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Genetic correlations and ecological networks shape coevolving
mutualisms

Abstract

Ecological interactions shape the evolution of multiple species traits in populations. These traits are
often linked to each other through genetic correlations, affecting how each trait evolves through
selection imposed by interacting partners. Here, we integrate quantitative genetics, coevolutionary
theory and network science to explore how trait correlations affect the coevolution of mutualistic
species not only in pairs of species but also in species-rich networks across space. We show that
genetic correlations may determine the pace of coevolutionary change, affect species abundances
and fuel divergence among populations of the same species. However, this trait divergence promoted
by genetic correlations is partially buffered by the nested structure of species-rich mutualisms. Our
study, therefore, highlights how coevolution and its ecological consequences may result from con-
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flicting processes at different levels of organisation, ranging from genes to communities.
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INTRODUCTION

Natural selection imposed by interactions between species is
among the main processes shaping the evolution of life. Some
of the clearest examples are in interactions in which the focus
of selection is on one or a few readily visible traits, such as
narrow and deep corollas of plants that are matched by long
proboscis of their coevolved fly pollinators (Anderson and
Johnson, 2009). However, ecological interactions are often
mediated by multiple traits and, as a consequence, they often
drive the evolution of multiple traits of interacting species.
For example, pollination of woodland stars (Lithophragma
spp.) by Greya moths requires trait matching of several traits
in the plants and in the moths (Thompson et al., 2013). Other
studies have revealed combinations of traits shaped through
interactions between predators and prey (Benkman and Mez-
quida, 2015), parasites and hosts (Schulte er al., 2010), herbi-
vores and plants (Ramos and Schiestl, 2019), competitors
(Schluter and McPhail, 1992) and mutualistic partners (Camp-
bell et al., 1997). Therefore, a major problem in evolutionary
ecology is how multiple traits simultaneously evolve and coe-
volve in interacting species.

The answer to this problem depends on two components of
trait evolution. The first component is the generation-to-gen-
eration consistency of the strength and direction of selection
on the traits of coevolving species. The second component is
the structure of genetic correlations among those traits and
the genetic variation in each trait, which may constrain both
the direction and pace of evolutionary change driven by

selection (Price et al., 1993; Schluter, 1996; Arnold et al.,
2008) (Fig. 1a). Past studies have explored genetic correlations
between traits and the consequences for species evolution
(Nuismer and Doebeli, 2004; Pigliucci and Preston, 2004), and
an increasing number of empirical studies have shown how
variation in genetic correlations shapes trait evolution in inter-
acting species (Pélabon ez al., 2010; Kolbe et al., 2011;
Thompson et al., 2013). For example, Berg (1960) showed
that some animal-pollinated plants often have higher pheno-
typic integration (i.e., higher correlations) among reproductive
traits than between reproductive and vegetative traits. These
higher levels of phenotypic integration may, in turn, affect the
evolution of ecological interactions (Berg, 1960; Armbruster
and Schwaegerle, 1996). Moreover, there is a growing consen-
sus that evolutionary processes can have a direct impact in
ecological dynamics, affecting species abundances (Loeuille,
2010; Ellner et al., 2011; Urban et al., 2020). If genetic corre-
lations have the potential to influence coevolution, then this
impact might be translated to the ecological dynamics of com-
munities.

