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Abstract

The spatial distribution of populations can influence the evolutionary outcome of species inter-

actions. The variation in direction and strength of selection across local communities creates

geographic selection mosaics that, when combined with gene flow and genomic processes such

as genome duplication or hybridization, can fuel ongoing coevolution. A fundamental prob-

lem to solve is how coevolution proceeds when many populations that vary in their ecological

outcomes are connected across large landscapes. Here we use a lattice model to explore this

problem. Our results show that the complex interrelationships among the elements of the geo-

graphic mosaic of coevolution can lead to the formation of clusters of populations with similar

phenotypes that are larger than expected by local selection. Our results indicate that neither

the spatial distribution of phenotypes nor the spatial differences in magnitude and direction of

selection alone dictate coevolutionary dynamics: the geographic mosaic of coevolution affects

formation of phenotypic clusters, which in turn affect the spatial and temporal dynamics of co-

evolution. Because the formation of large phenotypic clusters depends on gene flow, we predict

current habitat fragmentation will change the outcomes of geographic mosaics, coupling spatial

patterns in selection and phenotypes.
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Introduction

One of the main questions at the interface of evolution and ecology is how species interactions

shape the diversity of life (Thompson 2005). Evolution mediated by species interactions may

influence speciation rates (Johnson 2010), extinction rates (van Valen 1973), spatial distributions

(Alonso et al. 2002), community organization (Gotelli et al. 2010; Nuismer et al. 2013), and ge-

netic (Wade 2007) and phenotypic (Guimarães et al. 2017) diversity. Deciphering how species

interactions shape evolutionary rates and patterns, however, has been challenging, because each

interaction between a pair of species is a collection of local interactions that may vary in eco-

logical outcomes and fitness effects on the participants (Brodie et al. 2002; Gandon et al. 2008).

The geographic mosaic theory of coevolution confronts this complexity by considering relation-

ships between species as genotype by genotype by environment (GxGxE) interactions (Thompson

2005).

The sources of spatial variation can be partitioned in three main components that affect

GxGxE interactions and the resulting coevolutionary dynamics. First, the direction and mag-

nitude of selection can vary across local communities, creating geographic selection mosaics

(Brodie et al. 2002; Parchman and Benkman 2002). For example, Greya moths are major pollina-

tors of woodland star (Lithophragma) flowers that lay eggs in the same flowers they pollinate. The

larvae eat very few seeds and the interaction is mutualistic in many environments. In some envi-

ronments, however, the presence of co-pollinators that do not lay eggs in the flowers swamp the

mutualism, making the interaction between the plants and Greya moths antagonistic rather than

mutualistic (Thompson and Cunningham 2002). Second, reciprocal selection may vary among

environments, creating coevolutionary hotspots, where the interaction affects the fitness of both

partners, and coevolutionary coldspots where selection is not reciprocal or there is no selection

(Laine 2009). Finally, gene flow, hybridization, and genomic alterations can lead to trait remixing

among populations as allele frequencies and the structure of genomes undergo continual reorga-

nization in different ways in different populations (Lexer et al. 2013; Thompson and Merg 2008;
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Whitham et al. 2006). Trait remixing results in variation among populations in the phenotypic

distribution of traits available for natural selection (Dybdahl and Lively 1996). Collectively, selec-

tion mosaics, coevolutionary hotspots, and trait remixing can fuel ongoing coevolution in ways

that differ from solely local coevolution in rates, trajectories, and patterns of phenotypic change

(Nuismer et al. 1999).

The dynamics of coevolutionary mosaics have now been explored in mathematical models

(Gibert et al. 2013; Lemos-Costa et al. 2017; Nuismer et al. 1999), laboratory microcosms (Forde

et al. 2004; Vogwill et al. 2009), and natural communities (Gómez et al. 2009; Gómez and Buck-

ling 2011; Parchman and Benkman 2002), but most studies have been limited to analysis of few

populations relative to the full spatial complexity found in assemblages of coevolving species in

nature. These studies, however, have shown that all three components of coevolutionary mosaics

can contribute to discrepancies between the local patterns of natural selection and the local dis-

tribution of phenotypes. For example, at the local level, theory predicts that mutualisms would

favor fixation of beneficial phenotypes, whereas antagonistic interactions may show unbounded

oscillations of phenotype frequencies (Nuismer et al. 1999). In contrast, if an interaction is dis-

tributed across two ecologically contrasting sites linked by gene flow, mutualisms may not result

in fixation of beneficial alleles at the local level and antagonisms may show damped oscillations

of phenotypes or long-lasting clines along linear arrays of populations (Gomulkiewicz et al. 2000;

Nuismer et al. 1999, 2000). Taken together, the available studies on coevolutionary dynamics indi-

cate that spatial structuring results in qualitatively different outcomes than predicted by studies

at single sites (Gibert et al. 2013; Lemos-Costa et al. 2017; Lion and Gandon 2015).

A current major problem to solve is how the consequences of the spatial organization of

interactions scale up across large landscapes formed by hundreds or thousands of ecologically

different sites rather than just a few sites (Thompson 2005). That is, how do the spatial scales of

coevolutionary selection and gene flow shape the spatial scales of evolutionary outcomes? Here

we integrate coevolutionary models, numerical simulations and tools derived from statistical

mechanics to evaluate how coevolution proceeds between species whose interactions vary from

5

Copyright The University of Chicago 2019. Preprint (not copyedited or formatted). 
Please use DOI when citing or quoting. DOI: 10.1086/704157

This content downloaded from 130.237.165.040 on April 29, 2019 15:47:54 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



antagonism to mutualism across environmentally diverse landscapes. We show that coevolution

across many ecologically diverse sites creates patterns in the distribution of coevolving traits that

cannot be predicted by local selection alone or by models assuming simpler spatial organization.

Specifically, we show that the interplay between selection mosaics, coevolutionary hotspots and

coldspots, and trait remixing across large landscapes lead to the formation of regional groups

of populations characterized by similar phenotypes that are larger than expected by the patterns

of selection at local levels alone. The results show that complex patterns of trait matching and

mismatching occur through the combined effects of selection mosaics and gene flow among

coevolutionary hotspots. In addition, we show that these patterns may have statistical properties

that are predictable, and thus may be explored with empirical data.

Methods

Model

We consider an L x L square lattice with periodic boundary conditions where each site repre-

sents a community with two species. Individuals of the two different species interact within sites

and interactions can be mutualistic or antagonistic, depending on the site. Each site, however,

is linked to its nearest neighbors and individuals of both species can migrate to connected sites.

The sites are labeled (i, j) with i, j = 1, 2, . . . , L. Following (Nuismer et al. 1999), we model the

species as haploid individuals and consider the interactions to be governed by a single locus

with two alleles. As local populations are considered infinite, the dynamics acts upon the al-

lelic frequencies, which is a reasonable simplifying assumption grounded in classical population

genetics (Rice 2004). Species X, referred to as symbiont, has alleles A and a, with xij denoting

frequency of allele A at site (i, j), and species Y, referred to as host, has alleles B and b, with yij

denoting frequency of allele B at site (i, j). The symbiont always receives a fitness increase when

interacting with matching alleles (A matches B and a matches b; there are no cross interactions).

