## Roteiro Distance

Leonardo Wedekin

USP - 2013

#### Abra o Distance

| 🗶 Distance                |              |
|---------------------------|--------------|
| <u>File Tools W</u> indow | <u>H</u> elp |
| ] 🕰 🗳 🔳 📥 🛍               | □   22       |
|                           |              |
|                           |              |

Crie um novo projeto clicando no primeiro botão

#### Dê um nome

| 🗶 Distance              |                   |                                        |          |             |          |    |
|-------------------------|-------------------|----------------------------------------|----------|-------------|----------|----|
| <u>F</u> ile <u>T</u> o | ols <u>W</u> indo | w <u>H</u> elp                         |          |             |          |    |
| 🗳 🗳                     |                   | m =   <u>%</u>                         |          |             |          |    |
|                         |                   |                                        |          |             |          |    |
| -                       |                   |                                        | _        | _           |          |    |
|                         | 🗶 Create P        | roject                                 |          |             |          | ×  |
|                         | Salvar em:        | Praticas_solucoes                      | •        | 🗢 🗈 💣       | •        |    |
|                         | Nome              | *                                      |          | Data de mod | ificaç   | Ti |
|                         |                   | ivennum item correspor                 | iue a pe | squisa.     |          |    |
|                         | •                 |                                        |          |             |          | P  |
|                         | Nome:             | Baleias_2008                           |          |             | Create   |    |
|                         | Tipo:             | Distance Projects (*.dst)              |          | •           | Cancelar |    |
|                         | 🔲 Save thi        | s folder as the default for Distance p | rojects  |             |          |    |
|                         | _                 |                                        | -        | _           | -        |    |
|                         |                   |                                        |          |             |          |    |

#### Leia o tutorial inicial



#### Defina as características do estudo



\*\*\* A outra opção ("Double observer") refere-se a observadores independentes e não ao número de observadores

#### Defina as unidades utilizadas

| Please specify the measuremen                                          | nt units for your data.                                                                                      |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| If you want to analyze the data<br>this wizard (in the Units tab of th | using different units, you can do so after completing<br>ne Data Filter). Click 'Help' for more information. |
|                                                                        | Units of original measurements                                                                               |
| Distance:                                                              | Meter 👻                                                                                                      |
| Transect                                                               | Kilometer 🗨                                                                                                  |
| Area:                                                                  | Square kilometer                                                                                             |
| aircraft ideally suited to aerial line                                 | Distance intervals<br>marked on wing stru                                                                    |

#### Vamos importar uma tabelas de dados



#### Escolha o arquivo



#### Configure a tabela

#### Primeira linha é cabeçalho



#### Defina o que cada coluna significa

| Market Columns In teach columns<br>Shortcuts<br>Columns<br>Columns<br>First row<br>Delimiter: | ta Wizard - S<br>you tell Dista<br>he Distance o<br>, and choose<br>are in the sar<br>contains laye | Step 5: Data<br>nce which col<br>database. To<br>from the list. (<br>me order as th<br>r names and f<br>kample: Regio | File Structure<br>umns in your d<br>do this, click o<br>Click Help for n<br>ey will appear i<br>ield names of a<br>n*Area | lata file corresp<br>on the layer nar<br>nore informatio<br>in the data she<br>each column | oond with which<br>me and field nar<br>n.<br>eet Gri<br>Rd<br>Cd | i fields<br>ne of<br>id size<br>ows: 342<br>olumns: 6 |          |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|----------|
| Layer name:                                                                                   | Region                                                                                              | Region                                                                                                                | Line trans                                                                                                                | Line trans                                                                                 | Observation                                                      | Observation                                           | 1        |
| Field name:                                                                                   | Label                                                                                               | Area                                                                                                                  | Label                                                                                                                     | Line length                                                                                | Perp distance                                                    | Cluster size                                          |          |
| Field type:                                                                                   | Label                                                                                               | Decimal                                                                                                               | Label                                                                                                                     | Decimal                                                                                    | Decimal                                                          | Decimal                                               |          |
|                                                                                               | Bloco                                                                                               | Area-km2                                                                                                              | Transect                                                                                                                  | Compr-km                                                                                   | Dist-m                                                           | Grupo 4                                               | <u>~</u> |
| 1                                                                                             | A                                                                                                   | 10181                                                                                                                 | 30                                                                                                                        | 78.045                                                                                     |                                                                  |                                                       |          |
| 2                                                                                             | A                                                                                                   | 10181                                                                                                                 | 31                                                                                                                        | 27.225                                                                                     |                                                                  |                                                       |          |
| 3                                                                                             | A                                                                                                   | 10181                                                                                                                 | 32                                                                                                                        | 56.758                                                                                     |                                                                  |                                                       |          |
| 4                                                                                             | A                                                                                                   | 10181                                                                                                                 | 33                                                                                                                        | 22.029                                                                                     | 2102.479254                                                      | 1                                                     |          |
| 5                                                                                             | A                                                                                                   | 10181                                                                                                                 | 34                                                                                                                        | 74.157                                                                                     | 2102.479254                                                      | 2                                                     |          |
| 6                                                                                             | A                                                                                                   | 10181                                                                                                                 | 34                                                                                                                        | 74.157                                                                                     | 914.9099807                                                      | 1                                                     |          |
| 7                                                                                             | A                                                                                                   | 10181                                                                                                                 | 35**                                                                                                                      | 16.59                                                                                      |                                                                  |                                                       |          |
| 8                                                                                             | A                                                                                                   | 10181                                                                                                                 | 36                                                                                                                        | 65.21                                                                                      |                                                                  |                                                       |          |
| 9                                                                                             | Α                                                                                                   | 10181                                                                                                                 | 37                                                                                                                        | 35.044                                                                                     | 192.2576396                                                      | 1                                                     |          |
| 10                                                                                            | A                                                                                                   | 10181                                                                                                                 | 37                                                                                                                        | 35.044                                                                                     | 867.4946585                                                      | 2 .                                                   | -        |