Phenotypic integration among traits has the potential to
influence ecological communities through direct and indirect
interactions within networks of interacting species. Indirect
effects may impose indirect selective pressures that conflict
with direct selection acting on pairs of species (Guimaraes
et al., 2017). Correlations among traits could potentially
impact how the combined effects of direct and indirect selec-
tion on interactions shape the trajectories of coevolution
under different environmental conditions. Even though we
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Figure 1 Impact of genetic correlations on pairwise coevolution. (a) Trait evolution of two traits under selection in a constant environment (fixed adaptive
peak, black cross). Genetic correlations (strong and positive — red ellipse) reduce the pace of evolution, taking many more generations (number of red dots
along the trajectory) for the species to achieve the adaptive peak than when there is no correlation between traits (blue circle and dots). (b) Trait evolution
due to plant-pollinator mutualism. Variable levels and directions of genetic correlations in both partners may lead to distinct trait evolution (solid arrows)
even if selection favours the same trait values (dashed arrows). Blue circles — no correlation in both species; red ellipses — strong positive correlation both in
plant and pollinator and green ellipses — strong positive correlation for plant and negative for pollinator, i.e. opposite direction correlations. (c) Genetic
correlations influence the pace of coevolution affecting the amount of time to achieve trait matching (colours equal to B). Notched boxplots depict the
median, first and third quartile, 95% confidence interval (notch) and range (line) with outliers (dots), showing that the time to achieve trait matching varies
with patterns of genetic correlations (n = 1000 simulations). (d) Numerical simulation showing the trajectory to trait matching when the plant has strong
positive correlation and the pollinator has strong negative correlation (green ellipses — different direction correlations); plant and animal with strong
positive correlations (red ellipses — same direction correlations); compared to a scenario when traits are independent in both plant and animal (blue circles).
Black dots indicate initial trait values, and the dots along the trajectories indicate the subsequent generations for each species, the stars denote the outcome
(always trait matching, i.e. both moth and plant lines meet each other, but in different places in the trait space depending on the genetic correlations; red
and blue stars overlap).

have some understanding of how genetic correlations influ- (generation-to-generation) change as well as the equilibrium
ence coevolution in two species (Gilman er al., 2012) and outcomes. We focused on mutualisms because these interac-
of how species may adapt in networks of coevolving inter- tions are ubiquitous in natural communities, are part of the
actions (Guimaraes et al., 2017), we lack a general frame- life history of all eukaryotes, often form networks of interact-
work that integrates how these effects influence species ing species and are less well understood than antagonistic
adaptation, persistence and community dynamics. Full interactions.
understanding of how communities responds to changes Our analyses proceed in three stages. We first use a two-spe-
demands the crossing of phenomena spanning very different cies model to explore how trait correlations influence the tra-
scales (Levin, 1992). jectory and rate of coevolution towards trait matching of
Here, we merge tools from quantitative genetics, coevolu- partner species, and also their impact on species abundances.
tion and network theory to evaluate how genetic correlations Next, we incorporate empirically estimated phenotypic corre-
among traits within populations, trait matching in pairs of lations to investigate how variation in correlations between
coevolving species and indirect selection among species can traits might influence local adaptation and coevolution across
shape coevolution across time and space. Because communi- populations and fuel diversification in traits within species
ties are continually in flux, we analysed the transient across space. Finally, we investigate how genetic correlations
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and the structure of mutualistic networks act together to
affect local and diversifying coevolution across different eco-
logical communities.

MATERIALS AND METHODS

Genetic correlations and trait evolution in a pairwise mutualism:
model description

We assume that higher genetic correlations may deflect and
bias evolutionary change in a direction that is not the one
favoured by selection on any one trait (Fig. 1). When a popu-
lation adapts to stable environments, i.e. a fixed evolutionary
adaptive peak, genetic correlations may slow the rate of adap-
tive change (Fig. la — red evolutionary trajectories). In coe-
volving interactions, however, environments are constantly
changing because each interacting species is in itself an envi-
ronment to which a species must adapt (Thompson, 2013),
and then genetic correlation might impact evolutionary
change in a coevolutionary context (Fig. 1b).

We modelled evolution of pairwise mutualism mediated by
two quantitative traits in each population (Supporting Infor-
mation — Section 1 describes the model in detail). Each trait is
modelled as a continuous variable. We assumed that selection
favours matching between the pair of interacting traits in indi-
viduals of different species. We assumed weak selection, and
species have discrete generations (Supporting Information file
— Section 2). For each time step (generation), changes in the
traits were evaluated as a multivariate response to selection
(Lande, 1979):

zEa) ) _ (’) ﬁ(’) (1)
where Efl) (z ) is a 2 x 1 vector with the values for both
traits of spemes a at time step £+ 1 (1) and G, is a 2 x 2
matrix describing the trait variances and covarldnce between
traits for species a. The diagonal elements of G(,), (4, :c%aﬁ,
represent the additive genetic variance for a given trait i,
whereas the non-diagonal terms, g );» Tepresent the genetic
covariance between traits i and j.

