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X simple model to elucidate the effect of disturbance on a large number of 
competitors that compete for space and exhibit a competitive hierarchy is 
developed. Conditions are derived that determine presence of species, and 
diversity 1s calculated as a function of percentage cover. The model is compared 
to data from coral reefs collected by J. W. Porter (1974, Science 186, 543-545). 
Using parameter values in the model that allow a fit to Porter’s data, the response 
of an individual species to changes in disturbance becomes quite complex, 
depending on the position (odd or even) of the species in the competitive 
hierarchy. For these same parameter values, the system is interactive: the 
existence of a particular species may effect the presence of another. Different 
parameter values would lead to a noninteractive system. 

I_ XNTR~DLJCTI~N 

Disturbance has often been suggested as an important structuring force in 
systems of competitors. In particular, it has been suggested that intermediate 
levels of disturbance should lead to the highest diversity in systems where space 
is limiting, such as the intertidal, or some terrestrial plant communities (e.g., 
Paine (1966, 1977), Harper (1%9), Lubchenco (1978), see also references in 
Hastings (I 978)). Although some results are in Yodzis (1978), this suggestion 
has not been carefully analyzed theoretically particularly in cases with many 
competitors. In this paper, I will develop and analyze a class of simple models 
based on the form of competition in space-limited systems. These models will 
be used to analyze the relationship between diversity and disturbance level. 
Data from corals studied by Porter (1972, 1974) will be used to examine the 
predictions of the models. 

I am treating the question of how many species from a current collection will 
be present at a particular disturbance level. This is not a question of species 
packing, which must necessarily be a question on an evolutionary time scale, 
not the ecological time scale treated here. 

Similar questions have been treated in a theoretical context, notably by Levin 
and Paine (1974), Horn (1975), and Yodzis (I 978). However, these studies were 
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interested in questions different from the ones considered here. Levin and Paine 
(1974) take a different approach by concentrating on the important role of patch 
structure. Horn’s (1975) models consider what happens in situations without 
disturbance or in a linear model with disturbance. Yodzis (1978) studies the 
effect of considering explicit Lotka-Volterra dynamics in patches. This interest- 
ing approach allows detailed conclusions, but the added complexity makes it 
more difficult to consider the role of extinctions within some but not all patches, 
over an ecological time scale. Within this framework Yodzis suggested that 
intermediate levels of disturbance should lead to greater diversity. 

The model in this paper isolates the phenomenon of disturbance leading to 
coexistence. By phrasing the model in terms of biologically meaningful and 
measurable parameters, additional predictions emerge. 

2. MODEL DEVELOPMENT 

Since space is assumed limiting in -the deterministic model treated here, the 
environment will be described as consisting of a large number of discrete 
identical patches, and the variables will be the frequency of patches in a particular 
state (cf. Levins and Culver, 1971; Levin and Paine, 1974; Levin, 1976; 
Hastings, 1977). I will assume that competition is sufficiently rapid (or, equiva- 
lently, patches are sufhciently small) so that, as an approximation, no patch will 
ever be occupied by more than a single species. Hence, in a model of la species, 
the variables in the system are xi , i = 1, n; where xi is the fraction of patches 
occupied by species i. Note that occupancy includes only those patches from 
which propagules are actually being sent out. 

The form of competition assumed is that which arises from ‘fovertopping” 
(Porter, 1974; Connell, 1973, 1978): This leadsto a competitive hierachy (Horn, 
1975), where if j > i, species i will always outcompete species j. An example of a 
system where this holds is corals in the eastern Pacific off Panama, as studied by 
by Porter (1972, 1974) and Maguire and Porter (1977). 

All patches are assumed equally accessible from any given patch. Propagules 
of any.species will approach the patches randomly, but only those landing on 
empty patches, or patches occupied by species lower on the competitive hierarchy, 
have a chance of succeeding. This is how competition is modeled. The probability 
of success of a propagule will be assumed not to be influenced by whether the 
“patch” it lands on is empty, or occupied by a species lower on the competitive 
hierarchy. (Note that residency in the model means the resident is currently of 
reproductive size or age.) Priority effects of this nature will be dealt with in a 
future paper. 