Fitness increases or decreases for the host depend on the site. For the sites where the interac-
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tion between the species is mutualistic (hereafter, mutualistic sites or mutualistic selection), the

fitness of the host increases for matching alleles. Otherwise, for the sites where the interaction is

antagonistic (hereafter, antagonistic sites or antagonistic selection), the fitness decreases for the

host species when alleles are matched. For these analyses, we use the concepts of genotype and

phenotype interchangeably, or in other words, we consider a direct relation between allele fre-

quencies and corresponding traits (no environmental influence of the phenotypes). The selection

mosaics are established at the beginning of the simulation and held fixed throughout the simu-

lation. Each site is assigned as mutualistic with probability p and antagonistic with probability

(1− p). Population fitnesses are modeled according to:

W(i,j)
A = 1 + Qyij

W(i,j)
a = 1 + Q(1− yij)

W(i,j)
B = 1 + γijxij

W(i,j)
b = 1 + γij(1− xij)

(1)

where W(i,j)
α is the fitness allele at site (i, j) and Q is the sensitivity of the fitness of the symbiont

to changes in the allelic frequency of the host. Note that as the symbiont always receives a fitness

increase from the interaction, Q > 0. The parameter γij represents the sensitivity of the fitness of

the host to changes in the allelic frequency of the symbiont and its value depends on the type of

local interaction. We set γij = KM > 0 for sites with mutualistic interactions, in which interaction

between matching alleles increases host’s fitness, and γij = KA < 0, for sites with antagonistic

interactions, in which interaction decreases host’s fitness. We refer to KM and KA as the strengths

of selection for mutualism and antagonism, respectively. Gene flow happens before selection with

rate m, equally divided among the four nearest neighbors. With these assumptions, we have the

following recurrence equations for the changes of frequencies xij and yij in each generation:
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x(n+1)
ij =

x(n,∗)
ij W(i,j)

A

x(n,∗)
ij W(i,j)

A + (1− x(n,∗)
ij )W(i,j)

a

y(n+1)
ij =

y(n,∗)
ij W(i,j)

B

y(n,∗)
ij W(i,j)

B + (1− y(n,∗)
ij )W(i,j)

b

,

(2)

where

x(n,∗)
ij = x(n)ij (1−m) +

m
4 ∑

(s,t)
x(n)i+s,j+t

y(n,∗)
ij = y(n)ij (1−m) +

m
4 ∑

(s,t)
y(n)i+s,j+t

(3)

are the allelic frequencies after gene flow (the summations over s and t are restricted to the

four nearest neighbors). Note that the choice of local infinite population sizes provides a sim-

plification that eliminates fluctuations from stochastic effects such as genetic drift, allowing the

investigation of the effect of species interaction and coevolution in generating phenotypic pat-

terns at the landscape scale in the absence of complicating factors. In all simulations, both x

and y are initiated with values 0.51 for every site on the lattice, so that the differences in the

phenotypic patterns arise due to spatial variation in the local interaction and to gene flow, not

to variation in initial conditions among sites. The square lattice has size L = 100 and evolution

occurs for 40, 000 generations.

Mean-field with spatially varying carrying capacities

The balance between spatial prevalence of one interaction and local selection strength was further

explored with a mean-field, two-sites approximation, in which each site has a carrying capacity

representing the spatial prevalence over the landscape (parameters p for mutualistic sites and

(1− p) for antagonistic sites in the landscape model).

The two-sites model proposed by Nuismer and coauthors (Nuismer et al. 1999) was modi-

fied to include different carrying capacities associated with each site (Lemos-Costa et al. 2017).
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Specifically, we consider the situation in which the first site, where the interactions are mutual-

istic, has carrying capacity N1, whereas the second site, where the interactions are antagonistic,

has carrying capacity N2. In this case the equations describing the gene flow between the sites

change to:

x(n,∗)
1 =

x(n,∗)
1 (1−m)N1 + x(n,∗)

2 mN2

(1−m)N1 + mN2

x(n,∗)
2 =

x(n,∗)
2 (1−m)N2 + x(n,∗)

1 mN1

(1−m)N2 + mN1
.

(4)

These equations can be rewritten as:

x(n,∗)
1 =

x(n,∗)
1 (1−m)R + x(n,∗)

2 m
(1−m)R + m

x(n,∗)
2 =

x(n,∗)
2 (1−m) + x(n,∗)

1 mR
(1−m) + mR

(5)

which depend only on the ratio R = N1/N2 between the carrying capacities of the mutualistic

and antagonistic communities. We tested eight different values of R, going from R = 1 to R = 0.3

in intervals of 0.1. The equations for y1 and y2 are given by equivalent expressions. The selection

equations are the same as the ones for the two-sites model (Nuismer et al. 1999).

To compare the results of the mean-field approach with the simulations on the lattice we

define the variable Cj, which describes the behavior of the frequency of allele A (xj) for each

community j:

Cj = 2(xj − 0.5) (6)

When allele A is fixed, or close to fixation (x ≈ 1), the community presents genotypic patterns

in accordance with an isolated mutualistic community, and C ≈ 1. When the allele A is close to

0.5 it presents the pattern expected from an isolated antagonistic community, and C ≈ 0. Fixation

of allele a (x ≈ 0) would give C ≈ −1. Finally, to compare the mean-field results with the spatial

prevalence of mutualistic versus antagonistic communities in numerical simulations, we calculate

the average value CAV , which considers the size of each community:
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Cav =
N1

N1 + N2
C1 +

N2

N1 + N2
C2. (7)

The size of each community in the mean-field model is comparable to the number of sites

with each local outcome of selection (mutualistic versus antagonistic) in the spatial model. Given

that the parameter p is approximated by the frequency of mutualistic sites on the lattice, p =

NM/(NM + NA), with NM and NA the numbers of mutualistic and antagonistic sites, respectively,

and defining R = NM/NA, we have

R =
p

1− p
(8)

Thus, we can compare the ratio of the carrying capacities (R) and the probability of a given

site to be mutualistic on the lattice (p), which are the determinants of the behavior transitions in

their respective models, and check how well the mean-field describes the evolutionary outcomes

on the spatial lattice.

Cluster and coldspots analyses

To count clusters of a given allele frequency we first define a frequency interval. For example,

when counting clusters where the frequency of allele A is larger than 0.7, we start with a site

where the allele frequency is in the selected interval. Next, the four nearest neighbors of that site

are analyzed and, if their allelic frequency also belongs to that interval, they are added to the

cluster. The neighbors of the neighbors are all analyzed, until no other sites are added, indicating

the end of the process. This iteration is repeated until all sites on the lattice are visited. Isolated

sites (for which none of the four neighbors belong to the same interval) are considered clusters

of size 1. This process gives the numbers of clusters with all sizes in the chosen interval. Finally,

we normalize the distributions by the total number of clusters found, for a given value of gene

flow.

For the coldspots analysis, the selection mosaics are first built the same way as before, with
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each site assigned as mutualistic with probability p and antagonistic with probability (1− p).

