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Afundamental challenge in conservation biology
involves the development of principles and methods

for the design of nature reserves. Difficult theoretical and
practical issues arise, and ecologists and conservation biol-
ogists have been grappling with these issues at least since
Diamond (1975) and others first proposed a set of geomet-
ric reserve design guidelines nearly 30 years ago (Figure 1;
Kingsland 2002). The planning of a reserve or reserve sys-
tem, such as a wildlife refuge or national park (Figure 2),
depends on the conservation goals for the area in ques-
tion, and involves identifying parcels or patches of habitat
– here called “sites” – to be managed for these purposes.

In recent decades, a variety of decision models and
methodologies have been developed to help conservation
planners select reserve sites. These methods are intended
to identify a reserve system that is “optimal” with respect
to a particular conservation goal, while also responding to
important socioeconomic considerations. Due to an
emphasis on optimality, many of these methods have

employed quantitative approaches from the field of opera-
tions research. Through collaborations among ecologists,
conservation biologists, and operations researchers,
reserve design models have evolved considerably in
response to the recognition of new conservation problems
worldwide.

� Early methods for reserve selection

The first quantitative methods for systematically iden-
tifying “good” reserve sites were developed 20 to 25
years ago in Australia. The goal was to preserve biolog-
ical diversity by protecting all the species, communi-
ties, or other conservation features on a given list.
These methods, which utilized presence/absence data
for species and other features, took two forms. The first
used numerical scoring to rank candidate sites in terms
of multiple criteria such as species richness, rarity, nat-
uralness, and size (Smith and Theberge 1986). An
appropriate subset of reserve sites – usually those with
the highest scores – was then recommended (Purdie et
al. 1986; Bedward et al. 1991). This approach, how-
ever, often required an unreasonably large number of
sites to represent all species or other features, because
the top-ranked sites frequently contained similar sets
of species while missing others; one might need to go
far down the ranked list of sites before all species were
represented. A proposed remedy was complementarity
(Vane-Wright et al. 1991), which held that one should
select sites with minimum overlap in the species they
contain.

The second approach for site selection dealt directly
with the complementarity issue by asking: what is the
minimum number of sites, or minimum total area, neces-
sary to represent all species. This also arose from the
practical need to justify conservation decisions within a
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In a nutshell:
• The challenge of designing nature reserves can be met in part

by the application of mathematical optimization models
• Numerous models for optimal reserve site selection have been

formulated by collaborating ecologists, conservation biolo-
gists, and operations researchers

• Key remaining issues include broadening the use of these
models and integrating dynamic population models within a
spatial optimization framework

• Ultimately, the value of reserve design models lies not in pre-
scribing solutions, but in informing and guiding the planning
and decision-making process
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context of competing land uses and other socioeconomic
pressures (Finkel 1998). An efficient reserve system –
one that removed a minimum of land resources from
other uses – would probably attract broad support. A
variety of iterative procedures, such as those of
Kirkpatrick (1983) and Margules et al. (1988), were
developed for identifying such a “minimum reserve set”.
Scoring was used in these methods as well, but site scores
were adjusted in each iteration to account for those
species represented by sites selected in prior steps. In
each step, the site adding the most as-yet unrepresented
species would be selected. Sites were selected sequen-
tially under this type of “greedy adding” rule, until all
species were represented.

By the mid-1990s, dozens of iterative methods had
been developed for variations of the minimum reserve set
problem, and had been applied in numerous case studies
in Africa, Australia, Europe, and North America (Csuti
et al. 1997; Pressey et al. 1997; Rodrigues and Gaston
2002). Pressey (2002) recounts the historic development
of several lines of research into iterative methods, begin-
ning with Kirkpatrick’s (1983) pioneering work.

� Reserve selection and
mathematical programming

The problem of identifying a minimum
reserve set was subsequently recognized
as the type of problem that can be for-
mulated as an integer program (IP), a
well-known class of mathematical opti-
mization model from operations research
(Possingham et al. 1993; Underhill
1994). The minimum reserve set prob-
lem (known in operations research as
the “set covering problem”) is shown
formulated as an IP model (Panel 1).
Such models are termed “integer pro-
grams” because “yes” or “no” decisions –
in this case, whether to select a site or
not – are represented by 1 and 0.
Solutions to IPs can be found using com-
mercially available linear programming
software that can be run on personal
computers. Integer programming had
actually been applied to reserve selec-
tion several years earlier with the “inte-
ger goal program” model of Cocks and
Baird (1989), but it was the minimum
reserve set IP that firmly established the
link between reserve selection and oper-
ations research.

