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Abstract 

A central problem in the study of species interactions is to understand the underlying ecological and evolutionary 

mechanisms that shape and are shaped by trait evolution in interacting assemblages. The patterns of interaction 

among species (i.e. network structure) provide the pathways for evolution and coevolution, which are modulated 

by how traits affect individual fitness (i.e. functional mechanisms). Functional mechanisms, in turn, also affect 

the likelihood of an ecological interaction, shaping the structure of interaction networks. Here, we build adaptive 

network models to explore the potential role of coevolution by two functional mechanisms, trait matching and 

exploitation barrier, in driving trait evolution and the structure of interaction networks. We use these models to 

explore how different scenarios of coevolution and functional mechanisms reproduce the empirical network 

patterns observed in antagonistic and mutualistic interactions and affect trait evolution. Scenarios assuming 

coevolutionary feedback with a strong effect of functional mechanism better reproduce the empirical structure of 

networks. Antagonistic and mutualistic networks, however, are better explained by different functional 

mechanisms and the structure of antagonisms is better reproduced than that of mutualisms. Scenarios assuming 

coevolution by strong trait matching between interacting partners better explain the structure of antagonistic 

networks, whereas those assuming strong barrier effects better reproduce the structure of mutualistic networks. 

The dynamics resulting from the feedback between strong functional mechanisms and coevolution favor the 

stability of antagonisms and mutualisms. Selection favoring trait matching reduces temporal trait fluctuation and 

the magnitude of arms races in antagonisms, whereas selection due to exploitation barriers reduces temporal trait 

fluctuations in mutualisms. Our results indicate that coevolutionary models better reproduce the network 

structure of antagonisms than those of mutualisms and that different functional mechanisms may favor the 

persistence of antagonistic and mutualistic interacting assemblages. 

 

 

Keywords: coevolution, exploitation barrier, functional trait, nestedness, modularity, trait 

matching 
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Introduction  

Coevolution is the reciprocal trait change resulting from ecological interactions, shaping the 

adaptive peaks of pairs of interacting species (Guimarães et al. 2017). A fundamental problem 

in evolutionary ecology is how scaling up coevolutionary dynamics from pairs of species to 

assemblages forming networks with defined structures that are shaped by and shape 

ecological and evolutionary processes (Bascompte 2009, Thompson 2013, Barraclough 2015). 

In this vein, the way that coevolution modulates the structure of networks of interacting 

species may depend on how species traits determine the likelihood of interactions and impact 

fitness (hereafter, the functional mechanism; Stang et al. 2006, Dehling et al. 2014, 

Schleuning et al. 2014). At the same time, the structure of a network represents the pathways 

through which the effects of selection may create evolutionary cascades that propagate 

through the network, driving trait evolution of multiple species (Encinas-Viso et al. 2012, 

Nuismer et al. 2013, Beckett and Williams 2013, Minoarivelo and Hui 2016b, Andreazzi et al. 

2017, Guimarães et al. 2017). For example, selection imposed by one parasite species may 

promote evolutionary changes in a host species, which may lead to changes in another 

parasite species that share the same host. Thus, exploring how network structure emerges as a 

result of coevolution by different functional mechanisms and how such structure affects trait 

evolution is key to elucidate the feedbacks among ecological and evolutionary processes in 

shaping biodiversity (Thompson 2013). 

Here we explore two pervasive network structures that have been widely observed 

across species assemblages -nestedness and modularity- and that may be affected by 

coevolutionary processes. Nestedness is a pattern characterized by specialist species 

interacting with subsets of species interacting with more generalist ones (Bascompte et al. 
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2003, Vázquez and Aizen 2004). Modularity is a pattern in which there are groups of species 

having many interactions among themselves and very few interactions with species in other 

modules (Newman 2006, Olesen et al. 2007). Antagonistic and mutualistic interactions among 

free-living species (e.g. herbivory by grasshoppers and mammals, frugivory) are often more 

nested and less modular than intimate interactions among species (e.g. gall-forming and leaf-

mining insects and their plants, protective ants and their plants; Fontaine et al. 2011). Thus, 

no discrete classes of network structure can be strictly associated with different types of 

interactions (Fontaine et al. 2011, Pires and Guimaraes 2012). However, ecological 

interactions do vary in such a way that selective pressures lead to different trait evolution, and 

therefore to different outcomes depending on the functional mechanisms that shape the 

likelihood of interaction occurrence in nature. 

Functional mechanisms describe how physiological, morphological and life-history 

traits modulate the likelihood of an interaction and affect individual fitness (Williams and 

Martinez 2000, Stang et al. 2006b, Rezende et al. 2007, Santamaría and Rodríguez-Gironés 

2007, Blüthgen et al. 2008, Pires et al. 2011, Eklöf et al. 2013). At the community level, 

functional mechanisms may lead to specific network patterns across mutualistic and 

antagonistic interactions (Stang et al. 2006a, Nuismer et al. 2013, Santamaría and Rodríguez-

Gironés 2015, Andreazzi et al. 2017). Nestedness can emerge as an outcome of thresholds 

imposed by how species traits, such as body size (Vázquez et al. 2009, Chamberlain et al. 