### Finish



#### Confira os dados

| Distance - Baleias_2008 - [Project B | rowse | r]               |          |           |              |          |         |               |     |               |              |
|--------------------------------------|-------|------------------|----------|-----------|--------------|----------|---------|---------------|-----|---------------|--------------|
| <u> </u>                             | ndow  | <u>H</u> elp     |          |           |              |          |         |               |     |               |              |
| 2 🍝 🛛 📾 📾 🛢 🛛 🌌                      |       |                  |          |           |              |          |         |               |     |               |              |
| 💐 Data                               | Ìß    | 🛛 Maps           |          |           |              | 1        | Desigr  | IS            |     | ] 6           | 🔥 Surveys    |
| 🔟 🔲   🚯   🐺 💘                        | 1a    |                  |          |           |              |          |         |               |     |               |              |
| Data layers                          | Cont  | ents of Observat | ion laye | er 'Obsei | rvation' and | all fiel | ds from | higher layers |     |               |              |
| 🖃 🔇 Study area                       |       | Study area       |          | Regi      | on           |          | Line tr | ansect        |     | Observatio    | n            |
| 🖻 📲 Region                           | ID    | Label            | ID       | Label     | Area         | ID       | Label   | Line length   | ID  | Perp distance | Cluster size |
| 🖻 🥢 Line transect                    | ID    | Label            | ID       | Label     | Decimal      | ID       | Label   | Decimal       | ID  | Decimal       | Decimal      |
| 🔤 💏 Observation                      | n/a   | n/a              | n/a      | n/a       | km2          | n/a      | n/a     | km            | n/a | m             | [None]       |
|                                      | Int   | Int              | Int      | Int       | Int          | Int      | Int     | Int           | Int | Int           | Int          |
|                                      |       |                  |          |           |              | 1        | 30      | 78.045        |     |               |              |
| <                                    |       |                  |          |           |              | 2        | 31      | 27.225        |     |               |              |
| 7                                    |       |                  |          |           |              | 3        | 32      | 56.758        |     |               |              |
|                                      |       |                  |          |           |              | - 4      | 33      | 22.029        | 1   | 2102.479254   | 1            |
|                                      |       |                  |          |           |              | Б        | 24      | 74 157        | 2   | 2102.479254   | 2            |
|                                      |       |                  |          |           |              | J        | 34      | 74.157        | 3   | 914.9099807   | 1            |
|                                      |       |                  |          |           |              | 6        | 35**    | 16.59         |     |               |              |
| -                                    |       |                  |          |           |              | - 7      | 36      | 65.21         |     |               |              |
|                                      |       |                  |          |           |              |          | 27      | 25.044        | - 4 | 192.2576396   | 1            |
|                                      |       |                  |          |           |              | 0        | 57      | 33.044        | 5   | 867.4946585   | 2            |
|                                      |       |                  |          |           |              | 9        | 38      | 75.958        | 6   | 411.2207531   | 1            |
|                                      |       |                  |          |           |              | 10       | 39      | 16.524        | - 7 | 475.5732862   | 2            |
|                                      |       |                  |          |           |              |          |         |               | 8   | 1089.193922   | 2            |
|                                      |       |                  |          |           |              |          | 40      | E7 001        | 9   | 1242.772919   | 1            |
|                                      |       | D L              | 1        | A         | 10181        | 11       | 40      | 57.981        | 10  | 475.5732862   | 1            |
|                                      | 1 1   | Baleias_2008     |          |           |              |          |         |               | 11  | 34.99971034   | 1            |
|                                      |       |                  |          |           |              | 12       | 41      | 14.195        |     |               |              |
|                                      |       |                  |          |           |              | 13       | 42      | 62.747        | 12  | 169.6719747   | 1            |
|                                      |       |                  |          |           |              | 14       | 43      | 18.752        |     |               |              |
|                                      |       |                  |          |           |              |          |         |               | 13  | 1566.641826   | 2            |
|                                      |       |                  |          |           |              | 15       | 44      | 55.761        | 14  | 1566.641826   | 2            |
|                                      |       |                  |          |           |              |          |         |               | 15  | 4762.121863   | 2            |
|                                      |       |                  |          |           |              | 16       | 45      | 20.248        | 16  | 2102.479254   | 2            |
|                                      |       |                  |          |           |              | 17       | 46      | 57.368        | 17  | 289.4724837   | 1            |
|                                      |       |                  |          |           |              |          |         |               | 18  | 1442.381466   | 1            |
|                                      |       |                  |          |           |              |          |         |               | 19  | 867.4946585   | 1            |
|                                      |       |                  |          |           |              | 18       | 47      | 31,614        | 20  | 2369.418118   | 1            |
|                                      |       |                  |          |           |              |          |         |               | 21  | 1161 30901    | 1            |

