predict individual species
distribution, but also species richness and composition (e.g.,
Guisan and Rahbek, 2011), species potential invasive areas (e.g.,
Smolik et al., 2010), as well as to understand niche evolution and
speciation patterns (e.g., Silva et al., 2014; Silva et al., 2016a), and
past species dynamics (e.g., Nogués-Bravo, 2009); and to model
geographical range responses to climate change (e.g., Pecl et al.,
2017). Specifically, SDMs present an important method to
understand how species geographic range may respond to
climate change. However, because of high microbial adaptation
capacity, it may be a methodological challenge for
microbiologists to incorporate evolution when trying to model
species distribution into other time periods (Ofori et al., 2017).
CONCLUSION

The vast amount of microbial community data available
represents an exciting prospect for advancing the field of
microbial macroecology. In this review, we outlined the main
questions in macroecology, community ecology and addressed
how microbial ecologists can address them with bioinformatics,
statistical and modeling tools. We covered fundamental aspects of
biodiversity, reviewed classical approaches used in microbial
ecology in a macroecological context, and highlighted the
existing caveats and solutions to implement ecological modeling
of microbial communities, which is a crucial research area for both
the theoretical and practical aspects of macroecology. These
approaches can serve as a general framework for microbial
macroecology, addressing the two-part focus of macroecology:
describing community patterns (and their drivers) at large scales
and predicting community composition across the globe (Figure
6). The framework we present here consists of 1) gathering
biological data to generate an abundance matrix, and
environmental data to generate an environmental matrix; 2)
exploring the associations between biological and environmental
data at macroecological scales, using exploratory and network
approaches; 3) incorporating insights from the previous step into
modeling tools for community prediction.

The main difficulties for this research avenue are the
theoretical implications derived from the biology of micro-
Frontiers in Genetics | www.frontiersin.org 18
organisms, such as higher dispersal capacity, higher
evolutionary rate and the putative environmental drivers of
community composition. New studies are necessary to address
which environmental factors are relevant for modeling microbial
distribution and to define whether the high dispersal capacity of
micro-organisms makes this aspect uninformative for
biogeographic patterns (i.e. the classic statement of “Everything
is everywhere”). Also to evaluate whether the adaptive potential
of micro-organisms is indeed high enough to violate the usual
assumption of niche conservatism applied to ecological
modeling. The insights from these future studies will have
great impact on microbial ecological model interpretation. We
predict that the development of modeling methods and
approaches used in microbial macroecology, an exciting and
flourishing field, will significantly contribute to the unification of
microbial ecology and macroecology.
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