2010) and prey preferences (Kondoh 2003, Araújo et al. 2010), affect the use of resources by 

consumers. In contrast, modules may emerge because of constraints imposed by trait 

matching such as those among attack and defense traits and among plant rewards and the 

requirements of pollinators and frugivores (Olesen et al. 2007, Donatti et al. 2011, Krasnov et 

al. 2012, Schleuning et al. 2014).  
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At evolutionary timescales, the functional mechanism determining network interaction 

patterns also may drive trait evolution. As a consequence, we should expect that coevolution 

by different functional mechanisms play a role in shaping nestedness and modularity 

(Thompson 2005; but see Ponisio and M’Gonigle 2017). For instance, a high matching 

between cuckoo and host eggs decreases the probability of egg rejection (Krüger 2007, Vikan 

et al. 2011) and increases the chance of a successful antagonistic interaction. In the same vein, 

the matching of floral and pollinator traits also increases the fitness effect of the mutualistic 

interaction (Johnson and Steiner 1997, Stang et al. 2009, Ibanez 2012). Therefore, 

coevolution selecting for trait matching (i.e. fitness effect of interaction increases with trait 

similarity) may promote increased levels of reciprocal specialization and segregate 

communities into semi-independent modules (Nuismer et al. 2013, Nuwagaba et al. 2015, 

Andreazzi et al. 2017). In contrast, coevolution selecting for exploitation barriers (i.e. fitness 

effect of interactions depends on whether species traits are larger than the threshold that 

allows interaction occurrence) may lead to nested structures (Nuismer et al. 2013). For 

example, weevils successfully infect camellia seeds only if their rostra are longer than the 

camellia fruit pericarp (Toju 2011). Otherwise, the camellia seeds are protected from 

predation (Toju 2011). Exploitation barriers have also been documented in mutualisms such 

as the hawkmoth-plant pollination interaction, which is modulated by hawkmoth mouthparts 

length and corolla depth (Alexandersson and Johnson 2002, Santamaría and Rodríguez-

Gironés 2015). Therefore, trait evolution in mutualisms and antagonisms may be affected by a 

complex interplay of functional mechanisms, coevolution, and network structure. It has been 

increasingly recognized that trait coevolution and network structure may ultimately affect the 

evolutionary dynamics of species interactions (Nuismer et al. 2013, Thompson 2013, 

Guimarães et al. 2017, Ponisio and M’Gonigle 2017, Andreazzi et al. 2018). These models 
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have shown that coevolution reduces trait variation in mutualistic networks (Guimarães et al. 

2017). In antagonistic networks, trait matching is related to fluctuating selection and increased 

trait variation (Andreazzi et al. 2018). However, modeling coevolution by different functional 

mechanisms and evaluating the ability of these mechanisms to reproduce the structures 

observed in empirical networks is still an open challenge 

In this study we explore how coevolution by different functional mechanisms shapes 

the structure and drives the evolutionary dynamics of antagonistic and mutualistic networks. 

We use an adaptive network framework (Gross and Blasius 2008) that combines the evolution 

of species traits and the assembly of interactions, allowing us to study feedbacks between trait 

evolution and network structure. We study coevolution by two functional mechanisms, trait 

matching and exploitation barrier, and we evaluate the ability of such models to predict the 

structure of empirical networks covering a wide spectra of antagonistic and mutualistic 

ecological interactions. Our aim is to understand (i) how coevolution by different functional 

mechanisms explains the modular and nested structure of empirical antagonistic and 

mutualistic networks, and (ii) how these processes may drive species trait evolution. 

 

Methods 

Coevolution by functional mechanisms, trait evolution and the structure of networks  

The adaptive network framework 

We use an adaptive network framework (Raimundo et al. 2018) to study how 

antagonistic and mutualistic networks are shaped by different functional mechanisms and 

coevolution. The adaptive network approach combines the evolution of species traits caused 
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by direct and indirect interactions among species and the feedback between trait evolution and 

network dynamics (Figure 1).  

We define 𝑧𝑖
𝑡 as the mean value of a single quantitative trait in species i at time t. We 

assume that there is evolutionary feedback between species traits and interactions, i.e. that 𝑧𝑖
𝑡 

shapes interactions between species i and other species of the network and that those 

interactions affect trait evolution. We initially sample the value of 𝑧𝑖
𝑡 from a normal 

distribution (mean=0, sd=0.1). Species traits determine the probability of pairwise interactions 

according to a given functional mechanism (described below). Once pairwise interactions 

have been assigned, traits evolve in response to the selective pressures imposed by the 

environment and interactions among species. Thus, pairwise interaction probabilities are 

recalculated at each time step and species interactions are re-assigned following the updated 

interaction probabilities, which may lead to a new matrix of realized interactions (Figure 1). 

 Functional mechanisms 

We study the effects of coevolution on network structure and trait evolution by 

considering two different functional mechanisms, trait matching and exploitation barrier. 

These mechanisms are depicted in the simulations by a matrix with a total of R species 

(resources in rows and consumers in columns) whose elements are the probabilities of 

pairwise interaction among species. The trait matching mechanism assumes that the similarity 

of resource and consumer traits determines the probability of pairwise interaction among them 

in a given time step (Nuismer and Thompson 2006, Nuismer et al. 2013). Pairwise interaction 

probabilities are calculated as follows:  

𝑝𝑖𝑗
𝑡 =  𝑒−𝛼(𝑧𝑖

𝑡−𝑧𝑗
𝑡)

2

     (1) 
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In this equation α is the strength of the mechanism and measures how the degree of trait 

matching changes the probability of pairwise interaction.  

The exploitation barrier mechanism assumes that the consumer species has to 

overcome a barrier to successfully interact with a resource species. Thus, the probability of 

pairwise interaction depends on how large is the difference between trait 𝑧𝑖
𝑡 of consumer i and 

trait 𝑧𝑗
𝑡 of resource j, with the interaction successfully occurring only if such difference is 

higher than a given threshold. Pairwise interaction probabilities are calculated as follows: 

𝑝𝑖𝑗
𝑡 =  

1

1 +𝑒
−𝛼(𝑧𝑖

𝑡−𝑧𝑗
𝑡)

     (2) 

As in Eq. 2, α measures how the difference in species traits affects the probability of pairwise 

interaction (Nuismer and Thompson 2006, Nuismer et al. 2013).  