A given fraction f of the sites is then chosen randomly and marked as coldspots, where the

interaction favors the symbiont (with fitness effects being the same as in hotspots, i.e., Q > 0), but

does not influence host’s fitness (at coldspots, we have: γij = 0 and WB = Wb = 1). This process,

however, changes the average fitness sensitivity of the host, sYC = 1
L2 ∑ij γij, as the fraction of

coldspots is increased (see Supplementary Material). To keep the average fitness sensitivity fixed

as the fraction of coldspots is varied, the value of p for the initial selection mosaic has to be a

function of f . Thus, for a fixed average fitness sensitivity of the host, sYC , for each value of f to

be tested, the value of p is defined as:

p =
1

(KM − KA)

[
sYC

(1− f )
− KA

]
(9)

Results

Spatial patterns for alleles A and B

Our analysis suggests that coevolutionary mosaics in large landscapes lead to unexpected large-

scale phenotypic patterns that cannot be explained by local processes alone. The transient evo-

lutionary trajectories produced pockets of high allele frequency and, after a few thousand gen-

erations, the spatial patterns stabilized and became stationary. We begin our analysis on the

stationary patterns of allele A and B frequencies (symbiont and host species, respectively) across

the landscape.

We first explored how gene flow affects the distribution of allele A frequencies when mu-

tualism increasingly dominates the landscape. In these scenarios, we varied the proportion of

mutualistic sites, keeping the intensity of selection fixed and twice as high for the host species

in mutualistic sites than in antagonistic sites (|KM| = 2|KA|). Under these conditions, different

combinations of selection mosaics and gene flow resulted in substantially different large-scale

spatial patterns of allele A distributions (Fig. 1). Although we have iterated the process for
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40000 generations, to guarantee stationarity for all parameter sets, the majority of sites on the

landscape settled on the final allele frequencies much earlier (in many cases, before 3000 gener-

ations; see Supplementary Material). At low rates of gene flow (m = 0.002, Figs. 1(b), (f), and

(j)) the spatial distribution of frequency of alleles mirrored the distribution expected by the local

pattern of selection: antagonistic sites maintained polymorphic populations, whereas mutualis-

tic sites showed allele fixation. When the proportion of antagonistic sites was higher than that

of mutualistic sites (p = 0.25), the spatial prevalence of antagonistic sites compensated for the

stronger intensity of selection at mutualistic sites. As a result, polymorphism remained prevalent

throughout the landscape (Fig. 1(d)).

Figure 1: figure approximately here

Large and stable regional groups of high allele frequencies developed as the proportion of

mutualistic sites and gene flow increased. These stable clusters of high allele frequencies lo-

cally shielded those sites from the oscillatory dynamics generated by local antagonistic selec-

tion (Fig. 1(d)). As the proportion of mutualistic sites and the rate of gene flow increased, the

landscape began to appear as if mutualism were ubiquitous, even though the interaction was

antagonistic at some sites (Figs. 1(h) and (l)). The effects of cluster shielding and consequent loss

of resolution of fine structures on the mosaic can be further investigated if we consider ordered

structures for the spatial distribution of antagonistic and mutualistic sites. Block and gradient

mosaics are useful to understand how gene flow affects allele clines on the boundary of different

selection regions, as well as how gene flow and selection mosaic clusters influence the loss of

resolution of spatial structures on the final phenotypic patterns (see Supplementary Material).

The stationary distributions for allele B frequencies reveal similar patterns, obtained with the

same underlying spatial structure of selection mosaics and the same parameters as before, but

with important differences. At low rates of gene flow (m = 0.002, Figs. 2(b), (f), and (j)) the spatial

distribution of allele frequencies leads to allele fixation at mutualistic sites and polymorphism

at antagonistic sites. The most striking differences in comparison with the patterns for allele A
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appear as gene flow increases. When antagonistic sites are common (p = 0.25), a high level of

gene flow (m = 0.050; Fig. 2(d)) also maintains a polymorphic state throughout the landscape.

In contrast to the patterns observed for allele A, the characteristic sizes of the clusters where the

frequency of allele B is close to fixation (orange and red spots) is notably reduced (compare with

Fig. 1(d)). The clusters of low frequencies of allele B are also smaller. Clusters of fixation or

low frequencies of allele B are located at the same approximate positions as the corresponding

clusters of fixation or low frequencies of allele A.

Figure 2: figure approximately here

Increasing values of prevalence of mutualistic sites (p = 0.50) leads to a significant increase

in the characteristic sizes of clusters of fixation of allele B (red spots). However, even with

the largest value considered for gene flow (m = 0.050; Fig. 2(h)) polymorphic clusters are still

present on a large portion of the landscape when mutualistic and antagonistic sites are equally

prevalent. Several small clusters of low frequencies of allele B (blue spots) are also present in this

scenario, These clusters were not observed for allele A under the same values for the proportion

of mutualistic sites, p, and gene flow, m (Fig. 1(h)). Overall, when mutualistic sites are highly

prevalent (p = 0.75), complete landscape-wide fixation of allele B is not accomplished even for

the highest value of gene flow (Fig. 2(l)).

When scaled up into large landscapes, our modeling approach shows effects and patterns

that substantially deviate from the theoretical predictions derived from two-site models in two

fundamental ways. First, even for high rates of gene flow, local antagonistic clusters shield the

effects of mutualisms, thereby leading to local aggregations of populations where alleles A and

B are not fixed (yellow spots in Figs. 1(g), (h), and (k); also, Fig. 2(l)). Second, unlike in two-site

models, sites with low frequencies of alleles A and B can occur (blue spots in Figs. 1(c) and (d);

also, Figs. 2(h) and (k)) even though the initial frequencies of these alleles are higher than of

alleles a and b for all the sites. In these large landscapes, the average size of these blue spots

changes for different rates of gene flow (see video on the Supplementary Material).
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Patterns of host’s local adaptation in coevolutionary and single-species models

To separate the roles played by the underlying spatial mosaic structure (mutualistic and antag-

onistic sites’ spatial distributions) and by the coevolutionary dynamics on the final phenotypic

patterns, we next fixed xij = 1 throughout the landscape (allele A fixed in all sites). This is analo-

gous to a local adaptation model for one species (Lenormand 2002), in which allele B has a fitness

1+ |KM| at the sites assigned for mutualism and fitness 1− |KA| at sites assigned for antagonism

(allele b has fitness 1 in all sites). We used the same selection mosaics used in Figs. 1 and 2

and compared the patterns obtained for the single-species model (Fig. 3) with the ones obtained

for the two-species coevolutionary model (Fig. 2). As the proportion of mutualistic sites on the

landscape reaches high values (p = 0.50 and p = 0.75), increasing gene flow makes the patterns

for allele B on the single-species model nearly identical to the patterns for the coevolutionary

model. This occurs because, at this high proportion of mutualistic sites, and with |KM| = 2|KA|,

high rates of gene flow lead to a nearly complete fixation of allele A on the landscape (Figs. 1(h)

and (l)).