The minimum reserve set IP was seen
as an improvement over iterative meth-
ods because exact mathematical optima
can be found for the IP. In contrast, the
iterative methods cannot guarantee
optimal solutions. Given the same
species presence/absence data, the IP
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(f)  Reserve shape

(d)  Reserve proximity (ii)

Figure 1. Reserve design guidelines, after Diamond (1975). (a) A large reserve is
better than a small reserve; (b) a single large reserve is better than several small
reserves of the same total area; (c) and (d) reserves that are close together are better
than reserves that are far apart; (e) reserves that are connected by wildlife corridors
are better than unconnected reserves; and (f) a compact (circular) reserve is better
than an elongated reserve.

Panel 1. An integer program formulation for the mini-
mum reserve set problem

The objective (1) is to minimize the total number of sites
selected for the reserve system. The species representation
constraints (2) ensure that, for each species, at least one site is
selected which contains the species in question.The number of
times each species is represented can be increased by changing
the right-hand side of the equation. Statement (3) is a binary
integer requirement for the decision variables.

minimize: � x j (1)
j � J

subject to: � xj > 1 for all i � I(2)
j � Mi

xj = 0 or 1   for all j � J (3)
where:

i, I are the index and set of species, respectively
j , J are the index and set of candidate sites
Mi is the set of candidate sites j that contain species i
xj is a zero-one decision variable: 1 if site j is selected for 

the reserve system, and 0 if site j is not selected

Better               Worse    

(a) Reserve size

(b) Number of reserves

(c) Reserve proximity (i)

(d) Reserve proximity (ii)

(e) Reserve connectivity

(f) Reserve shape
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will find a true minimum reserve set, but the iterative
methods might find a larger-than-minimum set
(Possingham et al. 1993; Underhill 1994). This advan-
tage of IP over iterative methods was tempered by
instances in which very large problems involving hun-
dreds of species and thousands of sites took days to solve
using IP, but were solved (at least approximately) in min-
utes by iterative methods (Pressey et al. 1996). This
dichotomy in the methods – the guarantee of optimality
vs faster solution times – prompted a debate over
whether IP or iterative methods ought to be used.
Recently, Rodrigues and Gaston (2002) and Onal
(2003) have argued in favor of IP. They demonstrated
that state-of-the-art IP solvers run on modern desktop
computers consistently outperform iterative methods for
at least some versions of the minimum reserve set prob-
lem, in terms of both computing time and nearness to
optimality.

Once the minimum reserve set problem had been for-
mulated as an IP, several other related problems were
quickly articulated (ReVelle et al. 2002). The first was the
“maximal covering problem” for reserves, in which the
total area of the reserve is fixed, and the objective is to
maximize the number of species that can be represented
(Camm et al. 1996; Church et al. 1996). Mathematical
programming models were also formulated for problems in
which the presence or absence of a species in a site is not
known with certainty, but can be expressed probabilisti-
cally. These models involve maximizing the expected
number of species represented (Polasky et al. 2000) or
maximizing the number of species represented with a par-
ticular level of reliability (Haight et al. 2000), given a
fixed total reserve area.

Other variations of the minimum reserve set problem
more accurately address the economic aspects of preserv-
ing land. In regions with varying per-unit land costs, min-
imizing total cost, or keeping costs within a budget, may
make more sense than minimizing or limiting total area
(Ando et al. 1998).

� Spatial attributes and optimal reserve design

Efficient reserve systems such as the minimum reserve set
are of interest because conservation resources are often
severely limited. However, efficient reserves have a major
drawback: they may be spatially unsuitable for the species
and other features they are intended to protect.
Depending on how the species and the other features are
distributed in the landscape, optimal solutions to the
minimum reserve set problem may be collections of scat-
tered sites that lack spatial coherence (Figure 3a). The IP
models and iterative methods for the minimum reserve
set problem and its variations give no consideration to
the spatial attributes that are thought to be important for
reserves. Such attributes include reserve size and shape,
the number of reserves created (as opposed to the number
of sites selected), and the proximity and connectivity of
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reserves to each other (Figure 1). These attributes were
originally discussed by Diamond (1975) and others, and
while the pros and cons of Diamond’s particular guide-
lines have been vigorously debated (Margules et al. 1982),
the attributes themselves are inherent aspects of any
reserve design problem.

The spatial properties of a reserve system are important
because they affect habitat quality and ecosystem
processes, such as the ability of individuals to migrate
and to colonize new areas, and ultimately influence
whether or not species survive within the reserve. It is
the long-term persistence of species and other compo-
nents of biological diversity, not their representation in
the short term, that is the real goal of reserves. Thus,
although fragmented systems typical of the minimum
reserve set problem may efficiently represent species at
the outset, they may not promote the long-term survival
of those same species. This is especially true when the
size of individual sites is small relative to habitat needs.
For large mammals, long-term persistence is unlikely in
small, scattered reserves that, over time, become
“islands” within an inhospitable matrix of urbanization
and large-scale agriculture.