 Interactions among species in each network are assigned proportionally to interaction 

probabilities (Pt, Eq. 1, 2). We initially allocate one interaction for each species with 

probability proportional to Pt, therefore ensuring that all species have at least one interaction 

and then the remaining interactions are assigned according to Pt.  

Trait evolution 

We use a time-discrete model that describes trait evolution in the context of selection imposed 

by environment and species interactions, as in previous coevolutionary network models 

(Andreazzi et al. 2017, Guimarães et al. 2017). We modify the classical equation for 

phenotypic evolution (Lande 1976) to calculate the evolutionary change of 𝑧𝑖
𝑡 in a given time 

step (Eq. 3, 4). The selection gradient is composed by environmental and species interaction 

selection pressures (Andreazzi et al. 2017, Guimarães et al. 2017,). We describe the mean trait 
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evolution of a given species that interacts with a partner j assuming interactions are affected 

by trait matching (Eq. 3) and exploitation barrier (Eq. 4) as follows: 

𝑧𝑖
𝑡+1 =  𝑧𝑖

𝑡 + 𝜑𝑖(𝑆𝑖
𝑡 + 𝑀𝑖𝑗

𝑡 )    (3) 

𝑧𝑖
𝑡+1 =  𝑧𝑖

𝑡 + 𝜑𝑖(𝑆𝑖
𝑡 + 𝐵𝑖𝑗

𝑡 )    (4) 

In Eq. 3 and 4, φi is a constant proportional to the slope of the selection gradient and to the 

additive genetic variance of the trait under selection (Guimarães et al. 2017). Because 

previous studies have already shown that φi has no qualitative effect on coevolutionary 

dynamics (Guimarães et al. 2017), we assume φi is fixed and identical for all species (φ = 

0.25). 𝑆𝑖
𝑡, 𝑀𝑖𝑗

𝑡  and 𝐵𝑖𝑗
𝑡  are the partial selection differentials caused by environmental selection, 

selection imposed by interactions due to trait matching and selection imposed by interactions 

due to exploitation barriers, respectively. 

We assume that environmental selection favors an optimum trait value for each 

species, θi, and that θi = 𝑧𝑖
𝑡=0 for simplicity. The partial selection differential caused by the 

environment (𝑆𝑖
𝑡) is defined as follows: 

𝑆𝑖
𝑡 = 𝜉𝑆(𝜃𝑖 − 𝑧𝑖

𝑡)      (5) 

in which ξS is the intensity of environmental selection, 0 < ξS < 1, and 𝜃𝑖 − 𝑧𝑖
𝑡

 is the difference 

between environmental optimum and the mean trait value of the population at time step t.  

To model coevolution by trait matching, we assume that the consequences of pairwise 

interactions on fitness depend on the degree of trait matching between interaction partners. 

Therefore, we are assuming that trait matching affects both the functional viability of the 

interaction (probability of interaction) and the selective pressures imposed by the ecological 
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interactions. Selection on consumer i favors trait matching with resource j for both 

antagonistic and mutualistic interactions. The consumer’s partial selection differential (𝑀𝑖𝑗
𝑡 ) is 

calculated as: 

𝑀𝑖𝑗
𝑡 = 𝜉𝑑𝑎𝑖𝑗

𝑡 (𝑧𝑗
𝑡 − 𝑧𝑖

𝑡)     (6a) 

in which ξd is the intensity of selection imposed by resource species j, so that 𝜉𝑑 + 𝜉𝑆 = 1, 

and 𝑎𝑖𝑗
𝑡

 describes the evolutionary effect of the interaction between species i and j at time t 

(see below). Similarly, selection also favors trait matching with consumer i in mutualistic 

interactions for the resource species j: 

𝑀𝑗𝑖
𝑡 = 𝜉𝑑𝑎𝑗𝑖

𝑡 (𝑧𝑖
𝑡 − 𝑧𝑗

𝑡)     (6b) 

In contrast, in antagonisms selection favor trait mismatching on resource species. To 

model selection favoring trait mismatches in antagonistic interactions we assume there is a 

critical mismatch, ε, so that if |𝑧𝑖
𝑡 − 𝑧𝑗

𝑡| > 𝜀 consumer i has a negligible effect on the fitness 

of resource j (Andreazzi et al. 2017). We assume ε is fixed and identical for all species (ε = 

0.5). Because single-trait matching relationships imply bidirectional trait axis, selection acting 

on the resource j can favor either increasing 𝑧𝑗
𝑡 (𝑧𝑖

𝑡 + 𝜀, if 𝑧𝑗
𝑡 > 𝑧𝑖

𝑡) or decreasing 𝑧𝑗
𝑡 (𝑧𝑖

𝑡 − 𝜀, if 

𝑧𝑗
𝑡 < 𝑧𝑖

𝑡), leading to:  