Figure 3: figure approximately here

For a low level of mutualistic prevalence on the landscape (p = 0.25), the distinction between

the patterns is more clearly noted. For the coevolutionary model the antagonistic sites tend to

a state of polymorphism between alleles B and b (Figs. 2(a), (b) and (c)), whereas for the single-

species model the sites where allele b has a fitness advantage over allele B (which are exactly the

antagonistic sites on the previous model) reach a state of fixation or near-fixation of allele b (white

sites - Figs. 3(a), (b) and (c)). For high levels of gene flow, the position and shape of the clusters of

high allele B frequency (yellow and orange sites) are similar in both cases (Figs. 2(d) and 3(d)),

indicating that the spatial structure of the selection mosaic influences the spatial arrangement of

the final pattern. Nevertheless, the dynamics underlying the coevolutionary version of the model

play a fundamental role in determining the regions of polymorphism or allele fixation.
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The coevolutionary model results in less spatial structure than the single-species model with

respect to the landscape-wide polymorphic pattern (Fig. 2(d)), as many of the mutualistic sites

tend to the polymorphic state for high gene flow. It is still possible to distinguish more easily the

sites for which selection is beneficial or detrimental for allele B on the single-species model, since

the sites in which selection is beneficial for B resist fixation of b (compare blue sites in Fig. 3(d)

with structure of the mosaic, Fig. 3(a)).

Gene flow, spatial structure and coldspots

We next explored how information is transferred from selection acting in one species (mutualistic

or antagonistic selection on the host) to phenotypic evolution on the other (symbiont) species as

a result of the interaction by focusing our attention on the patterns obtained for allele A. We

analysed the effects of gene flow, spatial selection structure and the presence of evolutionary

coldspots on these final patterns.

As the proportion of mutualistic sites increases, the relationship between gene flow and the

fraction of sites near fixation of allele A changes from hump-shaped to a monotonic increase

(Fig. 4(a)). For p = 0.25 and starting with small values of m, increasing gene flow results in an

initial tendency of increasing the number of sites showing fixation of allele A. However, this

locally strong influence of mutualism is compensated by the spatial prevalence of antagonistic

sites, leading the majority of sites to retain polymorphism for higher values of gene flow. This

hump-shaped relationship is also seen for p = 0.30, although the decay towards polymorphism

for increasing values of gene flow is slower. For higher values of p, increasing values of gene

flow always leads to increasing values of the fraction of sites with allelic frequencies of A near-to-

fixation. For p = 0.50 or higher, even for intermediate values of gene flow a significant fraction

of the lattice presents high values of the frequency of A (compare with Figs. 1(g) and (k)).

Figure 4: figure approximately here

The combined effects of the proportion of mutualistic sites, the relative strengths of mutual-
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istic and antagonistic selection, and gene flow create two possible behaviours for the tendency

to fixation of allele A (Fig. 4(a)). One is a monotonic increase in the fraction of near-to-fixation

sites, as gene flow increases, until all lattice presents the same phenotypic patterns (for p > 0.35).

The other is an initial increase of the fraction of near-to-fixation sites with subsequent decrease,

leading to the polymorphic state, for high rates of gene flow (for p < 0.30). These outcomes

suggest the existence of a threshold value for p, which would mark the transition between these

different scenarios. Indeed, we derived the expression that shows that the transition between

the tendency to polymorphism versus the tendency to allelic fixation, as gene flow increases, is

governed by the value of the average sensitivity experienced by the host species, sY (see Eq. S3,

on the Supplementary Material). When sY is negative, the landscape tends to polymorphism for

large values of gene flow, whereas it tends to fixation when sY is positive. For the values of inter-

action strengths used (KM = 0.04 and KA = −0.02), the transition between these two tendencies

occurs at p = 0.33, when sY = 0 (see Eq. S3).

The tendency towards fixation or polymorphism is also observed in the mean-field model

(Fig. 4(b)). When both communities have the same size (R = 1), the larger selective strength

of mutualism compared to antagonism is enough to spread the tendency towards fixation (i.e.,

CAV approaches 1), which characterizes the mutualistic community. If the size of the mutualistic

community is slightly reduced, for 0.80 < R < 0.90, the pattern still tends towards fixation as

gene flow increases. In these cases, the strength of the mutualistic interaction has a stronger effect

when compared to community size. Further reductions in the size of the mutualistic community

lead to a drastic change in the behaviour of the system, with both communities tending towards

polymorphism (CAV = 0) as the gene flow increases when R < 0.60.

The results of the mean-field approach are therefore qualitatively similar to those obtained

for the spatial case, with a clear transition between two states of allelic diversity. In addition,

the two frameworks (spatial and mean-field) also suggest that even under strong mutualistic

selection and high gene flow, polymorphisms can persist. In the spatial model, persistence occurs

if antagonistic sites are predominant across the landscape when considering all sites or, in the
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case of the mean-field, if the size of the antagonistic community is greater than the size of the

mutualistic community. However, the value of R that seems to mark the transition between the

two behaviours on the mean-field model (R ≈ 0.7) is not exactly the same that would be expected

through direct comparison with the value of p for the transition on the lattice model (in Eq. 8,

for p = 1/3 one would expect R = 0.5). Even though an exact quantitative comparison with the

spatial case is not possible in this approximation, the mean-field model succeeds in depicting

a transition between two possible coevolutionary outcomes, similar to that found on the spatial

case.

Figure 5: figure approximately here

A closer analysis of the size of mutualistic clusters suggests a relationship between the struc-

ture of the geographic selection mosaic (i.e., the distribution and the relative proportion of mu-

tualistic and antagonistic sites) and the size of phenotypic clusters. In the absence of gene flow,

the frequencies of clusters with high allele frequency coincide with the frequencies of mutualistic

clusters for both A and B (Figs. 5(a) and (b)). Increasing gene flow increases not only the mean

cluster size, but also the probability of finding a cluster of allele fixation larger than expected

from the spatial distribution of mutualistic sites (Fig. 5). However, a clear distinction can be

noted on the changes in cluster frequencies for alleles A and B as gene flow increases. As shown

before for the spatial patterns (Figs. 1 and 2), the characteristic sizes of the clusters where the

frequency of allele B is close to fixation (greater than 0.7) is smaller than sizes of clusters on the

same interval for allele A for the same gene flow rate. The interval of sizes of clusters close to

fixation is also significantly broader for allele A (Fig. 5(a)), for all values of gene flow. Important

differences in cluster frequencies can also be shown when comparing allele B frequencies on the

coevolutionary and single-species models (see Figs. S5 and S6 in Supplementary Material).

From the results of cluster frequencies (Fig. 5) we note that fixation of alleles throughout a

landscape depends on the combined effects of the spatial distribution of mutualistic and antag-

onistic sites, forming the selection mosaics, and the rate of gene flow, also presenting important
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differences between interacting species. These results lead to two main predictions: first, the

presence of phenotypic clusters with variable sizes across landscapes might hide the outcomes

of the interactions at finer spatial scales (phenotypic clusters of allele fixation might be formed

by many sites where the interaction is antagonistic, for example). Second, the presence of phe-

notypic clusters with broad variation in sizes might actually be a signature that a non-regular

spatial structure of small and medium size clusters of mutualistic and antagonistic sites are

shaping phenotypic evolution in a coevolutionary context (regular structures with equal sizes,

even if there were many, would not allow the formation of broad distributions of phenotypes;

compare these phenotypic patterns with the ones obtained from regular block mosaics on the

Supplementary Material).