#### Vamos analisar



#### Tabela de modelos



#### Definir o filtro de dados

| 🖉 Distance                            | 2 - Baleias_2008 - [Analysis 1: [New Analysis] Set: [Set 1]]                     |                           | x       |
|---------------------------------------|----------------------------------------------------------------------------------|---------------------------|---------|
| 🔤 <u>F</u> ile                        | <u>V</u> iew <u>T</u> ools <u>A</u> nalysis - Inputs <u>W</u> indow <u>H</u> elp | _ é                       | s ×     |
| Æ 🗳                                   |                                                                                  |                           |         |
| Analysis<br>Name:<br>Created:<br>Run: | New Analysis           :         28/10/2013 21:50:49                             | <u>B</u> un               |         |
| Survey                                |                                                                                  |                           | Inpu    |
| Set 1                                 | ▼ [1] New Survey                                                                 | <u>D</u> etails           | ts      |
| Data filter-                          |                                                                                  |                           |         |
| 1 Dei                                 | fault Data Filter                                                                | Properties                | Log     |
| 1 De                                  | Fault Model Definition                                                           | Properties<br><u>N</u> ew | Results |
| comments                              |                                                                                  |                           |         |
|                                       |                                                                                  |                           |         |

#### Filtro dos dados

| Data Filter Properties: [Default Data Filter]                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| D <u>a</u> ta selection Intervals Iruncation Units                                                                                                   |
| Truncation of exact distance measurements                                                                                                            |
| Right truncation         Image: Right truncate at largest observed distance                                                                          |
| Discard the largest     percent of distances                                                                                                         |
| C Discard all observations beyond 0                                                                                                                  |
| Left truncation                                                                                                                                      |
| No left truncation                                                                                                                                   |
| C Discard all observations within 0                                                                                                                  |
| Truncation for cluster size estimation (where required)<br>Right truncation<br>© Same as that specified above<br>© Discard all observations beyond 0 |
| Defaults Name: Default Data Filter OK Cancel                                                                                                         |

#### Aqui você poderá:

- Truncar os dados à direita e/ou à esquerda
- Truncar pelo tamanho de grupo
- Dividir as distâncias em intervalos (dados agrupados)
- Manter as distâncias como foram coletadas (não agrupadas)

#### Definição do modelo

| Distance - Baleias_2008 - [Analysis 1: [New Analysis]                            | et: [Set 1]]     |                     |
|----------------------------------------------------------------------------------|------------------|---------------------|
| <u>F</u> ile <u>V</u> iew <u>T</u> ools <u>A</u> nalysis - Inputs <u>W</u> indow | Help             |                     |
| 2 🍝 🖳 💼 🕮 🗉 🌌                                                                    |                  |                     |
| Analysis<br>Name: New Analysis<br>Created: 28/10/2013 21:50:49                   |                  | <u>B</u> un         |
| Run:<br>Surveu                                                                   |                  | ə                   |
| Set 1                                                                            | ▼ [1] New Survey | Details             |
| Data filter                                                                      |                  |                     |
| 1 Default Data Filter Model definition                                           |                  | Properties ]<br>New |
| 1 Default Model Definition                                                       |                  | Properties<br>New   |
|                                                                                  |                  | <u>م</u>            |
|                                                                                  |                  |                     |

#### Defina as funções de detecção

| Model Definition Properties: [Default Model Definition]             |  |
|---------------------------------------------------------------------|--|
| Analysis Engine: CDS - Conventional distance sampling               |  |
| Estimate Detection function Cluster size Multipliers Variance Misc. |  |
| Models Adjustment terms Constraints Diagnostics                     |  |
| Detection function models                                           |  |
| Model Key function Series expansion 🛨                               |  |
| 1 Half-normal Cosine                                                |  |
|                                                                     |  |
|                                                                     |  |
| Select among multiple models using AIC                              |  |
|                                                                     |  |
|                                                                     |  |
|                                                                     |  |
|                                                                     |  |
|                                                                     |  |
|                                                                     |  |
|                                                                     |  |
| Defaulta Name: Default Model Definition OK Canad                    |  |
|                                                                     |  |
|                                                                     |  |

#### Possíveis funções de detecção



Uniforme Uniforme Meia-normal Meia-normal Taxa de risco Taxa de risco Cosseno Polinomial simples Cosseno Polinomial hermite Cosseno Polinomial simples

#### Defina o estimador da variância

| Model Definition Properties: [Default Model Definition]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Analysis Engine: CDS - Conventional distance sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Estimate Detection function Cluster size Multipliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Analutic variance estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Encounter rate variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Estimate variance empirically     Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C Assume distribution of observations is Poisson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| C Assume distribution is Poisson, with overdispersion factor 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Bootstrap variance estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Select non-parametric bootstrap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Levels of resampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Resample samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Resample observations within samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Number of resemples: Loop Seed: @ from sustem clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| C preset to n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Bootstrap statistics file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| File name: C:\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\User |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Defaults Name: Default Model Definition <u>DK</u> Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

#### Corra este modelo

| Distance - I                          | Baleias_2008 - [Analysis 1: [New Analysis] Set: [Set 1]]                | ×       |
|---------------------------------------|-------------------------------------------------------------------------|---------|
| 🔟 <u>F</u> ile <u>V</u> i             | iew <u>T</u> ools <u>A</u> nalysis - Inputs <u>W</u> indow <u>H</u> elp | _ 8 ×   |
| 4 🗳 🖉                                 |                                                                         |         |
| Analysis<br>Name:<br>Created:<br>Run: | New Analysis         Bun           28/10/2013 21:50:49                  | ]       |
| Survey                                |                                                                         | n       |
| Set 1                                 | ▼ [1] New Survey<br>▼ Details                                           | ្រី     |
| Data filter                           | It Data Filter                                                          |         |
|                                       | Ecoperties                                                              | Log     |
| Model definition                      | on                                                                      | _       |
| 1 Defau                               | It Model Definition                                                     | Results |
| ommeries                              |                                                                         | *       |
|                                       |                                                                         |         |