{
𝑀𝑗𝑖

𝑡 = 𝜉𝑑𝑎𝑗𝑖
𝑡 𝑢𝑗𝑖

𝑡 (𝑧𝑖
𝑡 + 𝜀 − 𝑧𝑗

𝑡)           if 𝑧𝑖
𝑡 < 𝑧𝑗

𝑡

𝑀𝑗𝑖
𝑡 = 𝜉𝑑𝑎𝑗𝑖

𝑡 𝑢𝑗𝑖
𝑡 (𝑧𝑖

𝑡 − 𝜀 − 𝑧𝑗
𝑡)           if 𝑧𝑖

𝑡 > 𝑧𝑗
𝑡   (6c) 

in which 𝑢𝑗𝑖
𝑡 = 1 if |𝑧𝑖

𝑡 − 𝑧𝑗
𝑡| ≤ 𝜀; 𝑢𝑗𝑖

𝑡 = 0 if |𝑧𝑖
𝑡 − 𝑧𝑗

𝑡| > 𝜀. The evolutionary effect 𝑎𝑖𝑗
𝑡

 is 

defined as:  
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𝑎𝑖𝑗
𝑡 =

𝑙𝑖𝑗
𝑡 𝑝𝑖𝑗

𝑡

∑ 𝑙𝑖𝑘
𝑡 𝑝𝑖𝑘

𝑡𝑅
𝑘=1;𝑘≠𝑖

     (7) 

In this equation, 𝑙𝑖𝑗
𝑡  = 1 if species i and j interact at time t and otherwise 𝑙𝑖𝑗

𝑡  = 0. R is the total 

number of species in the network.  

In the model describing coevolution by exploitation barriers, selection on consumers 

favors a unidirectional larger trait value that overcomes the exploitation barrier determined by 

the traits of the resource species. We assume that the trait of consumer i, 𝑧𝑖
𝑡, needs to be larger 

than the trait value of resource j plus a critical value, i.e. 𝑧𝑗
𝑡 + 𝜀𝑏 , for the successful 

occurrence of the pairwise interaction in both mutualistic and antagonistic interactions. The 

partial selection differential imposed by resources on consumers (𝐵𝑖𝑗
𝑡 ) is defined as: 

𝐵𝑖𝑗
𝑡 = 𝜉𝑑𝑎𝑖𝑗

𝑡 (𝑧𝑗
𝑡 + 𝜀𝑏 − 𝑧𝑖

𝑡)     (8a) 

Selection on resource j favors traits that increase the probability of a successful 

interaction with consumer i in mutualistic interactions, leading to: 

𝐵𝑗𝑖
𝑡 = 𝜉𝑑𝑎𝑗𝑖

𝑡 (𝑧𝑖
𝑡 − 𝜀𝑏 − 𝑧𝑗

𝑡)     (8b) 

In antagonistic interactions, in contrast, selection on resource j favors traits that are 

sufficiently large to avoid attack so that 𝑧𝑗
𝑡 > 𝑧𝑖

𝑡 + 𝜀𝑏 consumer i has a negligible effect on the 

fitness of resource j (𝑢𝑗𝑖
𝑡 = 0). The partial selection differential imposed by antagonistic 

consumer i on resources j is defined as:  

𝐵𝑗𝑖
𝑡 = 𝜉𝑑𝑎𝑗𝑖

𝑡 𝑢𝑗𝑖
𝑡 (𝑧𝑖

𝑡 + 𝜀𝑏 − 𝑧𝑗
𝑡)     (8c) 
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Empirical antagonistic and mutualistic networks  

To investigate how coevolution by functional mechanisms shapes the structure and 

trait dynamics of antagonistic and mutualistic networks we parameterize the models with data 

from 122 antagonistic (i.e. herbivory, parasitism and predation) and 122 mutualistic (i.e. 

dispersal, pollination and protective) empirical networks (Supplementary material, Table A1). 

We use the number of resources (i.e. plants in mutualistic networks; plants, hosts and prey in 

antagonistic networks), consumers (i.e. pollinators, dispersers and ants in mutualistic 

networks; herbivores, parasites and predators in antagonistic networks) and realized 

interactions (i.e. connectance) of these networks to parameterize the dimensions and the total 

number of interactions of simulated matrices (the Lt matrix of each simulation). The empirical 

networks range from very small networks of bacteria and phages or protective ants and plants 

that include less than 10 species to large networks of fishes and their parasites or plants and 

their pollinators including more than 240 species (Table A1). The structure of each empirical 

network is characterized by nestedness, estimated using the descriptor NODF (Almeida-Neto 

et al. 2008), and modularity, estimated using the descriptor Q (Newman 2006, Barber 2007). 

We estimate the degree of modularity using the fast greedy modularity optimization algorithm 

for finding community structure (Clauset et al. 2004), which combines fast computing time 

with adequate performance for characterization of small (< 1000 nodes) networks with similar 

species richness (Marquitti et al. 2014, Leger et al. 2015).  

Numerical simulations  

We explore differences between coevolution by trait matching and exploitation barrier 

models by comparing scenarios of weak (α = 1) or strong (α= 100) effects of the functional 

mechanisms on interaction probabilities and moderate or strong interaction selection imposed 
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by those mechanisms (ξd) as described in Table 1. In scenarios with moderate effects of 

coevolution there is a balance between the selective pressure imposed by interactions and that 

of the environment (ξd = ξS = 0.5). In those scenarios in which coevolution has a strong effect, 

selection imposed by interacting species is the main force driving species trait evolution (ξd = 

0.99).  

We also explore four null scenarios as theoretical benchmarks to improve our 

understanding of the effects of coevolution by the two different functional mechanisms on 

network structure and trait dynamics. In the no effect (random interactions) null scenarios 

(Table 1) the probability of pairwise species interaction does not depend on traits and is equal 

for all species (𝑝𝑖𝑗 ~ 1 𝑁𝑉𝑁𝐸⁄ ), and the intensity of coevolution is either moderate (ξS = 0.5) 

or strong (ξd = 0.99). We use no coevolution (fixed traits) null scenarios (Table 1) to 

understand how networks are assembled by weak (α = 1) or strong (α= 100) functional 

mechanisms in the absence of coevolutionary feedback. In the no coevolution null scenarios 

species traits are fixed at the environmental optimum (θi). We run 100 replicates per each 

combination of network, functional mechanism and selection scenario (Table 1).  

