
5.1 Introduction

Organisms grow, reproduce and die (Chapter 4). They are

affected by the conditions in which they live (Chapter 2), and by

the resources that they obtain (Chapter 3). But no organism lives

in isolation. Each, for at least part of its life, is a member of a

population composed of individuals of its own species.

Individuals of the same species have

very similar requirements for survival,

growth and reproduction; but their

combined demand for a resource may

exceed the immediate supply. The individuals then compete for

the resource and, not surprisingly, at least some of them become

deprived. This chapter is concerned with the nature of such

intraspecific competition, its effects on the competing individuals

and on populations of competing individuals. We begin with a

working definition: ‘competition is an interaction between indi-

viduals, brought about by a shared requirement for a resource,

and leading to a reduction in the survivorship, growth and/or 

reproduction of at least some of the competing individuals 

concerned’. We can now look more closely at competition.

Consider, initially, a simple hypothetical community: a thriv-

ing population of grasshoppers (all of one species) feeding on a

field of grass (also of one species). To provide themselves with

energy and material for growth and reproduction, grasshoppers

eat grass; but in order to find and consume that grass they must

use energy. Any grasshopper might find itself at a spot where 

there is no grass because some other grasshopper has eaten it.

The grasshopper must then move on and expend more energy

before it takes in food. The more grasshoppers there are, the more

often this will happen. An increased energy expenditure and a

decreased rate of food intake may all decrease a grasshopper’s

chances of survival, and also leave less energy available for devel-

opment and reproduction. Survival and reproduction determine

a grasshopper’s contribution to the next generation. Hence, the

more intraspecific competitors for food a grasshopper has, the less

its likely contribution will be.

As far as the grass itself is concerned, an isolated seedling in

fertile soil may have a very high chance of surviving to repro-

ductive maturity. It will probably exhibit an extensive amount of

modular growth, and will probably therefore eventually produce

a large number of seeds. However, a seedling that is closely sur-

rounded by neighbors (shading it with their leaves and depleting

the water and nutrients of its soil with their roots) will be very

unlikely to survive, and if it does, will almost certainly form few

modules and set few seeds.

We can see immediately that the ultimate effect of com-

petition on an individual is a decreased contribution to the next

generation compared with what would have happened had there

been no competitors. Intraspecific competition typically leads to

decreased rates of resource intake per individual, and thus to

decreased rates of individual growth or development, or perhaps

to decreases in the amounts of stored reserves or to increased risks

of predation. These may lead, in turn, to decreases in survivor-

ship and/or decreases in fecundity, which together determine an

individual’s reproductive output.

5.1.1 Exploitation and interference

In many cases, competing individuals do

not interact with one another directly.

Instead, individuals respond to the level of a resource, which has

been depressed by the presence and activity of other individuals.

The grasshoppers were one example. Similarly, a competing grass

plant is adversely affected by the presence of close neighbors,

because the zone from which it extracts resources (light, water,

nutrients) has been overlapped by the ‘resource depletion zones’

of these neighbors, making it more difficult to extract those

resources. In such cases, competition may be described as

a definition of
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exploitation, in that each individual is affected by the amount of

resource that remains after that resource has been exploited by

others. Exploitation can only occur, therefore, if the resource in

question is in limited supply.

In many other cases, competition

takes the form of interference. Here

individuals interact directly with each

other, and one individual will actually prevent another from

exploiting the resources within a portion of the habitat. For

instance, this is seen amongst animals that defend territories (see

Section 5.11) and amongst the sessile animals and plants that live

on rocky shores. The presence of a barnacle on a rock prevents

any other barnacle from occupying that same position, even

though the supply of food at that position may exceed the

requirements of several barnacles. In such cases, space can be seen

as a resource in limited supply. Another type of interference 

competition occurs when, for instance, two red deer stags fight

for access to a harem of hinds. Either stag, alone, could readily

mate with all the hinds, but they cannot both do so since 

matings are limited to the ‘owner’ of the harem.