The rate at which a species successfully colonizes appropriate patches 
will depend on its local growth rate, dispersal ability, and colonizing ability. 
For each species, these features will all be subsumed in a single funation\l Q(x,), 
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which will be the rate at which appropriate patches are settled. The functions 
II&) will satisfy the following two conditions: 

Di(0) = 0, (1) 

which says that an absent species sends out no propagules, and 

which says that the rate at which appropriate patches are colonized increases as 
the area occupied by a species increases. A third condition will be assumed that 
says that the per capita colonization rate decreases (or does not increase) as the 
area occupied by a species increases. This takes into account a saturation effect, 
or any searching ability larvae may have. Thus, assume 

d2D,<O 
dxi2 . ’ (3) 

Disturbance in this paper will be modeled as a force that occurs randomly 
through time and affects all species equally. Disturbance will be treated as a 
deterministic feature to model forces such as wave action, or predation by a 
predator that has an alternate food source so its feeding rate remains constant. 
Patches currently occupied are assumed to return to the empty state at a rate 

e(t). 
Using the assumptions above, one obtains n equations, each describing the 

rate of change of patch occupancy for one species. Each equation has three terms, 
one for the colonization of patches, one for loss due to competition (missing from 
the equation for the top competitor), and one for loss due to disturbance. Thus 
the n equations take the form: 

i = 1,n. (4) 

The analysis will begin with this model. More complex forms will be treated 
elsewhere, simplifications will be considered below. Note that in analyzing the 

‘. 
model,. attention ~111 be restricted to the region 

(5) 

since the variables are frequencies. 
One of the important: factors in determining the behavior of the model is 

the functions DXxJ. More detailed information will be the outcome of more 
experimentation. 
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3. MODEL SOLUTION 

Before “solving” the model, I will assume that over the time scale of interest, 
the disturbance rate, e(t), can be viewed as a constant, e. 

The first step in the analysis is a study of the dynamics of (4), which is in the 
Appendix. The primary result is that the system always has a ~rzz@e equilibrium. 
point which is approached by any system in which all species are initially present. 

The most interesting biological question then becomes: at this equilibrium, 
which depends on the disturbance level, what species are present, and what are 
their population levels? To answer this question, it is necessary to be more 
specific about the functional forms in (1). Hence, I will now make a simplifying 
assumption. Choose a specific form for the colonization function Di(x), namely, 

Q(x) = dp. (6) 

This form is in a certain sense a base form. Deviations from it would represent 
searching behavior or other behavioral aspects. Note that when this form is 
assumed, the model becomes one of Lotka-Volterra form, although the meaning 
assigned to the coefficients differs. In fact the parameter di could be determined 
by measuring the colonization rate and the area currently occupied by species i. 

Now, the result that the model has a unique, feasible, globally stable (from 
positive initial conditions with all species present) equilibrium point will be used 
to examine the outcome of the model. This result says that there will be a series 
of algebraic conditions that determine the asymptotic behavior. 

The best competitor, species 1, will be present if and only if 

dl > e. (7) 

If species 1 is not present criterion (7) should then be applied to species 2, and 
successively until it is satisfied. If species 1 is present, species 2 will be present 
if and only if 

T’he corresponding condition for species 3, if 1 and 2 are present, is 

(8) 

Similar conditions apply for species lower in the competitive hierarchy. Since, 
in the model, to survive, a poorer competitor must be a better colomkr, 

i >j implies dl > dj WV 
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will always be assumed. (Note that an alternative advantage for poorer competi- 
tors would be resistance to disturbance (cf. Hastings, 19718)). 

A definition is useful for interpreting conditions (7)-(9) and those that follow. 
Note that the system would behave differently if the top competitor had been 
eliminated for some reason. However, in the range cf e where I is present, it is 
reasonable to ask whether the presence of species 2 affects the presence of species 
3. If whenever the disturbance level, e, allows species 2 to enter, species 3 can 
also enter, then the presence of species 2 will not affect species 3. Formally, this 
means that (7) and (8) imply (9). Such a system will be called noninteractice. 
Note that noninteractiz.e does not refer to no interaction or competition, but that 
in the model one species is not eliminated by another. Extension of this definition 
to systems of more than three species, or more general models, is natural. A 
system that fails to satisfy these conditions will be called interactive. 

If the disturbance rate varies with time, but is at a fixed level long enough 
for species not present at equilibrium to be eliminated, history will play a much 
more important role in interactive systems (see Fig. 1). Assume there are two 
levels of e, z, at which species 1 and 3 are present, and eb at which 1 and 2 are 
present, but not 3. If the system is first at e, , then at eb , then back at e, , species 3 
will be present since it will be present at eb if 2 had already been eliminated. On 
the other hand, if the system is first at eb , then at e,, , only species 1 will be present 
since 3 would have been eliminated. Such interactions involving history are 
possible in noninteractive systems only if the dominant competitor is iivolved, in 
contrast to the situation just described for an interactive system. 