We characterize the structure of networks obtained at the end of each simulation by 

calculating nestedness and modularity as described above for empirical networks. Because 

interactions can rewire over time and alter network structure, we calculate these structural 

statistics at different points in time (at t = 1, 100, 500, 1000, and every 1000 time steps 

thereafter) and obtain mean values. We also characterize the outcome of trait evolution at the 

end of each simulation. Each simulation run (n=100) per network replicate implies 10 000 

time steps (i.e. generations), which represents the adequate time for the stabilization of the 

variance of the structural statistics. We compute the magnitude of trait change, 𝐷𝑖 =
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|𝑧𝑖
𝑡=10 000 − 𝑧𝑖

𝑡=0|, which measures the final outcome of trait evolution, and the total temporal 

trait fluctuation, 𝐹𝑖 = ∑ |𝑧𝑖
𝑡+1 − 𝑧𝑖

𝑡|𝑡=10 000
𝑡=0 , which characterizes the trajectory of trait change 

in time. We obtain the average value of D and F considering all species within each network 

replicate to evaluate the effects of coevolution by the different functional mechanisms on trait 

evolutionary dynamics.  

Statistical analyses 

Performance of models and scenarios in reproducing the structure of empirical networks  

We calculate the accuracy of the structural fit between the empirical estimates of 

network nestedness and modularity and their counterparts in the networks obtained through 

simulations by computing the normalized model error (NME) between these estimates 

(Williams and Martinez 2008, Pires et al. 2011). The normalized NME of a given statistic can 

be defined as the absolute difference between the model’s median value and the empirical 

value divided by the difference between the model’s median value and the value at the 2.5% 

or 97.5% quantiles, depending on whether the empirical value is lower or larger than the 

model’s median (Williams and Martinez 2008, modified by Pires et al. 2011). By using this 

approach, we do not make particular assumptions about the distribution of values that is 

generated by the models. The empirical structural statistic is considered significantly different 

from the distribution of structures obtained through simulations if NME < -1 or NME > 1, 

with positive and negative NME values outside this range indicating over and 

underestimation, respectively. We evaluate the performance of scenarios in reproducing the 

structural properties of empirical networks by calculating both the significance of the median 

NME values and the percentage of empirical networks whose structure was significantly 

reproduced (|NME|<1) by each scenario. We test the significance of differences between 
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scenarios performances by using Wilcoxon signed rank test which estimates the median of the 

pairwise difference in NME values from each scenario being compared and its associated 

95% confidence intervals. Scenarios’ performances are considered different if these 

confidence intervals do not include the zero value (Hollander and Wolfe 1999). 

Model predictions of trait evolution  

We analyze the predicted effects of coevolution by different functional mechanism on 

1) the magnitude of directional trait change, and 2) the temporal fluctuation of traits by 

comparing these response variables across the full set of scenarios that are described in Table 

1. We test the significance of differences between scenarios by using the same procedure 

described above. 

Results 

 The empirical antagonistic and mutualistic networks show no difference in mean 

modularity and nestedness, with both interaction types containing highly nested and modular 

networks (Figure 2). However, within these interaction types some show higher nestedness, 

such as mammalian predator-prey and frugivory networks, while others tend to be more 

modular, such as leafminer-plants and protective networks (Supplementary material Appendix 

1 Figure A3). 

Scenarios including coevolution with a strong functional mechanism (SM and SS 

models) have, in general, better performance than other scenarios in predicting the structure 

of empirical networks, particularly in antagonistic systems (Table 1). These scenarios perform 

particularly well in predicting the structure of antagonistic networks such as seed predation, 

chewing herbivory, fish parasitism, bacteriophagy and mammal predation (Supplementary 
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material Appendix 1 Figure A6-A7). For mutualistic systems the scenario that assume a 

balance between coevolutionary and environmental selection predict better the structure of 

those networks (SM model, Table 1). Thus, the effect of coevolution in better reproducing 

antagonistic and mutualistic networks is evidenced only when there is a strong functional 

mechanism because scenarios including coevolution with weak functional mechanism (WS 

and WM models) perform similar to the null scenarios (Table 1, Supplementary material 

Appendix 1 Figure A4-A5).  

Moderate coevolution by trait matching strongly determining interactions has, in 

general, the best performance for antagonistic networks, reproducing nestedness and 

modularity of almost 70% of the networks (Table 1, Fig. 3, 4). The modular and nested 

structure of chewing herbivory, fish parasitism and bacteriophagy networks is reproduced by 

both mechanisms, with trait matching always performing better (Supplementary material 

Appendix 1Fig. A6-A7). Mammal predators and prey interactions are the only antagonistic 

networks which modularity and nestedness are better predicted by the exploitation barrier 

mechanism (Supplementary material Appendix 1 Fig. A6-A7). These results are not affected 

by differences in connectance and size among such interactions as the ability of scenarios to 

reproduce the structure of empirical networks (i.e. their NME) is not affected by these 

network structural parameters (Supplementary material Appendix 1 Fig. A10-A13). 

Scenarios assuming moderate coevolution by strong exploitation barriers better 

reproduce mutualistic interactions (Fig. 3, 4), significantly predicting the modular and nested 

structure of ca. 20% of networks (Table 1). This result is consistent across all types of 

mutualistic interactions considered (Supplementary material Appendix 1 Figure A8). 