The selection gradient is a 2 x 1 vector B, (with length
equals to the number of traits) for species a and is given by
(Lande, 1980):

RYEOEC
Blo) = (@@ +Pw) (zu,)—zw))’ @

where ®(, is a 2 X 2 matrix that describes the slope of the
adaptive landscape on each trait (diagonal elements) and the
correlational selection on a pair of traits (off-diagonal ele-
ments). In our simulations, we assumed @, to be a diagonal
matrix in which there is no correlational selection. Py, is the
phenotypic matrix, defined as P,y = Gy + E(,), in which E,
is the environmental matrix. In our simulations, we assumed
Py = G, for simplicity (Supporting Information — Section 8
relaxes this assumption). The selection differential is given by
the difference between the traits in the two species, (ng) _ zE )))

where zE 5 is the trait vector of mutualistic partner b. Therefore,

coevolution in our two-species model proceeded until perfect

trait matching was achieved, ZE:’)) :ZE;)). We combined eqns 1

and 2 to describe how traits of both species evolve:
A7 =G(0+G) ! (Rz(’) - z(t>) , (3)

where Az® is a N x | vector containing the evolutionary
change between generations of all traits in all the species
(N = 4 traits), R is a 4 X 4 matrix in which r; =1, if the traits
i and j interact and 0 otherwise, whereas ® and G are 4 X 4
matrices formed by four sub-matrices:
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Our initial aim was to investigate if genetic correlations affect
the outcomes of pairwise, mutualistic interactions. In our
model, genetic covariance of a given pair of traits is defined as
g, = V&), m ), in which C(v), is the genetic correlation
between species x traits / and j, and g, is the additive genetic
variance of trait i (j). We kept the other parameters fixed and
explored the effects of genetic correlations on trait evolution
mediated by mutualisms. We used as a benchmark:
8, = 8(x), = 8@y, = 8@ =8(b), =8(b), =2» @i=10 for any
trait i, and species initial trait values sampled from a uniform
distribution (0,1). We explored the parametric space of genetic
correlations ranging from —0.7 to 0.7 with 0.1 increments. We
then assessed the effects of other parameters by performing sen-
sitivity analyses (Supporting Information — Section §8). Parame-
ter values were based on empirically observed genetic
correlations (Conner et al., 2014). The trait variances were also
inspired by empirical observations, but, importantly, these val-
ues can differ by orders of magnitude as long as the relationship
between variance and the slope of the adaptive landscape (w) is
maintained and selection is weak enough for Lande’s equations
to apply (Supporting information — Section 2). All simulations
were performed in R (R Core Team, 2014) and code is available
in Github/paulaassis/Mutualism_genetic_correlations.

How do genetic correlations affect coevolution of a pair of
mutualistic species?

We described these effects by measuring in each simulation:
(1) the span of time for the two species to achieve trait match-
ing and (2) the differences in final trait values in simulations
assuming no genetic correlations and genetic correlations. We
estimated the time needed to achieve trait matching by calcu-
lating the time until trait difference between species was smal-
ler than 107°. This difference is five orders of magnitude
smaller than original differences, and small enough to guaran-
tee asymptotic results. We then computed mean trait change
per time step, v"), across all traits of all species:

) (f 1) ‘ (5)

In our simulations, v\ decays exponentially with time (Fig.
S1), v(t)=a+be ™™, in which a, b and A are constants
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(Supporting Information — Section 1). We estimated the
effects of genetic correlations on the final trait values by mea-
suring the difference between equilibrium trait values in simu-
lations that assumed no genetic correlations as compared with
simulations that assumed genetic correlations between traits.

Eco-evolutionary model

We used an eco-evolutionary model to gain insight into how
the effects of genetic correlations might be translated into
population dynamics. The evolutionary dynamics followed
eqn (3) and the population dynamics were described as a dis-
crete time logistic growth model (Andreazzi et al., 2018).

_ 0 (1) Ar(0) (1) A1)

AN(,I>—VN<a)—N( )Na +h(ah NaN(b) (6)
where NE?) [NE%] is the abundance of species « [b] at the time
step ¢, and /) represents the per capita effect of the mutual-
ism with b on the demography of species a:

2

ez <Z<u,> *Z(m))_
¢ - 7

e 20 (o).