Figure 6: figure approximately here

Finally, we added to these large landscapes the third component of geographic mosaics: co-

evolutionary hotspots and coldspots. In the coevolutionary coldspots, the interaction affected

the evolutionary dynamics of the symbiont but not the host (i.e, γij = 0 representing the absence

of interaction effect on fitness of species Y). In other words, coldspots represent communities

where the symbiont was commensalistic on its host. We distributed coevolutionary coldspots

among the antagonistic and mutualistic sites. We then explored the effects of the proportion of

coldspots and the rates of gene flow on the frequency of sites with high frequencies of alleles A

(x > 0.7), as we kept the average fitness sensitivity of the host fixed. For fixed values of gene

flow, the tendency towards allelic fixation on the symbiont depended on the average value of

the fitness sensitivity of the host. For a negative average fitness sensitivity (Fig. 6(a)), increasing

the fraction of coldspots led to a decrease in the number of sites with high frequencies of allele

A. In contrast, for a positive average fitness sensitivity (Fig. 6(c)) the increase in the fraction of

coldspots led to an increase in the number of sites with high allele A frequencies.

The effect of coldspots follow from the influence of the mutualistic clusters on the initial

selection mosaics. Because the probability p for the initial selection mosaic is a function of f ,
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so that the average fitness sensitivity is fixed (see Methods and Supplementary Material), the

variation of p is dependent on the value of the average fitness. For sYC < 0 (Fig. 6(a)), p is a

decreasing function of f : with sYC = −0.005, as f increases from 0.0 to 0.5, p decreases from 0.25

to 0.17. In contrast, for sYC > 0 (Fig. 6(c)), p is an increasing function of f : with sYC = 0.005,

as f increases from 0.0 to 0.5, p increases from 0.42 to 0.50. For sYC = 0.0, p is independent of

f , and thus the number of sites presenting high allele A frequencies should depend only on the

value of the gene flow. However, it is possible to note a slight increase in the number of sites

with high allele A frequencies as f increases (Fig. 6(b)). This is mainly due to the fact that the

lattice is finite and the selection of coldspots is slightly biased towards antagonistic sites in this

case. Hence, the proportion of coldspots in a landscape alters the outcome of the interaction in

different ways that depend on the landscape proportions of mutualistic and antagonistic sites as

well as on fitness sensitivity of the interacting species.

Discussion

Previous studies have been successful in describing the evolutionary forces that drive the forma-

tion of single-species clines in traits (Felsenstein 1976; Lenormand 2002; Nagylaki 1975; Slatkin

1978). Adding to the vast literature of local adaptation in single species, subsequent studies have

also investigated the formation of evolutionary clines in one-dimensional systems of coevolving

species (Nuismer et al. 2000). Here we have shown that novel dynamics result when species co-

evolve across large landscapes over which the interactions vary from antagonism to mutualism,

forming a geographic selection mosaic of ecological outcomes. These novel dynamics produce

geographic clusters of similar phenotypes, resulting from a combination of the geographic mo-

saics, the distribution of coevolutionary hotspots and coldspots, and the degree and pattern of

gene flow.

Direct comparison between the 2-species and single-species models indicated that, for small

fractions of mutualistic sites in the landscape (p = 0.25), significant differences appeared for
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allele composition on antagonistic sites. Whereas polymorphic states are observed with notable

spatial predominance in the coevolutionary case, for the single-species model polymorphism is

associated with the transition between regions of near fixation of allele B and near fixation of

allele b. As a consequence, major differences also appear in the cluster distributions for allele B

in these two models (Figs. S5 and S6).

These results imply that the two main drivers for the formation of the patterns we describe

are the two-dimensional topology of the selection mosaics, which influences position and sizes

distribution of the phenotypic clusters, and coevolutionary dynamics, which directly affect the

maintenance of fixation and polymorphism on the landscape. Our results therefore expand

current local adaptation theory by showing that (i) a large bidimensional landscape serves as

a stage for the formation of a broad size distribution of mutualistic and antagonistic clusters,

which are directly linked to the formation of phenotypic clusters that vary non-linearly in size

with gene flow (see Fig. 5), and (ii) maintenance of polymorphisms in large ecologically complex

landscapes is significantly altered by coevolutionary dynamics, and depends on the rate of gene

flow and the spatial prevalence of mutualism or antagonism.

In this work we isolated how the spatial scales of selection and gene flow affect the spatial

scale of adaptation and coadaptation when interactions vary from antagonism to mutualism

within a large landscape. This analysis was performed by focusing mostly on allele A, but our

analyses also showed that the dynamics of allele B differ in some respects from those found in

A. A deeper analysis of the patterns of allele B would also be important, as well as investigating

how the mismatch between interacting alleles A and B is dependent on gene flow and spatial

structure. However, these analyses introduce another set of effects that need to be evaluated in a

truly robust way, which goes beyond the scope of this paper.

Our results are directly relevant to understanding the structure of coevolving interactions

found in nature. Selection mosaics, coevolutionary hotspots, and variable frequencies of coe-

volving traits have been observed in nature at a wide range of spatial scales (Thompson 2013).

Moreover, geographic mosaics in coevolutionary selection have been previously shown to be
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an important ingredient in the formation of evolutionary patterns. For example, observed geo-

graphic mosaics range from mosaics of ecological outcomes or traits (e.g., Benkman et al. 2001;

Brodie et al. 2002; Thompson and Cunningham 2002) to clinal patterns in traits, such as in the in-

teraction between camellias (Camellia japonica) and camellia weevils (Curculio camelliae) along

latitudinal and elevational gradients in Japan (Toju et al. 2011). Our work opens the opportunity

to investigate the underlying processes shaping coevolving interactions in the large and more

complex landscapes found in other interactions.

In one-dimensional models of geographic mosaics, the most likely outcome is the evolution

of clines (Nuismer et al. 2000). Our results for the analyses of large landscapes suggest three

extensions of coevolutionary theory. First, the interplay between spatial structure, gene flow and

selection mosaics can lead to the formation of clusters of allelic frequencies that differ signifi-

cantly from those expected by the spatial distribution of mutualistic and antagonistic sites. On

the local level, one would expect fixation of alleles on mutualistic sites and polymorphism on

antagonistic sites. Our results show instead a marked discrepancy between the final allelic fre-

quencies and that expected by local selection regimes at finer spatial scales. These results support

the view that all three components of the geographic mosaic of coevolution - selection mosaics,

hotspots, and trait remixing - should be considered when investigating how species interactions

shape evolution of alleles and traits (Thompson 2005). Empirical work has described the spatial

structure of magnitude and direction of selection, as well as the distribution of phenotypes of

several coevolved species interactions (Brodie et al. 2002; Parchman and Benkman 2002; Ruano

et al. 2011). Some of these studies have revealed clusters of populations sharing similar trait pat-

terns, in which a mismatch between phenotypic patterns and selection often occurs (Hanifin et al.