#### Vamos aos resultados

| 👷 Distance - Baleias_2008 - [Analysis 1: [New Analysis] Set: [Set 1]]                                                                                                  |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Eile <u>V</u> iew Iools <u>A</u> nalysis - Log <u>W</u> indow <u>H</u> elp                                                                                             | _ 8 × |
|                                                                                                                                                                        |       |
| Initializing                                                                                                                                                           |       |
| Making Data File                                                                                                                                                       |       |
| Making Data Selection Queries                                                                                                                                          |       |
| making input file                                                                                                                                                      |       |
| C:\PRORA-2\DISTAN-1\eC "C:\PRORRA-2\DISTAN-1\MCDS.exe 0. C:\Users\LEONAR-1\AppData\Local\Temp\dstDBAC.tmp \options 2>C:\Users\LEONAR-1\AppData\Local\Temp\dstDBAB.tmp" |       |
| Start of Analyis Engine Log File                                                                                                                                       | 5     |
| This is mcds.exe version 6.0.4                                                                                                                                         | 2     |
| Options;                                                                                                                                                               | l Its |
| Type=Line;                                                                                                                                                             |       |
| Length /Measure='Kilometer';                                                                                                                                           | =     |
| Distance=Perp /Measure='Meter';                                                                                                                                        |       |
| <pre>Area /Units='Square kilometer';</pre>                                                                                                                             |       |
| Object=Cluster;                                                                                                                                                        |       |
| Srl;                                                                                                                                                                   |       |
| Joedenadel -                                                                                                                                                           |       |
| Maxterma=5:                                                                                                                                                            |       |
| Confidence=95;                                                                                                                                                         |       |
| Print=Selection;                                                                                                                                                       |       |
| End;                                                                                                                                                                   |       |
| Data /Structure=Flat;                                                                                                                                                  |       |
| Fields=STR_LABEL, STR_AREA, SMP_LABEL, SMP_EFFORT, DISTANCE, SIZE;                                                                                                     | 0     |
| Infile=C:\Users\LEONAR~1\AppData\Local\Temp\dstDB2D.tmp /NoEcho;                                                                                                       | 9     |
| Data will be input from file - []APPDATA\LOCAL\TEMP\DSTDB2D.TMP                                                                                                        |       |
| End;                                                                                                                                                                   |       |
| Dataset has been stored.                                                                                                                                               |       |
| Distance:                                                                                                                                                              |       |
| Density=All;                                                                                                                                                           |       |
| Encounter=All;                                                                                                                                                         |       |
| Detection=All;                                                                                                                                                         |       |
| Size=All;                                                                                                                                                              |       |
| Estimator /Key=HN /Adjust=CO /Criterion=AIC;                                                                                                                           |       |
| Log messages - 7 warnings, 0 errors                                                                                                                                    |       |
| *** Warning: Parameters are being constrained to obtain monotonicity, **                                                                                               | L I   |
| <sup>44</sup> Warning: Parameters are being constrained to obtain monotonicity. <sup>44</sup>                                                                          | e s   |
| Warning, Faintieters are being constained to obtain monotonicity.                                                                                                      |       |
| ** Warning, some parameters ate voly ing in some ALC. Hoosing one of them at random, **                                                                                | 0     |
| ** Warning: Parameters are being constrained to obtain monotonicity. **                                                                                                | -     |
| ** Warning: Size bias adjustment has increased expected cluster size. **                                                                                               |       |

#### Função de detecção escolhida pelo AIC

| Distance - Baleias_2008 - [Analysis 1: [New Analysis] Set: [Set 1]]                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>File View T</u> ools <u>A</u> nalysis - Results <u>W</u> indow <u>H</u> elp                                                                                         |
| 2 🗳 🖉 🚳 🛢 🗶                                                                                                                                                            |
| Detection Fct/Global/Model Fitting                                                                                                                                     |
| Effort : 4710.280                                                                                                                                                      |
| # samples : 80                                                                                                                                                         |
| Width : 19077.56                                                                                                                                                       |
| # observations: 308                                                                                                                                                    |
| <pre>Model Selection<br/><br/>Minimum AIC = 5108.446<br/>Estimator chosen based on minimum AIC :<br/>Model<br/>Hazard Rate key, k(y) = 1 - Exp(-(y/A(1))**-A(2))</pre> |
|                                                                                                                                                                        |