Therefore, the higher the phenotypic matching,
(z(a) — z(b>)2 — 0, the higher the effect of the mutualism on pop-
ulation growth, with o controlling the extent of the trait match-
ing impact on demography. We started all simulations with low
species abundances (N, =N, =0.01) and small intrinsic
growth rates (ry) = rp) = 1.001). We used o = 0.1 and we ran
100 simulations per scenario of genetic correlations (correla-
tions ranging from —0.7 to 0.7 with 0.05 increments).

Map) =

The potential of genetic correlations to shape diversifying
coevolution in empirical pairwise mutualisms

Correlations between traits are known to vary among natural
populations (Wood and Brodie, 2015). We explored if varia-
tion in genetic correlations could favour trait diversification
through divergent coevolution across populations. We param-
eterised numerical simulations on the trait correlations found
within the well-studied interactions between Lithophragma
(Saxifragaceae) plants and Greya (Prodoxidae) moths
(Thompson et al., 2013). Lithophragma affine (Saxifragaceae)
is one of several woodland star species pollinated by Greya
moths. G. politella pollinates a flower when it inserts its abdo-
men through the corolla tube to lay its eggs inside the flower
(Fig. S7). A single visit by an ovipositing female can result in
more than a hundred developing seeds. In order for the inter-
action to be established, multiple traits must interact in both
species because small changes in trait values can have large
effects on the number of pollinated ovules (Thompson et al.,
2013, 2017).

Previous studies have shown that woodland stars and Greya
moths covary in morphology to varying degrees across large
geographic regions (Thompson et al., 2013, 2017). Here, we
used data derived from seven populations (Thompson et al.,
2017) to parameterise our coevolutionary model with empiri-
cal information on the degree to which trait correlations vary

© 2020 John Wiley & Sons Ltd.

among populations. We used ovary depth and petal width in
L. affine plants and ovipositor length and wingspan in G. poli-
tella moths to parameterise the simulations because they func-
tionally affect pollination (Thompson et al., 2013, 2017).
Correlations between petal width and ovary depth varied from
—0.77 to 0.55 among populations, and wingspan and oviposi-
tor length correlation varied between —0.26 and 0.99. We per-
formed seven sets of simulations (n = 1000 simulations per
set), each set parameterised with the trait correlations
observed for plants and moths in a given site. The initial trait
values of each simulation were sampled from a normal distri-
bution with 0.01 standard deviation and all parameters but
the empirical correlations were identical. We then analysed
the degree of divergence among populations after the popula-
tions achieved trait matching and compared the final diver-
gence among the seven populations relative to simulations in
which the traits were not correlated.

Genetic correlations and the coevolution of mutualistic networks

We explored the extent to which genetic correlations affect
coevolution by generalising our two-species model to net-
works. We based our analyses on two very distinct types of
mutualism: intimate ant—plant interactions in which the plants
(myrmecophytes) host ants that, in return, protect the plant
from herbivores (n = 8 networks) and multi-partner interac-
tions between plants and pollinators (n = 28 networks, Table
S4). We chose those two types of mutualisms because they
illustrate contrasting network patterns that may have different
effects on coevolution (Thompson, 1994; Fontaine et al.,
2011). Intimate mutualisms, in which individuals interact for
extended periods of time, often form highly modular and spe-
cies poor networks, whereas multi-partner mutualisms, in
which each individual interacts briefly over its lifetime with
many individuals of other species, formed species-rich, nested
networks.

We assumed in the model that each species has two traits
and that these two traits affect each interaction in which the
species participates. We parameterised each simulation with
the empirical network in such a way that if species a interacts
with species b in the empirical network, then, in our model, a
given trait i of individuals of species a interacts with a given
trait i of individuals of species b. We assume the network
structure is binary and fixed such that, if the interaction
occurs, it will always influence coevolution. As in the pairwise
coevolutionary model, selection imposed by each pairwise
interaction favoured increased degree of trait matching
between the traits of interacting species, i.e. favouring
(') (% and zE )> —zEb)) However, because species are
emBedd dina network, multlple partners could impose con-
flicting selective pressures and indirect effects promoted by
other species may affect the trajectory of coevolution of traits.
We simulated scenarios in which all species had relatively high
correlation in the same direction (0.8) or in different direc-
tions (animals 0.8 and plant —0.8, for example), and we com-
pare these scenarios with one in which traits show no genetic
correlation. The initial trait values for all species were sam-
pled from a uniform distribution ranging from 0 to 1.