There is a corresponding important difference between interactive and non- 
interative systems in number of species as a function of disturbance rate. In 
noninteractive systems the number of species present first increases monotonically 

I 

Species 3 
J I 

Species 2 

Species I 

FIG. I. The role of history in an intetactiere, three-species, competitive system with 
colonization rates, di = i, i = 1. 3. The graph indicates which species would be present 
if all were initially present. At disturbance rate e, , species 2 is eliminated; at rate eb , 
species 3 is eliminated if and only if 2 is present. Hence, the order in which rates ea 
and et, are experienced may influence present species competition. 
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FIG, 2. Number of species present in two, five-species competitive systems as a 
function of the disturbance rate e. (a) An in~eructiwe system with colonization rates 
d, = i, i = 1,5. (b) A nunin~eructit~e system with d, -= 2”-“, i = 1,5. 

as a function of the disturbance rate e, until all species are present, and then 
decreases monotonically (Fig.,2). Thus there is a single intermediate level of 
disturbance yielding the maximum number of species. In contrast, in interactive 
systems, although the greatest number is at an intermediate level of disturbance, 
the number of species is not a monotonic function of e, and there may be several 
peaks. These differences appear in a different fashion when the diversity measure 
H’ is used, as discussed below. 

For the simple model (l), if the ratio dJdiwl is a nonde~eusingfwrction of i, the 
system is .noninteractive. The borderline case where this ratio is constant is 
included since then the system behaves like a noninterqctiwe one. Hence, if the 
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dispersal parameters di are evenly spaced on an arithmetic scale, the system is 
interactiwe, whereas if the di are evenly spaced on a logarithmic scale the system 
is nminteractiwe (Fig. 2). 

4. AN EXAMPLE FROM CORAL REEFS 

I will now compare the outcome of the model to data collected from coral 
reefs (Porter, 1972, 1974) on the Pacific side of the Isthmus of Panama. Although 
there has been controversy concerning some of Porter’s (1972, 1974) conclusions 
(e.g., Glynn, 1976), the questions center on the importance of different biotic 
factors, particularly the role of Acunthter planci, and in no way affect my use of 
Porter’s data below. Note that although there are two major forms of competition 
in these corals, overtopping and chemical “warfare,” in this area there is a compe- 
titive hierarchy (Porter, 1972, 1974; Lang, 1973). Also, although the data 
collected by Porter are from many sites, the amount of dispersal between the 
sites is relatively small relative to settlement from local populations (Porter, 
personal communication), so each site can be treated as a separate outcome of the 
model. One factor liliting dispersal is the posited relatively short time thata 
coral larvae may spend in the ocean before settling if laboratory estimates, of a 
maximum of a few days with most settling occurring faster, apply (Connell, 1973). 
Porter (1974, personal communication) reported values of H’ versus percentage 
cover, where 

H’ = -E pi log, P, , 

where pi is the fraction of the total biomass that is species i. At the sites he 
examined, the competitive dominant was the most common species, and there 

2 5- 

FIG. 3. Plot of diversity measure H’ versus percentage cover. Data from coral reefs 
in Pacific bff Panama, o (‘Porte;, 1974). The model in the text is used three tifnes:‘d, -7 
2’-‘, i I, 5, A; d, = i, i = I, 5, l ; d, = 1, 1.25, 1.5, 1.75, 2, i :- 1, 5, C. 
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were five or six important species in the system. Therefore, to compare the 
model outcome with Porter’s data, three cases are presented in Fig. 3, where H’ 
is plotted against percentage cover. In all cases five-species models were treated. 
In case 1, the nonintereactive model with colonization rates proportional to 
d. = 2i-1 is considered. Disturbance rates of 0 to 0.7 are used (in intervals of z 
0.1) so only cases where the competitive dominant was most important were 
treated. The same disturbance rates are used for the interactive model with 
di = i. For a third case, also interactive, with Di = 1, 1.25, 1.5, I .75, 2, the 
disturbance rates of 0.8 and 0.9 are also used. This third case gives a very close 
fit to the data, duplicating the “‘L” shape. (The “L” shape also shows up in the 
second case:) 