## Probabilidade de detecção e largura efetivamente amostrada

|                                          | Distance - Baleias_2008 - [Analysis 1: [New Analysis] Set: [Set 1]] |                          |                   |             |             |  |  |  |
|------------------------------------------|---------------------------------------------------------------------|--------------------------|-------------------|-------------|-------------|--|--|--|
| <u> </u>                                 | / <u>T</u> ools <u>A</u> naly                                       | sis - Results <u>W</u> i | ndow <u>H</u> elp |             |             |  |  |  |
| 街 🗳 🖉                                    | 🙆 🕮 🛯 🛛                                                             | 2                        |                   |             |             |  |  |  |
| Detection Fct/Global/Parameter Estimates |                                                                     |                          |                   |             |             |  |  |  |
| ,<br>[                                   |                                                                     |                          |                   |             |             |  |  |  |
|                                          |                                                                     |                          |                   |             |             |  |  |  |
| Effort                                   | : 4710.                                                             | 280                      |                   |             |             |  |  |  |
| <pre># samples</pre>                     | : 80                                                                |                          |                   |             |             |  |  |  |
| Width                                    | : 19077                                                             | .56                      |                   |             |             |  |  |  |
| # observatio                             | ons: 308                                                            |                          |                   |             |             |  |  |  |
| Model                                    |                                                                     |                          |                   |             |             |  |  |  |
| Hazard R                                 | ate key, k(y)                                                       | = 1 - Exp(-(             | y/A(1))**-A(2))   |             |             |  |  |  |
|                                          |                                                                     |                          |                   |             |             |  |  |  |
|                                          | Doint                                                               | Standard                 | Percent Coef      | 95 Dor      | cent        |  |  |  |
| Parameter                                | Estimate                                                            | Error                    | of Variation      | Confidenc   | e Interval  |  |  |  |
|                                          |                                                                     |                          |                   |             |             |  |  |  |
| A(1)                                     | 1577.                                                               | 113.0                    |                   |             |             |  |  |  |
| A(2)                                     | 2.897                                                               | 0.2139                   |                   |             |             |  |  |  |
| I(0)                                     | 0.462518-03                                                         | 0.250428-04              | 5.41              | 0.41580E-03 | 0.514478-03 |  |  |  |
| ESW                                      | 2162 1                                                              | 117 06                   | 5.41              | 1943 7      | 2405 0      |  |  |  |
|                                          |                                                                     |                          |                   |             |             |  |  |  |
|                                          |                                                                     |                          |                   |             |             |  |  |  |
|                                          |                                                                     |                          |                   |             |             |  |  |  |
| Sampling Co:                             | rrelatio                                                            | mated Par                | ameters           |             |             |  |  |  |
|                                          |                                                                     |                          |                   |             |             |  |  |  |
|                                          |                                                                     |                          |                   |             |             |  |  |  |
| A( :                                     | 1) A(2)                                                             |                          |                   |             |             |  |  |  |
| A(1) 1.00                                | 1) A(2)<br>0 0.690                                                  |                          |                   |             |             |  |  |  |
| A(1)<br>A(1) 1.00<br>A(2) 0.69           | 1) A(2)<br>0 0.690<br>0 1.000                                       | $\backslash \rangle$     | •                 |             |             |  |  |  |
| A( 1)<br>A( 1) 1.00<br>A( 2) 0.69        | 1) A(2)<br>0 0.690<br>0 1.000                                       | $\bigtriangledown$       | •                 |             |             |  |  |  |
| A(1)<br>A(1) 1.00<br>A(2) 0.69           | 1) A(2)<br>0 0.690<br>0 1.000                                       | $\backslash \rangle$     | •                 |             |             |  |  |  |

### Q-Q plot



Mostra um bom ajuste do modelo aos dados

#### Testes de bom ajuste

👷 Distance - Baleias\_2008 - [Analysis 1: [New Analysis] Set: [Set 1]] File View Tools Analysis - Results Window Help 街 💣 📓 闇 💈 🌋 Detection Fct/Global/K-S GOF Test Kolmogorov-Smirnov test = 0.0534 p = 0.3430 Dn Cramer-von Mises family tests W-sq (uniform weighting) = 0.2046 0.200 < p <= 0.300 Relevant critical values: W-sg crit(alpha=0.300) = 0.1841 W-sq crit(alpha=0.200) = 0.2411 C-sq (cosine weighting) = 0.1561 0.200 < p <= 0.300 Relevant critical values: C-sq crit(alpha=0.300) = 0.1218 C-sq crit(alpha=0.200) = 0.1613

#### Curva de detecção



#### Outro teste de bom ajuste (GOF)

Distance - Baleias\_2008 - [Analysis 1: [New Analysis] Set: [Set 1]]

<u>File View Tools Analysis - Results Window Help</u>

4) 🗳 🖉 📾 🖉 🛯 🌋

Detection Fct/Global/Chi-sq GOF Test 1

| Cell                      | Cut                                              | ;                                         | Observed                             | Expected                            | Chi-square                    |
|---------------------------|--------------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------|-------------------------------|
| i                         | Poir                                             | its                                       | Values                               | Values                              | Values                        |
| 1                         | 0.000                                            | 0.173E+04                                 | 221                                  | 223.00                              | 0.018                         |
| 2                         | 0.173E+04                                        | 0.347E+04                                 | 60                                   | 60.02                               | 0.000                         |
| 3                         | 0.347E+04                                        | 0.520E+04                                 | 19                                   | 13.80                               | 1,963                         |
| 4                         | 0.520E+04                                        | 0.694E+04                                 | 4                                    | 5.12                                | 0.244                         |
| 5                         | 0.694E+04                                        | 0.867E+04                                 | 0                                    | 2.45                                | 2.448                         |
| 6                         | 0.867E+04                                        | 0.104E+05                                 | 3                                    | 1.36                                | 1.972                         |
| 7                         | 0.104E+05                                        | 0.121E+05                                 | 0                                    | 0.84                                | 0.836                         |
| 8                         | 0.121E+05                                        | 0.139E+05                                 | 0                                    | 0.55                                | 0.551                         |
| 9                         | 0.139E+05                                        | 0.156E+05                                 | 0                                    | 0.38                                | 0.383                         |
| 10                        | 0.156E+05                                        | 0.173E+05                                 | 0                                    | 0.28                                | 0.277                         |
| 11                        | 0.173E+05                                        | 0.191E+05                                 | 1                                    | 0.21                                | 3.031                         |
| The pr<br>judge<br>Goodne | ogram has lin<br>the necessity<br>ess of Fit Tes | nited capab<br>y for pooli:<br>sting with | ility for<br>ng and if<br>some Pooli | pooling. The<br>necessary, do<br>ng | user should<br>pooling by han |
| Cell                      | Cut                                              |                                           | Observed                             | Expected                            | Chi-square                    |
| i                         | Poir                                             | its                                       | Values                               | Values                              | Values                        |
| 1                         | 0.000                                            | 0 1738+04                                 | 221                                  | 223 00                              | 0 018                         |
| 2                         | 0.173E+04                                        | 0.347E+04                                 | 60                                   | 60.02                               | 0.000                         |
| 3                         | 0.347E+04                                        | 0.520E+04                                 | 19                                   | 13.80                               | 1.963                         |
| 4                         | 0.520E+04                                        | 0.694E+04                                 | 4                                    | 5.12                                | 0.244                         |
| 5                         | 0.694E+04                                        | 0.867E+04                                 | 0                                    | 2.45                                | 2.448                         |
| 6                         | 0.867E+04                                        | 0.104E+05                                 | 3                                    | 1.36                                | 1.972                         |
| 7                         | 0.104E+05                                        | 0.191E+05                                 | 1                                    | 2.26                                | 0.699                         |
| Total                     | Chi-square va                                    | alue =                                    | 7.3441 De                            | grees of Free                       | dom = 4.00                    |