2008; Nogueira et al. 2015). Previous work associates this pattern with differences in responses of

interacting species to coevolutionary selection (Hanifin et al. 2008) or to similar directional selec-

tion across space (Benkman and Parchman 2013). Our study provides an additional mechanism

that may contribute to these spatial patterns: the formation of trait clusters as a consequence of

gene flow amplifying local selection and generating a distribution of clusters of phenotypes.
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Second, a key aspect of the disparity between the spatial distribution of the selection mosaics

and the resulting phenotypes is the formation of local clustering of sites showing similar allele

frequencies. We provide a mechanism for this departure in allele distributions by hypothesizing

that aggregations of sites with similar selective regimes shield the effects of stronger interaction

strength and/or higher prevalence of other selective regimes, leading to the formation of the phe-

notypic clusters. Nuismer and coauthors (Nuismer et al. 2000) reported a shielding effect in their

linear spatial model of coevolution. By generalizing coevolutionary models to two-dimensional

lattices our study shows that this shielding effect leads to the formation of clusters of multiple

sizes across the landscape. Together these results suggest that shielding effects may be a com-

mon feature of coevolution for interactions with a geographic mosaic structure. The comparison

with the mean-field results also suggests the relevance of numerical effects and spatial structure

to understanding these final distributions of phenotypes. These analyses suggest that coevolu-

tion across space favors the formation of discrete regional groups of populations sharing similar

phenotypes, even if selection mosaics are not spatially organized. In this sense, the statistical

properties of the distribution of cluster sizes provide information on the role of gene flow in re-

shaping the patterns of traits predicted by selection mosaics. Additionally, our model predicts a

wide variation in cluster sizes within metapopulations of interacting species, in agreement with

empirical evidence supporting the notion that cluster patterns in traits and allele frequencies can

occur on scales varying from a few square kilometers or less (King et al. 2009; Koskella et al.

2011; Laine 2009) to scales of tens or hundreds of square meters or more (Anderson and Johnson

2008; Benkman et al. 2010; Burdon and Thrall 2014; Hanifin et al. 2008; Pennings et al. 2009).

Third, we show that coevolutionary coldspots may change evolutionary dynamics by mod-

ulating the effects of gene flow, favoring particular allele frequencies and changing the conse-

quences of the selection mosaics. Recent work shows that the spatial organization of coldspots

and hotspots affects the polymorphism persistence in small spatial networks of two antagonistic

species (Gibert et al. 2013). By incorporating the fact that mutualisms and antagonisms are often

the endpoints of a continuum of variable fitness consequences (Thompson 2005), the asymmetry
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in selection that characterizes coldspots favors an asymmetry of the distribution of alleles at the

landscape level, thereby maintaining allele diversity (and polymorphism) in the host populations

over large spatial areas.

More generally, the results suggest how future theoretical and empirical studies could explore

the statistical properties of cluster of traits and selection mosaics within metapopulations of

interacting species. Selection mosaics incorporated into metacommunity structure show that

central communities might play a disproportionate role in coevolutionary dynamics (Lemos-

Costa et al. 2017). When scaled up to the landscape level, we hypothesize that the spatial effects

described here will amplify the formation of clusters of high or low allele frequencies in nature.

The formation of discrete regional groups is a form of a broad class of spatial processes which

occur in biological and physical systems (Alonso et al. 2002; Liu et al. 2010). In this sense, this

work represents a step in creating a bridge between coevolutionary theory (Thompson 2005) and

the study of spatial processes in dynamical systems (Murray 2011).

We have incorporated two important simplifying assumptions in our model, namely infinite

population sizes and haploid organisms. Infinite population sizes enable us to work exclusively

with gene frequencies, focusing our analysis on the dynamical effects of frequency dependent

selection and controlling for the stochasticity inherent of finite population sizes. It is important to

note that this assumption holds as long as the number of migrants is small compared to the local

populations on a finite case. If the numbers of migrants is large, dynamical instabilities associated

with the formation of the final patterns would likely lead to different dynamical regimes from the

stationary patterns discussed here. A robust analysis of these regimes, considering demographic

dynamics of varying population sizes in space and, consequently, asymmetric rates of gene flow,

would be an important extension of our work that would permit an understanding of how eco-

evolutionary dynamics affect the spatial distribution of phenotypes. Additionally, diploid traits

might introduce an additional source of local diversification even under the influence of strong

mutualistic selection, which has been shown to prevent diversification in many cases (Raimundo

et al. 2014).
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Finally, these results provide a framework for future studies to explore the coevolutionary

consequences of human-driven habitat fragmentation and loss in natural landscapes. Although

we focus mainly on the final stationary patterns of allelic distributions, the transient evolution-

ary dynamics are important and relevant, especially nowadays as environments worldwide are

undergoing rapid change. The results of this study also reinforce the difficulty of interpreting

the spatial structure of interaction outcomes and future trajectories in coevolving interactions

based on analyses focusing only on local and small-scale allele frequencies, even after hundreds

of generations. For now, we predict that habitat fragmentation, by reducing rates of gene flow

across landscapes, is likely to impede the formation of larger clusters of populations with simi-

lar phenotypes, thereby making the spatial structure of phenotypes (distribution of phenotypic

clusters) more similar to the structure of selection mosaics (clusters of mutualism or antagonism).
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Appendix: Online Supplementary material

Fitness sensitivity across the landscape – mean and variance

Regular model without coldspots

We calculate the mean and variance of the fitness sensitivities across the landscape for both inter-

acting species. If sX and σ2
X are the mean and variance for the symbiont sensitivities, respectively,

we have:

sX = Q (A1)

σ2
X = 0, (A2)

since there is no variation on symbiont sensitivities across the landscape.

The scenario is different for the host, for which the sensitivity is equal to KM in mutualistic

sites and KA in antagonistic sites. If sY and σ2
Y are the mean and variance for the host sensitivities,

respectively, we have:

sY = KM p + KA(1− p)

= KA + p(KM − KA) (A3)

σ2
Y = s2

Y − (sY)
2

= [K2
M p + K2

A(1− p)]− [KA + p(KM − KA)]
2

= (KM − KA)
2 p(1− p) (A4)
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Model with coldspots

For the coldspots analysis, the selection mosaics are first built the same way as before, with

each site assigned as mutualistic with probability p and antagonistic with probability (1− p). A

fraction f of the sites is then chosen randomly and marked as coldspots, where the interaction

favors the symbiont (with sensitivity equal to Q) and is indifferent to the host (with sensitivity

equal to 0). Thus, the mean and variance for the symbiont sensitivities remain equal to Q and 0,

respectively. For the host sensitivities, we have:

sYC = KM p(1− f ) + KA(1− p)(1− f )

= [KA + p(KM − KA)](1− f )

= sY(1− f ) (A5)

σ2
YC = s2

YC − (sYC)2

= [K2
M p(1− f ) + K2

A(1− p)(1− f )]− (1− f )2[KA + p(KM − KA)]
2

= (1− f )[(KM − KA)
2 p(1− p) + f (KA + p(KM − KA))

2]

= (1− f )[σ2
Y + f (sY)

2] (A6)

Note that the mean and variance of host sensitivities in the coldspots model (respectively, sYC

and σ2
YC ) are related to the mean and variance of host sensitivities in the model without coldspots

(respectively, sY and σ2
Y).