Short of preserving everything, there are no easy
answers for designing spatially coherent reserve sys-
tems to protect large numbers of plant and animal

Figure 2. Joshua Tree National Park, California.
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species. In the same way, there is no one-size-fits-all
reserve design model. Any conservation plan must
begin by identifying those components of biodiversity
that are most valued, and those with the greatest need
for protection. This in turn should suggest, on a case-
by-case basis, the particular characteristics needed for
spatial coherence, such as the extent to which individ-
ual sites ought to be aggregated into large, connected
reserves. These spatial characteristics can then, in
principle, be optimized by an appropriate reserve
design model.

In the past several years, new reserve design models
have been developed for this purpose. These models have
as a predecessor the Conservation Options and Decisions
Analysis method (CODA) (Bedward et al. 1992), an iter-
ative procedure for improving the spatial coherence of
the minimum reserve set. Four IP models that have fol-
lowed CODA are summarized below. Each seeks to repre-
sent all species or other conservation features, but each
also delineates a reserve system with improved shape and
connectivity – one that is less fragmented than the mini-
mum reserve set. These models exemplify a larger trend

towards spatial optimization in reserve design (Williams
et al. in press).

Model 1 (Williams and ReVelle 1998)

This model simultaneously identifies a reserve core that
contains all species and delineates a buffer zone that sur-
rounds the core. The objective is to minimize the cost of
the entire reserve (core plus buffer sites). The core/buffer
relationship also promotes connectivity and compactness
in the reserve (Figure 3b).

Model 2 (Nalle et al. 2002)

This model generates a more highly connected and
tightly clustered reserve system (Figure 3c) than would be
expected of the minimum reserve set. Clustering is
achieved by minimizing the sum of distances between all
pairs of selected sites, and connectivity is promoted by
maximizing the number of adjacent pairs of sites selected.
The model was applied to a mountainous coastal region
in California and Oregon.

Figure 3. A comparison of five hypotheti-
cal reserve systems. Each illustrates the type
of system that would probably be generated
by one of five models discussed in the text.
An optimal solution to the minimum reserve
set problem is shown in (a). Here, all species
are represented in a reserve system of 20
widely scattered sites. This is the minimum
number of sites needed to represent all
species. Each of the systems (b) through (e)
contains 30 sites, ten more than the
minimum reserve set. This illustrates that
additional sites are needed to improve spatial
coherence while still representing all species. All species can be represented in a reserve system of 20 widely scattered sites. This is the
minimum number of sites needed to represent all species. (b) The model of Williams and ReVelle (1998) promotes the formation of a
compact and connected reserve, with additional area required for the buffer zone. (c) The model of Nalle et al. (2002) promotes the
formation of a clustered reserve system with many adjacent sites. (d) The model of Onal and Briers (2002) also promotes the formation of
a tightly clustered reserve system, although site adjacencies may be less prevalent than in (c). (e) The model of McDonnell et al. (2002)
promotes the formation of a relatively small number of compact reserves that may be more widely dispersed than in (c) or (d).

(a) (b) (c)

(d) (e)
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Model 3 (Onal and Briers 2002)

This model also creates a tightly clustered reserve system
using two objectives: minimizing the sum of distances
between all pairs of selected sites, and minimizing the
diameter of the reserve system. In an application, pond
sites were identified in Oxfordshire, UK for the protec-
tion of invertebrate species. The resulting reserve systems
(Figure 3d) tended to have a lower spatial dispersion than
the minimum reserve set.

Model 4 (McDonnell et al. 2002)

This model identifies a reserve system (Figure 3e) that is
more compact than the minimum reserve set.
Compactness is achieved by minimizing the total perime-
ter length, which operates in tandem with an objective of
minimizing total area. The model was applied in a case
study to the Northern Territory, Australia.

The ability to achieve better spatial coherence in
reserves through spatial modeling is an important step for-
ward relative to methods of site selection in which spatial
criteria are absent. However, designing reserves that both
represent species and satisfy spatial criteria such as con-
nectivity and compactness is, in fact, largely a surrogate
for finding the particular configuration that best protects
biological diversity in the long term. The extent to which
spatial surrogates actually promote long-term species per-
sistence is currently unknown, due to the long time scales
involved and to the difficulty of performing controlled
studies. Ideally, however, reserve design models would
select sites based not on surrogates, but on the underlying
reasons why spatial attributes are important.