#### Estimativas

| <u>File</u> <u>V</u> iev                                                                                 | v <u>T</u> ools <u>A</u> naly                                                                                                             | /sis - Results <u>W</u> i                                                                                              | ndow <u>H</u> elp                                                |                                                                       |                                                                     |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|
| 🖏 💣 📓                                                                                                    | 8 8 1 2                                                                                                                                   | 2                                                                                                                      |                                                                  |                                                                       |                                                                     |
| Density Estima                                                                                           | tes/Global                                                                                                                                |                                                                                                                        |                                                                  |                                                                       |                                                                     |
|                                                                                                          |                                                                                                                                           |                                                                                                                        |                                                                  |                                                                       |                                                                     |
| Effort                                                                                                   | : 4710.                                                                                                                                   | 280                                                                                                                    |                                                                  |                                                                       |                                                                     |
| <pre># samples</pre>                                                                                     | : 80                                                                                                                                      |                                                                                                                        |                                                                  |                                                                       |                                                                     |
| Width                                                                                                    | : 19077                                                                                                                                   | .56                                                                                                                    |                                                                  |                                                                       |                                                                     |
| <pre># observati</pre>                                                                                   | ons: 308                                                                                                                                  |                                                                                                                        |                                                                  |                                                                       |                                                                     |
|                                                                                                          |                                                                                                                                           |                                                                                                                        |                                                                  |                                                                       |                                                                     |
| Model                                                                                                    |                                                                                                                                           |                                                                                                                        |                                                                  |                                                                       |                                                                     |
| Hazard R                                                                                                 | ate key, k(y)                                                                                                                             | = 1 - Exp(-(                                                                                                           | y/A(1))**-A(2))                                                  |                                                                       |                                                                     |
|                                                                                                          |                                                                                                                                           |                                                                                                                        |                                                                  |                                                                       |                                                                     |
|                                                                                                          |                                                                                                                                           |                                                                                                                        |                                                                  |                                                                       |                                                                     |
|                                                                                                          | Point                                                                                                                                     | Standard                                                                                                               | Dercent Coef                                                     | 958 Da                                                                | rcent                                                               |