Letter

Genetic correlations shape coevolving mutualisms 5

We investigated whether network structure and degree of
genetic correlation influenced time to achieve equilibrium
using an analytical approximation (Supporting Information
file — Section 1). We characterised network structure using
four descriptors: richness, connectance (Gardner and Ashby,
1970), nestedness (NODF index, Almeida-Neto ez al., 2008)
and modularity (Olesen et al., 2007, Marquitti et al., 2014).
Because these descriptors are correlated, we used a PCA using
the z-scores of each descriptor and the projection in the first
principal component (PC1) was used to characterise network
structure. PC1 explained 61% of the variation in network
metrics, with loadings of nestedness (0.60) and species richness
(0.55), negatively correlated with modularity (—0.50) and con-
nectance (—0.27). We used the strong correlations in the same
direction as a case study because our analyses showed that
this genetic architecture has the stronger impact in the time to
equilibrium (Fig. 1). We then used linear models to explore if
PC1 scores and genetic correlations (strong in the same direc-
tion or no correlations) were associated with the time to equi-
librium.

We then explored how network structure and genetic corre-
lations affect trait divergence across sites. We used genetic
correlations among populations of different species (Wood
and Brodie, 2015) as a benchmark to establish limits of how
much we should expect genetic correlations to vary across
populations (Table S3). Unfortunately, we have no specific
data for the species in each network. However, the dataset
encompasses multiple animal and plant species, allowing a
coarse description of how much genetic correlations may vary
across populations. We ran 10 simulations with different
genetic correlations to simulate coevolutionary change at 10
sites. For each simulation, we randomly sampled from a uni-
form distribution with range equal to the empirically observed
range in correlations across populations, but with the same
initial trait values and network structure. Although patterns
of interaction often vary across populations of the same spe-
cies, keeping network fixed allowed us to control for the con-
founding effects of species and interaction turnovers and
focus on how the spatial effects of genetic correlations depend
on network structure. We assumed negligible gene flow among
sites and held all model parameters fixed for all simulations.
Hence, the only difference was the genetic correlations
observed among networks.

Finally, we added selection from other environmental fac-
tors and explored how genetic correlations modulate the
response to environmental change in mutualistic networks.
We simulated trait evolution at 10 sites in which each site has
the same environmental optima and the same ecological net-
work until trait values reached equilibrium. At the equilib-
rium, we simulated a perturbation, randomly shifting the
abiotic trait optima of all species by a small amount at each
site, represented by a vector (&). Then, we estimated the
response to selection in one generation, measuring trait diver-
gence across sites. We investigated scenarios where there were
(1) no genetic correlations and no network structure, (2)
strong genetic correlations and no network structure, (3) no
genetic correlations and networks structure and (4) both net-
work structure and genetic correlations (Supporting Informa-
tion, Section 5). We used general linear models to test if the

presence of a network, the network structure (PCl) and
genetic correlations influenced the spatial variation across
populations, estimated by the standard deviation of trait val-
ues.

RESULTS

Genetic correlations increased the mean time to achieve trait
matching (Fig. 1c¢) if the correlations were in the same direc-
tion (i.e. positive correlations in both species or negative cor-
relations in both species). For example, the mean time to trait
matching was more than three times longer for strong positive

correlations between traits (C(a),, =), :0.7) than for uncor-

related traits: 1 = 354 vs. 112 generations (Fig. 1c, Supporting
Information). Hence, when traits were positively correlated in
both species, coevolving populations would remain relatively
maladapted to each other for longer periods of time. Correla-
tions in the same direction also increased the variance in the
time to achieve trait matching (variance = 1102.6 vs. 47.9,
indicating higher unpredictability in the pace of coevolution-
ary change, Fig. 1c). This unpredictability depended on initial
conditions: although correlations in same direction often slo-
wed down the time to achieve trait matching, in a few cases
the trait values of both species started in a region of trait
space in which their correlations were aligned, actually
enhancing the response to selection and resulting in faster
evolutionary change. In contrast, the time to achieve pheno-
typic matching in simulations assuming genetic correlation in
opposite directions was similar to the time observed with no
correlations (mean time to matching for simulation with cor-
relation 0.7 and —0.7, t = 115.7 and variance = 32.49).