Alternative selection mosaics

In an attempt to understand particular features of the randomly constructed selection mosaics,

we investigated two different scenarios: block mosaics and gradient mosaics.
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Block mosaics

Block mosaics are the simplest approach to capture the influence of local clusters, and the shield-

ing effect that the local prevalence of a given interaction type has over the dynamics of allele

frequencies. We build the selection mosaic again as a 100 x 100 regular square lattice, in which

the lower part of the lattice is formed only by antagonistic sites, while the upper part is formed

by mutualistic sites (Fig. A1(a)). Sites are indexed by the index k, starting from the leftmost site

on the first row of the lower part of the lattice. Thus, the first row has indexes going from 1 to

100, second row, 101 to 200, and so on until the upper part of the lattice is reached. Periodic

boundaries conditions are used and the dynamics of the model are the same as explained in the

main text.

Figure A1: figure approximately here

The first result to notice is the reinforcement produced by the clusters to the dynamical ten-

dencies of single isolated sites. Isolated mutualistic sites tend to the fixation of the predominant

alleles, while antagonistic sites tend to produce oscillations with increasing amplitudes. How-

ever, as mutualistic selection has, in this case, twice the strength of the antagonistic selection,

we expected that for a given rate of gene flow, the increasing amplitude in the antagonistic

communities would be reverted to dampened oscillations and, possibly, fixation of the initially

predominant alleles. This transition from increasing to decreasing amplitudes in the allelic oscil-

lations in the antagonistic communities in fact appears, for this particular set of parameters and

lattice size, for a value of gene flow m ≈ 0.056.

Analysis for the final (average) frequencies of allele A on the lattice (Fig. A1(b)) shows that

clines starting in the middle of the antagonistic cluster until the middle of the mutualistic cluster

become less steep as gene flow increases (horizontal steps on the curves all have a length equal to

100 and indicate that nodes on the same line of the lattice present the same final frequencies). The

decrease in steepness on the border of the clusters is directly related to the increase in correlation

length induced by the increase in gene flow.
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Figure A2: figure approximately here

Comparison between the sizes of the strictly fixed domain (xk = 1), in the mutualistic cluster,

and the fully polymorphic domain (xk = 0.5), in the antagonistic cluster, reveals that the latter

is reduced, compared to the former, as gene flow increases. This spread in the tendency to

fixation, however, finds resistance in the antagonistic cluster, even for large rates of gene flow, as

we described before as shielding effect. Fig. A2 shows the spatial patterns relative to the clines

in Fig. A1(b) for comparison.

Gradient mosaics

A more complex spatial structure can be obtained defining the selection mosaic as a gradient,

that goes from antagonistic predominance to mutualistic predominance on the landscape. Fig. A3

shows one possible gradient mosaic. The coevolutionary dynamics are again set as before, with

the same parameters as in Fig. A1. Boundary conditions are also periodic. The final stationary

outcomes for the spatial distribution of allele A are shown in Fig. A4 for different values of gene

flow.

Figure A3: figure approximately here

Starting from small values of gene flow, it is possible to see how the spatial pattern goes from

an intricate mixture between local allelic fixation and polymorphism (Fig. A4(a)), to a smooth

pattern with well defined regions (Fig. A4(d)), as gene flow increases. The pattern for Fig. A4(a)

still keeps the same spatial characteristics found in the completely random selection mosaic for

the same gene flow rate (see Fig. 1, in the main text), with local groups of fixation associated

to the clusters of mutualistic sites in the selection mosaic, and the appearance of sites with

low frequencies of allele A (dark blue spots), associated with 1-site clusters of mutualistic sites

isolated in antagonistic bigger clusters. The pattern for the largest value of gene flow (Fig. A4(d))

shows a well marked separation between the region for allelic fixation (upper part of the mosaic)
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and the region of polymorphism (lower part of the mosaic), despite the presence of antagonistic

sites in the upper region and mutualistic sites in the lower region. The increase in gene flow

marks the increase in correlation lengths, reducing the effective importance of the fine structure

of the mosaic in influencing the final patterns of allelic distribution. This lack of resolution for

fine structures makes the outcomes of the gradient mosaics closer to the outcomes of the block

mosaics (Fig. A2(d)) for sufficiently high values of gene flow.

Figure A4: figure approximately here

Cluster frequencies for allele B: coevolutionary and single-species models

Differences on the spatial patterns for allele B in the coevolutionary and single-species models

(Figs. 2 and 3 of the main text, respectively) can be quantitatively assessed by the cluster frequen-

cies in two different allelic frequency intervals. Figure S5 shows the comparison for the cluster

frequencies in these two models for clusters in which y > 0.7. Figure S6 shows the same analysis

for the interval 0.3 < y < 0.7.

Figure A5: figure approximately here

Figure A6: figure approximately here

A comparison between the frequencies of clusters close to fixation (y > 0.7) in the coevo-

lutionary and single-species models shows that while in the coevolutionary model (Fig. A5(a))

increasing the gene flow rate leads to an increase in the likelihood of clusters close to fixation

larger than expected by the histogram of mutualistic clusters (diamonds in Fig. A5), the same

increase in gene flow leads to a decrease in the frequency of clusters close to fixation for almost

all sizes in the single-species model (Fig. A5(b)).

As discussed in the main text, increases in gene flow produce an increasing dominance of the

polymorphic state (0.3 < y < 0.7 - see inset in Fig. A6(a) for increase in size and likelihood of the
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larger cluster of polymorphism) in the lattice for the coevolutionary model. On the other hand,

the same increase in gene flow in the single-species model (Fig. A6(b)) produces a spatial pattern

marked by regions of fixation of allele B (associated to the largest clusters in which selection

favours this allele) and regions of fixation of allele b (where selection favours allele b instead).

Polymorphism in the single-species model is then associated with the transition regions between

regions of allelic fixation, with increasing likelihood of larger polymorphic clusters as gene flow

increases (Fig. A6(b)). The spatial distribution of polymorphism thus constitutes one of the most

striking differences between the spatial outcomes for the frequencies of allele B in these two

models.

Supplementary videos

Gene flow effect

In the video pattern A gene flow we show two panels: the selection mosaic relative to p = 0.25

(mutualistic sites are shown in black and antagonistic sites, in light gray), on the right side, and

the stationary phenotypic patterns, after the total simulation time, for allele A (frequency x),

on the left, for different values of the gene flow rate, m. The other parameters are KM = 0.04,

KA = −0.02 and Q = 0.02 and are left constant.