| Parameter                                                                                                | Point<br>Estimate                                                                                                                         | Standard<br>Error                                                                                                      | Percent Coef.<br>of Variation                                    | 95% Pe<br>Confidenc                                                   | rcent<br>e Interval                                                 |
| Parameter                                                                                                | Point<br>Estimate                                                                                                                         | Standard<br>Error                                                                                                      | Percent Coef.<br>of Variation                                    | 95% Pe<br>Confidenc                                                   | rcent<br>e Interval                                                 |
| Parameter<br><br>DS                                                                                      | Point<br>Estimate<br>0.15122E-01                                                                                                          | Standard<br>Error<br>0.17761E-02                                                                                       | Percent Coef.<br>of Variation<br><br>11.75                       | 95% Pe<br>Confidenc<br>0.11969E-01                                    | ercent<br>e Interval<br><br>0.19105E-0                              |
| Parameter<br><br>DS<br>E(S)                                                                              | Point<br>Estimate<br>0.15122E-01<br>1.6488                                                                                                | Standard<br>Error<br>0.17761E-02<br>0.43698E-01                                                                        | Percent Coef.<br>of Variation<br>11.75<br>2.65                   | 95% Pe<br>Confidenc<br>0.11969E-01<br>1.5650                          | e Interval<br>0.19105E-0<br>1.7371                                  |
| Parameter<br>DS<br>E(S)<br>D                                                                             | Point<br>Estimate<br>0.15122E-01<br>1.6488<br>0.24933E-01                                                                                 | Standard<br>Error<br>0.17761E-02<br>0.43698E-01<br>0.30021E-02                                                         | Percent Coef.<br>of Variation<br>11.75<br>2.65<br>12.04          | 95% Pe<br>Confidenc<br>0.11969E-01<br>1.5650<br>0.19628E-01           | e Interval<br>0.19105E-0:<br>1.7371<br>0.31672E-0:                  |
| Parameter<br>DS<br>E(S)<br>D<br>N                                                                        | Point<br>Estimate<br>0.15122E-01<br>1.6488<br>0.24933E-01<br>3989.0                                                                       | Standard<br>Error<br>0.17761E-02<br>0.43698E-01<br>0.30021E-02<br>480.30                                               | Percent Coef.<br>of Variation<br>11.75<br>2.65<br>12.04<br>12.04 | 95% Pe<br>Confidenc<br>0.11969E-01<br>1.5650<br>0.19628E-01<br>3140.0 | e Interval<br>0.19105E-0<br>1.7371<br>0.31672E-0<br>5068.0          |
| Parameter<br>DS<br>E(S)<br>D<br>N                                                                        | Point<br>Estimate<br>0.15122E-01<br>1.6488<br>0.24933E-01<br>3989.0                                                                       | Standard<br>Error<br>0.17761E-02<br>0.43698E-01<br>0.30021E-02<br>480.30                                               | Percent Coef.<br>of Variation<br>11.75<br>2.65<br>12.04<br>12.04 | 95% Pe<br>Confidenc<br>0.11969E-01<br>1.5650<br>0.19628E-01<br>3140.0 | e Interval<br>0.19105E-0<br>1.7371<br>0.31672E-0<br>5068.0          |
| Parameter<br>DS<br>E(S)<br>D<br>N                                                                        | Point<br>Estimate<br>0.15122E-01<br>1.6488<br>0.24933E-01<br>3989.0                                                                       | Standard<br>Error<br>0.17761E-02<br>0.43698E-01<br>0.30021E-02<br>480.30                                               | Percent Coef.<br>of Variation<br>11.75<br>2.65<br>12.04<br>12.04 | 95% Pe<br>Confidenc<br>0.11969E-01<br>1.5650<br>0.19628E-01<br>3140.0 | rcent<br>e Interval<br>0.19105E-0<br>1.7371<br>0.31672E-0<br>5068.0 |
| Parameter<br>DS<br>E(S)<br>N<br>Measurement                                                              | Point<br>Estimate<br>0.15122E-01<br>1.6488<br>0.24933E-01<br>3989.0<br>                                                                   | Standard<br>Error<br>0.17761E-02<br>0.43698E-01<br>0.30021E-02<br>480.30                                               | Percent Coef.<br>of Variation<br>11.75<br>2.65<br>12.04<br>12.04 | 95% Pe<br>Confidenc<br>0.11969E-01<br>1.5650<br>0.19628E-01<br>3140.0 | ercent<br>0.19105E-0<br>1.7371<br>0.31672E-0<br>5068.0              |
| Parameter<br>DS<br>E(S)<br>D<br>N<br><br>Measurement                                                     | Point<br>Estimate<br>0.15122E-01<br>1.6488<br>0.24933E-01<br>3989.0<br>                                                                   | Standard<br>Error<br>0.17761E-02<br>0.43698E-01<br>0.30021E-02<br>480.30                                               | Percent Coef.<br>of Variation<br>11.75<br>2.65<br>12.04<br>12.04 | 95% Pe<br>Confidenc<br>0.11969E-01<br>1.5650<br>0.19628E-01<br>3140.0 | e Interval<br>0.19105E-0<br>1.7371<br>0.31672E-0<br>5068.0          |
| Parameter<br>DS<br>E(S)<br>D<br>N<br>Measurement<br>Density: Nu<br>ESW: me                               | Point<br>Estimate<br>0.15122E-01<br>1.6488<br>0.24933E-01<br>3989.0<br><br>Units<br>mbers/Sq. kil                                         | Standard<br>Error<br>0.17761E-02<br>0.43698E-01<br>0.30021E-02<br>480.30<br>                                           | Percent Coef.<br>of Variation<br>11.75<br>2.65<br>12.04<br>12.04 | 95% Pe<br>Confidenc<br>0.11969E-01<br>1.5650<br>0.19628E-01<br>3140.0 | e Interval<br>0.19105E-0<br>1.7371<br>0.31672E-0<br>5068.0          |
| Parameter<br>DS<br>E(S)<br>D<br>N<br>Measurement<br>Density: Nu<br>ESW: me                               | Point<br>Estimate<br>0.15122E-01<br>1.6488<br>0.24933E-01<br>3989.0<br><br>Units<br>mbers/Sq. kil<br>ters                                 | Standard<br>Error<br>0.17761E-02<br>0.43698E-01<br>0.30021E-02<br>480.30<br>                                           | Percent Coef.<br>of Variation<br>11.75<br>2.65<br>12.04<br>12.04 | 95% Pe<br>Confidenc<br>0.11969E-01<br>1.5650<br>0.19628E-01<br>3140.0 | ercent<br>0.19105E-0<br>1.7371<br>0.31672E-0<br>5068.0              |
| Parameter<br>DS<br>E(S)<br>D<br>N<br>Measurement<br>Density: Nu<br>ESW: me<br>Component P                | Point<br>Estimate<br>0.15122E-01<br>1.6488<br>0.24933E-01<br>3989.0<br><br>Units<br>mbers/Sq. kil<br>ters                                 | Standard<br>Error<br>0.17761E-02<br>0.43698E-01<br>0.30021E-02<br>480.30<br>                                           | Percent Coef.<br>of Variation<br>11.75<br>2.65<br>12.04<br>12.04 | 95% Pe<br>Confidenc<br>0.11969E-01<br>1.5650<br>0.19628E-01<br>3140.0 | rcent<br>0.19105E-0<br>1.7371<br>0.31672E-0<br>5068.0               |
| Parameter<br>DS<br>E(S)<br>D<br>N<br>Measurement<br>Density: Nu<br>ESW: me<br>Component P                | Point<br>Estimate<br>0.15122E-01<br>1.6488<br>0.24933E-01<br>3989.0<br>                                                                   | Standard<br>Error<br>0.17761E-02<br>0.43698E-01<br>0.30021E-02<br>480.30<br>                                           | Percent Coef.<br>of Variation<br>11.75<br>2.65<br>12.04<br>12.04 | 95% Pe<br>Confidenc<br>0.11969E-01<br>1.5650<br>0.19628E-01<br>3140.0 | ercent<br>0.19105E-0<br>1.7371<br>0.31672E-0<br>5068.0              |
| Parameter<br>DS<br>E(S)<br>D<br>N<br>Measurement<br>Density: Nu<br>ESW: me<br>Component P<br>Detection p | Point<br>Estimate<br>0.15122E-01<br>1.6488<br>0.24933E-01<br>3989.0<br><br>Units<br>mbers/Sq. kil<br>ters<br>ercentages of<br>probability | Standard<br>Error<br>0.17761E-02<br>0.43698E-01<br>0.30021E-02<br>480.30<br><br>cometers<br>Var(D)<br>: 20.2<br>: 74.9 | Percent Coef.<br>of Variation<br>11.75<br>2.65<br>12.04<br>12.04 | 95% Pe<br>Confidenc<br>0.11969E-01<br>1.5650<br>0.19628E-01<br>3140.0 | ercent<br>0.19105E-0:<br>1.7371<br>0.31672E-0:<br>5068.0            |