Genetic correlations had a marked ecological impact on the
eco-evolutionary simulations. Interacting species took longer
to achieve the larger population sizes promoted by mutu-
alisms, when they presented genetic correlations in the same
direction (Fig. 2a). This impact depended on the magnitude of
the correlations and also whether the genetic correlations were
concordant between the interacting species (Fig. 2b). Hence,
genetic correlations may influence the demography of popula-
tions through time through their effects on the evolution of
mutualism.

Genetic correlation between two traits also shifted equilib-
rium values relative to independent traits, but only when the
correlations were in opposite directions (Fig. 1d). The stron-
ger the correlation in opposite directions, the greater was this
shift (mean shift of 0.12 standard deviation units for correla-
tions of 0.7 and —0.7, Fig. 1d). Yet, even weak correlations in
opposite directions had an impact on the final trait values
(mean shift of 0.05 units of standard deviation for correlations
of 0.2 and —0.2, Supporting Information — Section 6.1). The
observed shift is comparable to the median estimated selection
gradient observed in natural populations (median = 0.16 units
of standard deviation), highlighting the strong impact that
genetic correlation might have on populations (Kingsolver
et al., 2001). Our results, therefore, suggest that genetic corre-
lations may lead to different coevolved trait values and a dif-
ferent pace and trajectory towards equilibrium than selection
on uncorrelated traits (Fig. 1d). As a consequence, differences

© 2020 John Wiley & Sons Ltd.
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Figure 2 Genetic correlations influence population size in mutualistic species. (a) High correlations in the same direction (red) lead to an increase in the
time to achieve the equilibrium population size, where the lines represent population size for a simulation with different starting points for high
correlations in the same direction (red lines) or no correlation between traits (blue lines). (b) The time to achieve equilibrium population size increased as
the same direction correlation in both species increased. Parameters: G(za)l = 0%4,)2 :c%h)l :0(2,7)2 =2,0(0)1 = O ()2 = D)1 = DO(p)2 :42;1\7&?0) =

N0 =001 =7 =1.0010=0.01.

in genetic correlations of traits across populations may fuel
trait variation across space in species interactions.

Empirical correlations found in natural populations
favoured diversification among populations in our simulations
(Fig. 3). Across-population variation in genetic correlations
leads to initial evolutionary trajectories to differ greatly
among sites as the Lithophragma plants and Greya moths coe-
volved in our simulations (Fig. 3a). Moreover, the eventual
equilibrium trait values differed between every pair of plant
and moth populations (Fig. 3b). At equilibrium, the diver-
gence observed in populations with correlations compared to
populations with no correlations increased from 17% to more
than 80% depending on initial trait values (Fig. S9 and S10).

So far, the above results involved just a pair of interacting
species. When we expanded the model to incorporate multiple
interacting species and different interaction network structures
(i.e. patterns of links among species), we found that genetic
correlations increased the time to trait matching (Fig. 4a), as
it had in the two-species model. Network structure and
genetic correlations interacted to shape the pace and outcome
of trait matching. Nested, species-rich networks took longer
to achieve trait matching than modular, species-poor net-
works, even if there was no correlation between traits (Fig. 4
a). Differently than the pairwise scenario, correlations in the
opposite direction also increased the time to trait matching
when compared to a no-correlation scenario, albeit to a lower
degree than same direction correlations (Fig. 4a). The impact
of genetic correlations, however, decreased as network struc-
ture becomes more nested and included more species (network
structure:  Fj g = 19.38, P < 0.001; genetic correlations:
Fies =37.26, P <0.001; and significant interaction:
Fy 63 =7.57, P <0.05; Fig. 4b). Our analytical approximation
showed that the pace of coevolution depends on both the

© 2020 John Wiley & Sons Ltd.

species network structure and the genetic correlations. Specifi-
cally, the pace of coevolution was governed by the largest
non-unity eigenvalue of a matrix that combines the patterns
of interaction between species, the patterns of genetic correla-
tion between traits within species and the underlying slope of
the adaptive landscape (Supporting Information — Section 1).