� Population models and optimal reserve design

Ecological regions are systems of sites or patches with
interacting populations that “re-seed” one another over
space and time. Decisions regarding the fate of one site
will affect populations in other, nearby sites. For example,
if site A has a high biodiversity value, but neighboring
sites B and C are removed as sources, the value of A will
be diminished. Multiplied over a large landscape with
thousands of sites and hundreds of species, these interac-
tions and interdependencies become enormously com-
plex. Spatial surrogates may not adequately capture such
complexities.

Characterizing complex dynamics is the purpose of spa-
tially explicit population models (SEPMs), whose history
in ecology may be summarized in terms of three principal
directions. First are the diffusion approaches pioneered by
Skellam’s (1951) landmark paper, and later chronicled in
Okubo (1980). A modern survey of diffusion models can
be found in Okubo and Levin (2001). Second, the
metapopulation approach so relevant to conservation
biology began with the work of Levins (1969, 1970), and
Levin (1974, 1976a, 1976b) provides a bridge between the
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metapopulation and diffusion approaches. Third, individ-
ual-based approaches (DeAngelis and Gross 1992; Pacala
et al. 1996) have attained prominence in recent years due
to the increased capability for high-speed computation
(Levin et al. 1997). As a class of models, SEPMs have also
become recognized as descriptive and predictive tools for
land management and conservation (Dunning et al. 1995;
Kareiva and Wennergren 1995). A current key challenge
in reserve design modeling is to incorporate the dynamic
and interdependent aspects of ecological regions, as cap-
tured by SEPMs, within an optimization framework.

Initial forays using this sort of modeling approach have
already begun along at least two lines. The first involves
embedding population dynamics within spatially and tem-
porally explicit optimization models for site selection.
Models of this type have been developed for maximizing
the future population sizes of one or two target species,
such as black-footed ferrets (Bevers et al. 1997), prairie
dogs (Hof et al. 2002), and hawks and voles (Rothley
2002). A compelling aspect of these models is that site
selection is driven not by spatial surrogates, but by the
dynamic dispersal of animals among sites, so that the con-
figuration of the reserve system results from population
growth rates and patterns of inter-site migration.
Although these models optimize for only one or two
species, application to multiple species seems possible –
either by explicitly modeling the dynamics of many
species or, perhaps more practicably, by modeling a small
number of “umbrella” species.

The second approach is to submit preconfigured reserve
designs to a SEPM, which would, through simulations,
evaluate each design in terms of how it affects the popula-
tions of target species over time. One could ask which
reserve design maximizes species richness at equilibrium or
at a time t in the future. This type of approach has already
been used to predict the persistence of a single species
within a small number of alternative habitat configura-
tions (Adler and Nuernberger 1994; Day and Possingham
1995). However, the real potential of this method lies in
evaluating a large number of alternative reserve systems
for many species. This problem has received little atten-
tion so far, although a recent paper by Chave et al. (2002),
which modeled the impacts of alternative patterns of for-
est fragmentation on plant biodiversity, suggests a direc-
tion for this line of research.

The merging of SEPMs and optimization models for
reserve site selection presents researchers with severe
computational challenges. The first is problem size.
Population models are typically applied to landscapes par-
titioned into 10000 or more sites or cells – often one or
two orders of magnitude more. Reserve design IPs, in con-
trast, tend to reach a computational limit on desktop com-
puters at 10000 or fewer sites due to a combinatorial
“explosion” (n sites implies 2n possible yes/no outcomes).
Thus, finding exact optimal solutions for landscape scales
typical of SEPM simulations may be virtually impossible.
Iterative methods in the form of sophisticated “meta-
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heuristics” (eg Osman and Kelly 1996) offer the most
promise for finding at least approximate solutions to such
large problems.

A second challenge is non-linearity. Temporal relation-
ships between and within populations may be expressible
only through non-linear mathematics. Unfortunately,
non-linearities preclude the use of linear programming-
based methods typically used to solve IPs. Iterative meth-
ods, for which non-linearities pose much less of a barrier,
may also be the best way to tackle non-linear problems.

� The role of optimization models in reserve design

Margules and Pressey (2000) and Pressey and Cowling
(2001) have included reserve selection and design models
within a multi-stage process for systematic conservation
planning. While these authors identify an appropriate
role for optimization models (their term is “algorithms”),
this role deserves further articulation.