Note how the final pattern of x changes with the increase of the gene flow rate. This video

corresponds to the same results shown in Fig. 4(a), for p = 0.25. Also worth noting is how the

sizes of the blue domains (predominance of allele a) increase with m. For different values of

m, blue spots appear on the lattice associated with different sizes and displacements of groups

of mutualistic sites. This effect is not trivial and it only appears when considering this spatial

feature on large landscapes.
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Transient dynamics

The videos transient x km004 ka002 m0015 p025 and transient y km004 ka002 m0015 p025 show

examples of the transient dynamics for the early stages of phenotypic pattern formation. In

the videos, the left panels show the spatial patterns for alleles A and B, respectively, as they are

formed through the generations, while the right panels show the values of the frequency of the

respective allele (xk and yk) for each site, as a function of the sites’ index, k (same indexation

used before. See Fig. A1(b)), for each generation. The used parameters were p = 0.25, m = 0.015,

KM = 0.04, KA = −0.02 and Q = 0.02 From the videos it is clear that even though we simulate

for a total time of 40000 generations, the spatial pattern is almost completely formed as early as

3000 generations.

For the pattern of allele B, the first 300 generations mark a distinctive separation of the sites

into two groups: part of the sites move up faster than the others, which is likely related to the 25%

of mutualistic sites, going towards fixation of allele B. This clear separation, however, disappears

by generation 300 as the neighboring sites start to have an increased effect on them: from this

point on it is not possible to distinguish the site’s selective regime by looking at the frequency

alone.

These results reinforce the argument why the transient dynamics are important: since allele A

only feels the spatial structure of the mosaic through the interaction with allele B, the timescales

for the formation of phenotypic patterns for A and B might be different. The analysis of the

dependencies between selection, gene flow and coevolutionary timescales might be an interesting

topic for future research.
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Figure legends

Figure 1: Final stationary patterns of x (frequency of allele A), for three values of the gene flow

rate, m, and different selection mosaics (each mosaic defined by the probability of a site to be

mutualistic, p). The three final patterns in each row correspond to the same selection mosaic in

the left. The other parameters are KM = 0.04, KA = −0.02 and Q = 0.02 and each pattern is

iterated over 40000 generations.

Figure 2: Final stationary patterns of y (frequency of allele B), for three rates of gene flow, m, and

different selection mosaics (each mosaic defined by the probability of a site to be mutualistic, p).

Patterns correspond to the coevolutionary model (both x and y vary in time). Selection mosaics

and parameters are the same as in Fig. 1. Each simulation ran for 40000 generations.

Figure 3: Final stationary patterns of y (frequency of allele B), corresponding to the single-species

model (frequency of allele A is fixed as x = 1 at all sites), for three rates of gene flow, m, and

different selection mosaics, with probability p for sites where selection is beneficial. Sites where

selection is detrimental (det; fitness of allele B equals 1− |KA|) or beneficial (ben; fitness of allele

B equals 1 + |KM|), correspond to the position of antagonistic or mutualistic sites, respectively,

on the mosaics of Figs. 1 and 2. Parameters are the same used in the previous figures. Each

simulation ran for 40000 generations.

Figure 4: In (a), average fraction of sites on the lattice for which x > 0.7 as a function of the

gene flow m, for different values of the proportion of mutualistic sites, p. For each value of m, 50

samples were considered and error bars correspond to one standard deviation. In (b), results for

the mean-field approach, with values of CAV as a function of the gene flow m, for different size

ratios of mutualistic to antagonistic communities, R = N1/N2.
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Figure 5: Cluster size frequencies for alleles A (a) and B (b), for four different values of gene

flow, m, for cluster of sites in which the allele frequency is greater than 0.7 (see description in

Methods). Each point represents the number of clusters with that size normalized by the total

clusters count. For each rate of gene flow, 1000 different selection mosaics (error bars equal to

the standard error of the mean) with p = 0.25 were considered. Empty diamonds show the same

cluster analysis considering the mutualistic clusters on the selection mosaic. Arrows represent

the mean cluster size for each value of m (using the same color legends). As before, KM = 0.04,

KA = −0.02 and Q = 0.02.

Figure 6: Average fraction of sites on the lattice that present final values xij > 0.7 for different

values of gene flow, m, and the fraction of coldspots, f , on the lattice. The average fitness

sensitivity for the host, sYC , is fixed in each case, with values −0.005 (a), 0.0 (b), and 0.005 (c). The

original lattices are constructed with p for the initial selection mosaic varying with f according to

Eq. 9. Ten simulations for each pair (m, f ) were performed. For all cases, KM = 0.04, KA = −0.02

and Q = 0.02.

Online figure legends

Figure A1: In (a), selection block mosaic, where the lower half of the lattice is composed only by

antagonistic sites, while the upper half is composed by mutualistic sites. In (b), average value

of the frequency of allele A (xk) for the 20% last iteration steps (total iteration time equal 40000),

as a function of the node indexes, k, for different values of the gene flow rate, m. Here we use

KM = 0.04, KA = −0.02 and Q = 0.02.

Figure A2: Final outcomes for the spatial distribution of allele A on the block mosaic, for different

gene flow rates, corresponding to the curves in Fig. A1(b). For these patterns, m = 0.060 (a),

m = 0.100 (b), m = 0.250 (c) and m = 0.500 (d).
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Figure A3: Visualization of the gradient selection mosaic. For each row i, indexing from the

bottom to the top, the sites in this row are assigned mutualistic with a probability p = i/L,

where L = 100 is the size of the lattice. A selection gradient is thus created so that, in each row,

the probability for the sites to be mutualistic goes from 0.01 (bottom of the lattice) to 1 (top of

the lattice).

Figure A4: Stationary outcomes for the spatial distribution of allele A, for different gene flow

rates. For these patterns, m = 0.015 (a), m = 0.050 (b), m = 0.100 (c) and m = 0.250 (d). All the

cases have the same selection mosaic (Fig. A3). Parameters are the same as before.

Figure A5: Cluster size frequencies for allele B for the coevolutionary (a) and single-species (b)

models, for four different values of gene flow, m, for cluster of sites in which the allele frequency

is y > 0.7. Each point represents the number of clusters with that size normalized by the total

clusters count. For each rate of gene flow, 1000 different selection mosaics (error bars equal to

the standard error of the mean) with p = 0.25 were considered. Empty diamonds show the

same cluster analysis considering the mutualistic clusters on the selection mosaic. As before,

KM = 0.04, KA = −0.02 and Q = 0.02.

Figure A6: Cluster size frequencies for allele B for the coevolutionary (a) and single-species (b)

models, for four different values of gene flow, m, for cluster of sites in which the allele frequency

is 0.3 < y < 0.7. Inset in (a) shows a zoom of the final interval in that plot. Again, each point is

the number of clusters normalized by the total clusters count. For each rate of gene flow, 1000

different selection mosaics (error bars equal to the standard error of the mean) with p = 0.25

were considered. Parameters are the same used in Fig. A5.

Video A1: Gene flow effect. See description in Supplementary Material.

Video A2: Transient dynamics, Allele A. See description in Supplementary Material.
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Video A3: Transient dynamics, Allelle B. See description in Supplementary Material.
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