However, the modularity of mutualistic networks is similarly predicted by scenarios assuming 
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moderate coevolution by any type of strong functional mechanism (22% of networks; Table 

1). In general, trait matching tends to overestimate mutualistic network modularity, while 

exploitation barrier tends to underestimate it (Supplementary material Appendix 1 Figure A9). 

Network connectance and size are not related to the ability of scenarios to predict the nested 

structure of mutualistic networks (i.e do not affect the NME; Supplementary material 

Appendix 1 Fig. A14, A16). For modularity there is a small effect of network connectance 

and size on the NME of mutualistic networks (R2 = 0.16 and R2 = 0.07, respectively), with 

smaller and more connected networks being better predicted by scenarios including 

coevolution (Supplementary material Appendix 1 Fig. A15, A17). 

Trait evolution  

In general, strong coevolution boosts trait change in antagonistic interactions while it 

stabilizes trait change in mutualistic interactions (Figures 5, 6, Supplementary material 

Appendix 1 A18–A19). Moderate coevolution by strong trait matching, the scenario that 

better reproduces the structure of antagonistic networks, shows the lowest magnitude of 

directional trait change and strongly restricts temporal trait fluctuation in such interactions 

(Fig. 5, 6). In mutualistic networks, the scenario that better reproduces network organization 

(strong intensity of exploitation barrier with moderate coevolution) reduces temporal trait 

fluctuations and promotes higher magnitude of directional trait change than other scenarios 

(Fig. 5, 6). Therefore, the scenarios that better perform in reproducing network structure for 

both antagonisms and mutualisms are those that often reduce temporal trait fluctuation, 

increasing the evolutionary stability of ecological networks.  

Discussion 



A
cc

ep
te

d
 A

rt
ic

le

‘This article is protected by copyright. All rights reserved.’ 

Unraveling the importance of trait-based ecological and evolutionary processes in 

structuring communities is central to understand biodiversity (Thompson 2005, Gravel et al. 

2006, Kembel 2009, Venner et al. 2011, Leibold and Chase 2017). In the context of the study 

of ecological networks there is a growing effort to understand how these processes account 

for nestedness and modularity in empirical networks (Vázquez et al. 2007, Krishna et al. 

2008, Canard et al. 2012, Fort and Mungan 2015, Gilarranz et al. 2015, Nuwagaba et al. 2015, 

Rohr et al. 2016). In this vein, our study shows that adaptive network models incorporating 

coevolution and different functional mechanisms underpinning species interactions are useful 

tools to explore the feedbacks of ecological and evolutionary processes on network structure. 

In the following, we discuss the three main results about the processes shaping the structure of 

antagonistic and mutualistic networks that emerge from the implementation of our modeling 

framework..  

First, we show that empirical networks are better reproduced by scenarios considering 

a balance between coevolutionary and environmental selection strengths together with a 

strong effect of functional mechanisms, i.e. traits strongly determining interspecific 

interactions. Previous studies show that neutral assumptions tend to produce networks that are 

more nested and less modular than empirical networks (Krishna et al. 2008, Canard et al. 

2014). On the other hand, trait-based mechanistic models that do not consider trait evolution 

produce networks with higher modularity and lower nestedness (Santamaría and Rodríguez-

Gironés 2007, Nuwagaba et al. 2015). However, those with hybrid linkage rules (trait 

matching and exploitation barriers) are more efficient in predicting the structure of mutualistic 

networks (Santamaría and Rodríguez-Gironés 2007). In this regard, we find that our best 

model better reproduces the structure of antagonistic than mutualistic networks.  
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Second, we show that although the structures of antagonistic and mutualistic networks 

are similar, they are differently predicted by moderate coevolution by different functional 

mechanisms. Moderate coevolution by strong trait matching highly predicts both the 

nestedness and modularity of antagonisms (70% of networks), particularly of interactions 

among parasites and fish hosts, seed predators and plants, leaf chewing herbivores and plants, 

and phages and bacteria. Mammal predator-prey networks are, though, better predicted by 

coevolution by strong exploitation barrier. In contrast, in mutualistic interactions, coevolution 

by strong exploitation barrier predicts the nestedness and modularity of 20% of the networks, 

no matter the type of mutualism considered. Modularity was overestimated by trait matching 

and underestimated by exploitation barriers in mutualistic networks. Overall, our results 

partially support those of previous studies suggesting that coevolution and trait matching are 

important processes generating and maintaining the biodiversity of interactions in nature 

(Thompson 2005, Barraclough 2015). However, by incorporating a wide spectrum of 

antagonistic and mutualistic interactions than previous studies (Guimarães et al. 2007, 

Andreazzi et al. 2017) we show that there is no such a clear link among interaction intimacy, 

trait matching, reciprocal specialization, and modularity (Hembry et al. 2018). This is because 

we find that trait matching leads to nested structures in antagonistic networks and modular 

structures in mutualistic networks emerge with barrier-driven interactions. These results are 

not or weakly affected by connectance and species richness. Thus, our results suggest that the 

similar set of structures found in antagonistic and mutualistic empirical interaction networks 

may be determined by the interplay among functional mechanisms, the fitness effect of 

interactions, and their natural history. 