As in the pairwise coevolutionary model, genetic correla-
tions had a strong effect on the final trait value achieved in
species interaction networks (Fig. S14). Similarly to the two
species case, this impact was greater when the correlations
were strong but in different directions in the two functional
groups (e.g. plants and pollinators, Fig. S14). For a represen-
tative pollination network (Kaiser-Bunbury ez al., 2009), the
mean shift was 0.10 standard deviation units for correlations
of 0.8 and —0.8 (Fig. S14a). Overall, nested, species-rich net-
works with genetic correlations led to a smaller influence in
final trait values than in more modular, species-poor networks
(Fig. S14b).

When exploring if genetic correlations could also foster trait
divergence among populations of the same species in net-
works, we found, as in the two-species system, that genetic
correlations led to trait divergence among populations. How-
ever, network structure affected the total divergence among
populations of the same species (Fig. 4c). In particular, more
species-rich and nested networks showed less divergence than
species-poor and more modular networks (R*=0.71,
Fy 34 = 88.54, P < 0.001, Fig. 4d).

Lastly, when exploring how natural selection imposed by
abiotic environments could modify the combined effects of
genetic correlations and ecological interactions, we found that
equally strong genetic correlations across sites amplified the
divergence between populations of the same species, when
compared to simulations with no genetic correlations (Fig. 5
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small variation in the evolutionary trajectories and in the final trait values when there was no correlation between traits. (b) In contrast, variation in the
empirical correlations at the local level led to large differences in evolutionary trajectories and trait values among pairs of interacting populations at
equilibrium, even assuming all other model parameters are identical and all populations started with the same variation in trait values as in the model with

no correlations (a).

a). This divergence occurred despite the buffering effects of
mutualistic network structure (effect of incorporating only
network structure Fj34 = 87.05, P < 0.001 and both genetic
correlations and network structure: Fj 34 = 88.31, P < 0.001;
Fig. 5b). Hence, incorporation of abiotic selection showed the
importance of considering the variation among populations in
genetic correlations when investigating possible effects of envi-
ronmental disturbances in a network context.

DISCUSSION

Collectively, our results highlight the importance of both
genetic and network structure to coevolution in five different
ways. First, the outcome for trait matching for pairwise inter-
actions depends on the structure of genetic correlations in
both species. If both species have strong positive or negative
genetic correlations, trait evolution in both species will be
often transiently maladaptive. Maladaptation occurs because
genetic correlation causes both traits in the same species to
change in the same direction, even though that direction is
not favoured by selection. If genetic correlations of different
species are in opposite directions in our two-trait model, selec-
tion and genetic correlations will always be concordant in at
least one of the species. For example, if selection favours an
increase in one trait and a decrease in the other, then the spe-
cies with negative correlations will respond adaptively,
whereas the species with positive genetic correlations will not.
Hence, not only the selective pressures but also the architec-
ture of genetic correlations of traits mediating interactions in
all interacting species affects the coevolutionary outcome.

Second, genetic correlations can increase the time needed
for mutualistic partners to achieve trait matching. Higher cor-
relation between traits can slow down the rate of coevolution-
ary change and increase the time needed to reach an adaptive
peak (Arnold et al., 2008; Assis et al., 2016). In nature, popu-
lations are seldom at an adaptive peak because adaptive land-
scapes are continually reorganised due to environmental
change (S@ther and Engen, 2015) or evolutionary feedbacks
caused by ecological interactions, such as red queen dynamics
(Van Valen, 1973) and coevolutionary indirect effects
(Guimaraes et al., 2017). Consequently, because genetic corre-
lations in the same direction cause transient maladaptive
responses, populations may often remain somewhat mal-
adapted in environments with high disturbance rates.

Third, the longer periods of transient dynamics and mal-
adaptation resulting from genetic correlations may contribute
to eco-evolutionary dynamics. During the long period of tran-
sient dynamics interacting populations will fluctuate in their
degrees of maladaptation to each other. These coevolutionary
fluctuations may, in turn, affect the abundances of interacting
species, as shown in our simulations. This demographic
impact may also influence the persistence of populations
through time because the species will have smaller population
sizes during periods of maladaptation, and smaller popula-
tions are more prone to extinction due to stochastic events.