#### Nosso primeiro modelo



#### Crie um novo modelo

| K | Dista | ance     | - Bale       | ias_2      | .008 -   | [Proje         | ct Br | rows        | er]   |             |       |         |       |          |    |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |
|---|-------|----------|--------------|------------|----------|----------------|-------|-------------|-------|-------------|-------|---------|-------|----------|----|---------|----------------|-----|--------|----|-------|-------|-----------------|--------|--|--|-------|------|--|
| 8 | E     | ile      | <u>V</u> iew | <u>T</u> o | ols      | <u>A</u> nalys | es    | <u>W</u> in | dow   | <u>H</u> el | р     |         |       |          |    |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |
|   | 2     | <u> </u> | <b>8</b>     | <b>8</b>   | <b>8</b> | 3   2          | 2     |             |       |             |       |         |       | L        | Ζ  |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |
| I | 💐 D   | )ata     |              |            |          |                |       | Ì           | ФМ    | aps         |       |         |       |          |    | Ì       | 📐 Desig        | Ins |        |    |       |       | ) <b>// A</b> s | urveys |  |  | 🧰 Ana | yses |  |
|   | Set:  | Se       | t1           |            |          |                | •     | , 🚢         | . ¥   | ≞           | •     | Analysi | is: 🛔 | <b>X</b> |    |         | <del>8</del> 👼 |     |        |    |       |       |                 |        |  |  |       |      |  |
|   | 9     | id 🌡     | <b>4</b> Ϋ   | Σ <u>β</u> | N        | ame            | 1     | •           | Crea  | lted        |       |         | # p   | arams    | De | lta AIC | AIC            | E   | ESW/ED | R  | D     | D LCL | D UCL           | D CV   |  |  |       |      |  |
|   | 0     | 1        | 1 1          | 1 N        | lew A    | nalysis        | 1     | 28/10       | )/201 | 3 21:5      | 50:49 | 28/*    |       | 2        | 2  | 0.00    | 5108.          | 45  | 2162.  | 10 | 0.025 | 0.020 | 0.032           | 0.120  |  |  |       |      |  |
|   |       | 2        |              | 1 1        | lew A    | nalysis 1      | 1     | 2871        | 0/201 | 3 22:2      | 26:02 |         |       |          |    |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |
|   |       |          |              |            |          |                |       |             |       |             |       |         |       |          |    |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |
|   |       |          |              |            |          |                |       |             |       |             |       |         |       |          |    |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |
|   |       |          |              |            |          |                |       |             |       |             |       |         |       |          |    |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |
|   |       |          |              |            |          |                |       |             |       |             |       |         |       |          |    |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |
|   |       |          |              |            |          |                |       |             |       |             |       |         |       |          |    |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |
|   |       |          |              |            |          |                |       |             |       |             |       |         |       |          |    |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |
|   |       |          |              |            |          |                |       |             |       |             |       |         |       |          |    |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |
|   |       |          |              |            |          |                |       |             |       |             |       |         |       |          |    |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |
|   |       |          |              |            |          |                |       |             |       |             |       |         |       |          |    |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |
|   |       |          |              |            |          |                |       |             |       |             |       |         |       |          |    |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |
|   |       |          |              |            |          |                |       |             |       |             |       |         |       |          |    |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |
|   |       |          |              |            |          |                |       |             |       |             |       |         |       |          |    |         |                |     |        |    |       |       |                 |        |  |  |       |      |  |

# Crie novos filtros e novas definições de modelos

| Distance - Baleias_2008 - [Analysis 1: [New Analysis] Set: [Set 1]] |                             |
|---------------------------------------------------------------------|-----------------------------|
| I File ⊻iew Tools Analysis - Inputs Window Help                     | X                           |
|                                                                     |                             |
| Analysis Name: New Analysis Created: 28/10/2013 21:50:49 Bury       | Bun                         |
| Set 1                                                               | Details                     |
| Data filter                                                         |                             |
|                                                                     | Properties ]<br><u>N</u> ew |
| Model definition                                                    |                             |
|                                                                     | Properties<br>New           |
| Comments                                                            |                             |
|                                                                     |                             |