Previous theoretical models suggest that coevolution by different functional 

mechanisms can have very different consequences for the structure of simulated species 
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networks (Nuismer et al. 2013, McPeek 2017). For instance, when antagonistic interactions 

evolve following a trait matching rule, coevolution tends to increase the mean trait disparity 

among groups of interacting species and promote modularity (Beckett and Williams 2013, 

Nuwagaba et al. 2015, Andreazzi et al. 2017). Here we find that, when accounting for the 

feedbacks between ecological and evolutionary processes, coevolution by strong trait 

matching reproduces not only the distribution of modularity but also the distribution of 

nestedness found in most of the antagonistic networks. In mutualistic interactions it was 

already found that coevolution by trait matching produces anti-nested networks with much 

higher connectance than the observed in empirical systems (Nuismer et al. 2013). This is one 

of the reasons why coevolution was predicted to leave a weak signal on the structure of 

mutualistic networks (Ponisio and M’Gonigle 2017). When an exploitation barrier drives the 

fitness effect of mutualistic interactions, coevolution is expected to shape networks toward 

more nested, generalized and highly connected architectures in which specialists are rare 

(Nuismer et al. 2013). We go one step further by testing how well coevolution by exploitation 

barriers predicts the empirical structure of mutualistic networks. The low predictive power of 

our models suggest that the structure of mutualistic networks may be modulated by more 

complex trait-based processes that have not been included in the current modeling 

approaches. For instance, incorporating competition among species belonging to the same 

trophic level could balance the high generalization predicted by current mutualistic 

coevolutionary models  

Third, our results suggest that antagonistic and mutualistic networks experience 

distinct coevolutionary dynamics, which is affected by the functional mechanism. 

Coevolution in species-rich antagonistic interactions show diverse outcomes, including 

escalating traits arms races or fluctuations (McPeek 2017, Andreazzi et al. 2017). We show 
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that moderate coevolution driven by trait matching reproduces antagonistic networks and 

leads to more stable interactions with reduced arms races and less intense fluctuating trait 

dynamics. The occurrence of fluctuating trait dynamics was already found in several pairwise 

predator-prey coevolutionary models that considered a trait matching mechanism (Abrams 

2000, McPeek 2017) and has also been explored as a red queen dynamic (Dieckmann et al. 

1995). Fluctuating selection driven by exploitation barrier is likely to occur in antagonistic 

interactions only when interaction selection is strong, which results in species traits escalating 

until they reach a level representing a trade-off between interaction and environmental 

selection. Coevolution by trait matching in mutualistic interactions usually results in a stable 

state in which species achieve their adaptive peaks characterized by a high complementarity 

and convergence of species traits (Guimarães et al. 2011). This may explain why we find 

lower trait change in the strong coevolution models and the low predictability of mutualistic 

networks. High convergence in species traits tends to homogenize pairwise interaction 

probabilities across species, which may lead to networks with a more even distribution of 

degrees and therefore which structure differs from the empirical one (Astegiano et al. 2015). 

Our results show that moderate coevolution driven by strong exploitation barrier better 

explains the structure of mutualistic empirical networks. A unidirectional trait axis such as in 

the exploitation barrier mechanism tends to promote a higher magnitude of trait change, 

which may increase adaptation, and a lower temporal fluctuation in species traits that 

stabilizes interactions (Abrams 2000, McPeek 2017) and may explain the better performance 

of these models in predicting 20% of the mutualistic networks. Incorporating competition 

among species in the same trophic level may increase the variance in species traits, which 

could promote a higher diversity of interaction asymmetries and thus increase the predictive 

power of such coevolutionary models, particularly in mutualistic interactions.  
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We have evaluated the evolved network structure and temporal dynamics of species 

traits based on two different functional mechanisms: trait matching and exploitation barrier. 

The models perform well in predicting the nestedness and modularity of empirical 

antagonistic networks. Moderate coevolution mediated by strong functional mechanisms 

seems more likely to generate empirically observed network patterns. To advance our 

comprehension of the coevolutionary process, future studies should incorporate additional 

forms of functional mechanisms. Accounting for the joint effect of multiple biotic selective 

forces, such as in multiplex networks, and feedbacks due to contrasting effects of traits on 

fitness would also give us important insights about the coevolutionary process in ecological 

networks. Understanding how the coevolutionary process alters ecosystem dynamics is 

becoming increasingly important as climate change, fragmentation of environments, and 

spread of invasive species are changing ecosystems worldwide. In this vein, developing 

theoretical models that incorporate multiple trait information and empirical patterns is critical 

to improve our predictions on the importance of different eco-evolutionary processes in 

shaping the web of life.  
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Figure Legends 

 

 

 
Figure 1: Conceptual representation of the adaptive network approach. (I) Model parameterization: (a) Model 

network replicates have the same number of species and interactions found in the empirical counterparts; (b) A 

specific trait value is assigned for each species in the network. (II) Species trait and network dynamics: At each 

time step, the trait-based probabilities of pairwise interactions are calculated according to the functional 

mechanisms (trait matching and exploitation barriers). Interactions are assigned according to these probabilities 

and species traits evolve in response to interaction and environmental selection pressures. Model network 

structures are compared with empirical ones throughout NME calculation. Model outcomes (Magnitude of 

directional trait change and Temporal trait fluctuation) are compared among scenarios. See main text for more 

details.  
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Figure 2: Nestedness (NODF) and modularity (Q) of the 122 antagonistic and 122 mutualistic empirical 

networks used to parameterize the models. Upper and lower limits of boxes represent 1st and 3rd quartiles, 

respectively. 
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Figure 3: Normalized model error (NME) for nestedness (NODF) measures predicted by trait matching and 

exploitation barriers functional mechanisms for the antagonistic (blue and orange) and mutualistic (green and 

purple) networks in the simulated scenarios. (WM): weak mechanism and moderate coevolution (α = 1, ξd  = 