Fourth, our results suggest that genetic correlations are an
underexplored source for coevolutionary diversification. Popu-
lations of the same species often differ markedly in their phe-
notypes due to a combination of variation in evolutionary
and coevolutionary selection on different populations

© 2020 John Wiley & Sons Ltd.
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(blue and pink dots) of the time to trait matching in coevolution using a representative pollination network (left, blue) and an ant-plant network (right,
pink) and assuming different combinations of correlations in each functional group (positive, negative or absent in each group of species). (b) Analytical
expectation of time to trait matching derived from our model parameterised with empirical networks (n = 36 networks) and assuming scenarios in which
there are no genetic correlations (lighter colours) or in which there are correlations in the same direction (darker points). The effects of genetic correlations
are stronger in small modular ant-plant networks (low PCI scores, pink) than in species-rich nested pollination networks (high PC1 scores, blue, see
Methods, see Figure S20 for regressions against raw network metrics). (c) Genetic correlations also influenced the divergence among populations across
sites. Each pair of green-orange lines depicts trait evolution of the same plant (red circled green dot) and ant (red circled orange dot) species in a given
simulation (site) for the network depicted in the upper left corner. Trait initial values are the same for all species in the network in all sites but evolve in
different ways due to the variation in the genetic correlations estimated from empirical case studies. (d) Trait variation among populations across 10
hypothetical sites (n = 50 simulations per network, dispersal bars depict 95% confidence interval) is much more conspicuous in a scenario where there was
genetic correlation (circles) than with no genetic correlation (triangles).

© 2020 John Wiley & Sons Ltd.
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et al, 2017), which suggests that genetic correlations may be
an important source of geographical variation in coevolution-
ary dynamics and functional traits. Indeed, by using the
empirical correlations observed in populations of Litho-
phragma plants and their pollinating Greya moths, we found
that the observed differences in phenotypic correlations led to
conspicuous differences in the trait values achieved without
necessarily reducing the functionality of traits, i.e. coevolution
still led to trait matching. Our simulations used phenotypic
correlations instead of genetic correlations, even though these
are not necessarily the same (Morrissey et al., 2010). This is a
conservative approach because genetic correlations across
populations vary even more than the correlations we obtained
in our empirical system (Wood and Brodie, 2015, Table S3).
Finally, our results highlight how network structure and
genetic correlations act together affecting the responses of coe-
volving assemblages to environmental perturbations. In our
simulations, network structure mediated both the pace of
coevolution and the interpopulation trait divergence promoted
by genetic correlations. These effects highlight the importance
of ecological indirect effects that can cascade through networks
(Guimaraes et al., 2017). In this sense, our analytical approach
was important to highlighting how the interaction between net-
work structure and genetic correlations may impact different
types of mutualism. Genetic correlations promoted higher spa-
tial divergence in highly modular networks typical of intimate
mutualisms, such as those between myrmecophytes hosting
ants. In contrast, the genetic correlations promoted lower

spatial divergence in nested networks observed in lower speci-
ficity multiple-partner mutualisms such as those between plants
and their pollinators. In fact, nested networks may act as buf-
fers of trait divergence across space promoted by genetic corre-
lations. By constraining the spatial divergence among
populations, nested networks may favour persistence of mutu-
alistic interactions amid environmental change and variation in
the intrinsic structure of genetic variation. In an evolutionary
sense, nestedness, by favouring indirect effects, may provide an
explanation for how traits in ecological interactions persist at
broad spatial scales amid variation in the structure of selection
across space (Medeiros et al., 2018).

Our study is a first effort to systematise how multiple scales
— from the intrinsic genetic architecture of individuals (i.e.
developmental networks connecting traits) to the web of coe-
volving interactions — can influence the evolution and dynam-
ics of populations. The architecture of species interaction
networks, genetic correlations among traits and the interplay
between selection imposed by coevolution and physical envi-
ronments collectively shape coevolving traits. This interplay
makes relentless evolution likely in networks of coevolving
species in a constantly changing world. Finally, our results
highlight the scale and multidimensionality dependency of the
evolutionary process and as such advocates for the embracing
of these multiple levels of organisation if we want to move
forward to a better understanding of how species will persist
and adapt in the face of the vast changes that most natural
environments are currently facing.

© 2020 John Wiley & Sons Ltd.
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