Even though it may not be surprising that with many parameters a fit to the 
data can be achieved, it is impressive that, with the interactive model, the ‘L” 
shape always appears. It is that part of the fit to the data that is striking. Note 
that deviations of the model from the data at very low percentage cover may be 
due to the importance of Acunthuster at these sites (a factor not included). 
Also, at very high percentage cover, although the model predicts H’ = 0, the 
fact that the data shows H’ only near zero is kot surprising; since there may not 
have been time for all subdominant species to be eliminated. ’ 

5. CONCLUSIONS 

Thus the simple model is able to mimic the behavior of the natural system 
quite well. Also, since it is the interactive model that “fits” the data, the model 
makes an interesting prediction: although the valve of H’ may respond in a 
fairly predictable fashion as a function of disturbance rate, there is no simple 
response of individual species abundance OI presence to changes in the distur- 
bance rate. This response is not dependent on any complicated interactions 
among species, but merely depends on the form of competition and on the 
colonization rates. 

However, it should be noted that there is a way to characterize the response of 
abundance of a particular species to changes in disturbance. If, among those 
species present at a given disturbance level, e, the competitive dooinant is called 
species 1, the next best competitor species 2, etc., then increasing e decreases 
the abundance of odd-numbered species and increases the abundance of even- 
numbered species. Note, however, species that are very poor competitors may 
change from “odd” to “even” (or vice versa) quite often as e is varied. 

That a simple model like the one employed here can provide such a good fit 
to coral reef data may be surprising, particularly since Lotka-Volterra forms are 
used. Yet it is important to note that only a very special, restricted Lotka- 
Volterra model is considered. Changes in the form of recruitment that will 
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change the model away from the Lotka-Volterra type, as well as stochastic 
versions, will be considered in future papers. 

Another surprising feature of the present model is how well it works given 
that the details of immigration are not included, as in the simulation model of 
!Maguire and Porter (1977). A general treatment of why this may be true will 
appear elsewhere. 

What is important about the model considered here is its portrayal of how the 
“intermediate level of disturbance yielding highest diversity” hypothesis works. 
It has been noted many times that the hypothesis holds true only for a very 
restricted set of parameters in Lotka-Volterra models. Yet, if one restricts 
attention to a class of Lotka-Volterra models that can be derived, with biological- 
ly meaningful parameters, from considering space-limited systems, it is easy to 
demonstrate how the “intermediate level of disturbance” hypothesis works. 

APPENDIX 

Here the global stability result for the model (4), with e(t) E e, will be sketched. 
The proof relies on the observation that the equation for xi depends only on xj 
with j running from 1 to i, so each equation can be integrating successively. 
The first step will be the following lemma. 

LEMMA. The system (4) has a unique equilibrium (a, , 2, , & , . . . . 2,) in the 
region (5) with the following properties. Either Gi > 0 or .$ = 0 and there is no 
equilibrium with xj = Gj , j = 1 to i - 1, and with Pi > 0. In addition, if xi # ii 

(.xi - ij)fi(& ( iG2 ,...) ijdl, x,) < 0. (Al) 

Proof. Since fj(f, , x2 ,..., dim, ,. 1 - Cizi xj) < 0, the lemma will follow if 
the function 

gi Efibi VW 

is strictly decreasing for xi > 0. First, 

(-43) 

Hence if 

(A41 
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0 - c xj > 0. (A5) 
id 

the lemma will be true, since 

i 

But h,(O) = 0 and 

A* d2D. 
du, = dx,a Xf < 4, W) 

where the last inequality follows from (3). Equation (A6) now implies (A4), so 
the lemma follows. 

The global stability result is: 

THEOREM. The system (4) has IL unzip equilibrium that is approached by-all 
trajectories with initial conditions in (5) md all species initially positive. 

Proof. First note that the interior of theregion (5) is invariant in finite time. 
Then, for any 6, , by picking t, large enough, ) x1(t) - ZI ) < <I for all t > t, . 
Then, by making or small enough, for any 6, , once t > tl , the equation 

f2Mth x2) = 0 W) 

will have a unique (t-dependent) solution, Z2, with 1 .Gs - Za ( < 8, . Now pick 
an f2 . By taking t, > t, large enough, one can make- 1 x2(t) - Z2 ( arbitrarily 
small, so 

I x,(t) - 22 I < I x2(t) - 221 + ) 52 - 5 1 < 9 . W9 

Clearly, this approach can be extended to more than two species. 
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