0.5); (WS): weak mechanism and strong coevolution (α = 1, ξd  = 0.99); (SM): strong mechanism and moderate 

coevolution (α = 100, ξd  = 0.5); and (SS): strong mechanism and strong coevolution (α = 100, ξd  = 0.99). Thick 

lines within boxes represent median NME values for 122 networks. Upper and lower limits of boxes represent 

1st and 3rd quartiles, respectively. The black lines highlight the NME values between -1 and 1, which are 

considered not significantly different from the empirical network structures (See the percentage of networks 

whose structure is significantly predicted by each scenario in Table 1). Values above and below this interval are 

overestimating and underestimating the nestedness of empirical networks, respectively.   
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Figure 4: Normalized model error (NME) for modularity (Q) measures predicted by trait matching and 

exploitation barriers functional mechanisms for the antagonistic (blue and orange) and mutualistic (green and 

purple) networks in the simulated scenarios: (WM): weak mechanism and moderate coevolution (α = 1, ξd  = 

0.5); (WS): weak mechanism and strong coevolution (α = 1, ξd  = 0.99); (SM): strong mechanism and moderate 

coevolution (α = 100, ξd  = 0.5); and (SS): strong mechanism and strong coevolution (α = 100, ξd  = 0.99). Thick 

lines within boxes represent median NME values for 122 networks. Upper and lower limits of boxes represent 

1st and 3rd quartiles, respectively. The black lines highlight the NME values between -1 and 1, which are 

considered not significantly different from the empirical network structures (See the percentage of networks 

whose structure is significantly predicted by each scenario in Table 1). Values above and below this interval are 

overestimating and underestimating the modularity of empirical networks, respectively. 
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Figure 5: Average magnitude of directional trait change (D) predicted by trait matching and exploitation barriers 

functional mechanisms for the antagonistic (blue and orange) and mutualistic (green and purple) networks in the 

simulated scenarios: (WM): weak mechanism and moderate coevolution (α = 1, ξd  = 0.5); (WS): weak 

mechanism and strong coevolution (α = 1, ξd  = 0.99); (SM): strong mechanism and moderate coevolution (α = 

100, ξd  = 0.5); and (SS): strong mechanism and strong coevolution (α = 100, ξd  = 0.99). Thick lines within 

boxes represent median values for 122 networks. Upper and lower limits of boxes represent 1st and 3rd quartiles, 

respectively. The SM trait matching model was the one that better reproduced the structure of antagonistic 

networks and the SM exploitation barrier model was the one that better reproduced the structure of mutualistic 

networks (See the percentage of networks whose structure is significantly predicted by each scenario in Table 1). 
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Figure 6: Average temporal trait fluctuation (F) predicted by trait matching and exploitation barriers functional 

mechanisms for the antagonistic (blue and orange) and mutualistic (green and purple) networks in the simulated 

scenarios: (WM): weak mechanism and moderate coevolution (α = 1, ξd  = 0.5); (WS): weak mechanism and 

strong coevolution (α = 1, ξd  = 0.99); (SM): strong mechanism and moderate coevolution (α = 100, ξd  = 0.5); 

and (SS): strong mechanism and strong coevolution (α = 100, ξd  = 0.99). Thick lines within boxes represent 

median values for 122 networks. Upper and lower limits of boxes represent 1st and 3rd quartiles, respectively. 

The SM trait matching model was the one that better reproduced the structure of antagonistic networks and the 

SM exploitation barrier model was the one that better reproduced the structure of mutualistic networks (See the 

percentage of networks whose structure is significantly predicted by each scenario in Table 1). 
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Table Legends 

 

Table 1. Percentage of antagonistic and mutualistic empirical networks whose structure (nestedness and modularity) is significantly 

reproduced by each model under each scenario. The best functional mechanistic scenario explaining network structure is in bold. 

Abbreviations: WM = weak mechanism and moderate coevolution; SM = strong mechanism and moderate coevolution; WS = weak 

mechanism and strong coevolution; SS = strong mechanism and strong coevolution; NM = random interactions and moderate coevolution; 

NS = random interactions and strong coevolution; WN = weak interactions and fixed traits; SN = strong interactions and fixed trait. 

 

 

Strength of functional 

mechanism 
Strength of coevolution Scenarios 

Nestedness (NODF) Modularity (Q) 

Antagonism (%) Mutualism (%) Antagonism (%) Mutualism (%) 

matching barrier matching barrier matching barrier matching barrier 

weak (α = 1) moderate (ξd = 0.5) WM 10.66 10.66 1.64 2.46 14.75 15.57 12.30 13.11 

strong (α = 100) moderate (ξd = 0.5) SM 72.13 45.90 4.92 20.49 68.85 40.98 22.13 21.31 

weak (α = 1) strong (ξd = 0.99) WS 25.41 10.66 1.64 1.64 47.54 17.21 13.93 13.11 

strong (α = 100) strong (ξd = 0.99) SS 42.62 10.66 3.28 2.46 59.84 13.93 15.57 16.39 

random interaction moderate (ξd = 0.5) NM 11.48 11.48 2.46 2.46 15.57 15.57 14.75 14.75 

random interaction strong (ξd = 0.99) NS 11.48 11.48 2.46 2.46 15.57 15.57 14.75 14.75 

weak (α = 1) fixed traits WN 12.30 11.48 1.64 2.46 16.39 16.39 14.75 13.93 

strong (α = 100) fixed traits SN 11.48 11.48 2.46 2.46 15.57 15.57 14.75 14.75 