Optimization models are primarily tools for decision
support. Their purpose is not to prescribe a course of
action, but rather to provide guidance, information, and
insight to planning and decision making. To this end,
optimization models as analytical tools offer several bene-
fits to reserve planning in addition to finding an “optimal
solution”. First, the model provides a concise, explicit for-
mulation of the problem. The modeled problem can typi-
cally be stated in terms of several algebraic equalities or
inequalities. The minimum reserve set IP, for example, has
just three lines of mathematics (Panel 1). The model may
not perfectly mirror reality, but it is transparent and there-
fore open to criticism and possible improvement.
Although the model’s mathematics may be inaccessible to
non-specialists, its purpose and function can usually be
explained in plain language – and it is the responsibility of
the modeler to do this.

Second, optimization models are highly general, in that
they can be transferred from one setting to another and
from one dataset to another, as indicated above by the
many regional case studies for the minimum reserve set
model. In addition, results are replicable; different users
employing the same model and the same data will obtain
the same results.

However, results that take the form of a single optimal
solution are unlikely to be satisfactory in conservation
planning. Flexibility is needed – being able to compare at
least several reasonable alternatives. This is the third ben-
efit of optimization models: the ability to generate a vari-
ety of alternate optimal or near-optimal solutions in addi-
tion to the optimum. Furthermore, by generating
alternatives that address competing objectives (eg maxi-
mizing species richness versus minimizing cost), appropri-
ate trade-offs between environmental and socioeconomic
concerns can be identified.

The generation and evaluation of alternative reserve
systems can usually be done in real time on today’s com-
puters. Similarly, geographic information systems enable
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the rapid visualization of alternatives. These features –
rapid generation, evaluation, and visualization – describe
a broad class of computer tools known collectively as deci-
sion and planning support systems (DPSSs). A large num-
ber of DPSSs have been developed in recent years, and are
used by government agencies and other organizations to
help resolve complex environmental planning problems.
Not all DPSSs employ optimization methods, although
some do. One DPSS that has been developed for reserve
design is SITES (Andelman et al. 1999), a software pack-
age which has a GIS interface and uses a sophisticated
iterative method (greedy adding and “simulated anneal-
ing”) to select an approximate optimal set of reserve sites.
The site selection model inside SITES is similar to the
model of McDonnell et al. (2002) described above, which
seeks to minimize the total area of the reserve system and
minimize total perimeter length.

In SITES, like other DPSSs, the user interacts with a
“friendly” interface, while the mechanics of the model
occur behind the scenes. As a result, DPSSs are often
viewed as “black boxes” that accept user input in at one
end and, via some hidden algorithm, produce optimized
solutions – in our case reserve designs – out at the other
end. While it is useful to have decision and planning sup-
port tools that are both sophisticated and convenient for
non-specialists, it is also important to make the black
boxes more transparent. The main point here is that
reserve design models and reserve design DPSSs like
SITES are two different things. Two DPSSs may purport
to do the same thing, but if their underlying methods for
site selection are different, the results they get will also be
different. For example, two DPSSs may each claim to pro-
duce highly connected reserve systems, but one might
generate a system that looks like Figure 3c, while the other
produces a system like Figure 3e. It is therefore important
for the user to be aware of differences in the underlying
models.

Optimization models, then, may either be used as stand-
alone tools or embedded within a DPSS. But either way,
to what extent do environmental planners and land man-
agers actually use such models to design reserves?
Prendergast et al. (1999) explored this question and found
that, by the late 1990s, reserve selection and design mod-
els were not yet in widespread use. This was evidently due
to several factors: lags in technology transfer; a perception
that the models require exceptionally high quality data;
and differences in expertise and worldviews between prac-
titioners and modelers (Prendergast et al. 1999; Pressey
and Cowling 2001).. However, recent anecdotal evidence
suggests that site selection models are becoming more
accessible. At an October 2003 reserve design conference
attended by one of the authors (Williams), several inde-
pendent groups of practitioners each reported on the use
of SITES to help formulate reserve plans.

Our prognosis is that models for reserve selection and
design will be much more widely used in the future. This is
based on two foreseeable trends. First, the growing tension
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between an expanding human population and the need
to conserve and protect biological resources will require
highly targeted and optimized approaches to conserva-
tion decisions. As new conservation problems are recog-
nized worldwide, reserve design models will be used more
frequently. Second, the number of people working on and
with reserve design models has grown considerably in
recent years, as evidenced by the rapid increase in the
number of publications on this topic. Reserve design
modeling has become a major focus of collaboration
among researchers in conservation biology, ecology, oper-
ations research, and other disciplines. Having now
reached a “critical mass”, reserve design models are
becoming increasingly visible to practitioners. These
models are now being taught in undergraduate and gradu-
ate courses, suggesting that the next generation of conser-
vation professionals will have them as an integral part of
their toolkits.
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