Thus, interference competition may occur for a resource of

real value (e.g. space on a rocky shore for a barnacle), in which

case the interference is accompanied by a degree of exploitation,

or for a surrogate resource (a territory, or ownership of a harem),

which is only valuable because of the access it provides to a real

resource (food, or females). With exploitation, the intensity of com-

petition is closely linked to the level of resource present and the

level required, but with interference, intensity may be high even

when the level of the real resource is not limiting.

In practice, many examples of competition probably include

elements of both exploitation and interference. For instance,

adult cave beetles, Neapheanops tellkampfi, in Great Onyx Cave,

Kentucky, compete amongst themselves but with no other

species and have only one type of food – cricket eggs, which they

obtain by digging holes in the sandy floor of the cave. On the

one hand, they suffer indirectly from exploitation: beetles reduce

the density of their resource (cricket eggs) and then have markedly

lower fecundity when food availability is low (Figure 5.1a). 

But they also suffer directly from interference: at higher beetle 

densities they fight more, forage less, dig fewer and shallower 

holes and eat far fewer eggs than could be accounted for by 

food depletion alone (Figure 5.1b).

5.1.2 One-sided competition

Whether they compete through exploitation or interference,

individuals within a species have many fundamental features in

common, using similar resources and reacting in much the same

way to conditions. None the less, intraspecific competition may

be very one sided: a strong, early seedling will shade a stunted,

late one; an older and larger bryozoan on the shore will grow

over a smaller and younger one. One example is shown in

Figure 5.2. The overwinter survival of red deer calves in the

resource-limited population on the island of Rhum, Scotland (see

Chapter 4) declined sharply as the population became more

crowded, but those that were smallest at birth were by far the

most likely to die. Hence, the ultimate effect of competition is

interference
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Figure 5.1 Intraspecific competition amongst cave beetles (Neapheanops tellkampfi ). (a) Exploitation. Beetle fecundity is significantly

correlated (r = 0.86) with cricket fecundity (itself a good measure of the availability of cricket eggs – the beetles’ food). The beetles

themselves reduce the density of cricket eggs. (b) Interference. As beetle density in experimental arenas with 10 cricket eggs increased 

from 1 to 2 to 4, individual beetles dug fewer and shallower holes in search of their food, and ultimately ate much less (P < 0.001 in 

each case), in spite of the fact that 10 cricket eggs was sufficient to satiate them all. Means and standard deviations are given in each case.

(After Griffith & Poulson, 1993.)
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far from being the same for every individual. Weak competitors

may make only a small contribution to the next generation, or

no contribution at all. Strong competitors may have their con-

tribution only negligibly affected.

Finally, note that the likely effect of intraspecific competition

on any individual is greater the more competitors there are. 

The effects of intraspecific competition are thus said to be 

density dependent. We turn next to a more detailed look at the

density-dependent effects of intraspecific competition on death,

birth and growth.

5.2 Intraspecific competition, and density-

dependent mortality and fecundity

Figure 5.3 shows the pattern of mortality in the flour beetle

Tribolium confusum when cohorts were reared at a range of 

densities. Known numbers of eggs were placed in glass tubes 

with 0.5 g of a flour–yeast mixture, and the number of indi-

viduals that survived to become adults in each tube was noted.

The same data have been expressed in three ways, and in each

case the resultant curve has been divided into three regions.

Figure 5.3a describes the relationship between density and the per

capita mortality rate – literally, the mortality rate ‘per head’, i.e.

the probability of an individual dying or the proportion that died

between the egg and adult stages. Figure 5.3b describes how the

number that died prior to the adult stage changed with density;

and Figure 5.3c describes the relationship between density and

the numbers that survived.

Throughout region 1 (low density) the mortality rate

remained constant as density was increased (Figure 5.3a). The num-

bers dying and the numbers surviving both rose (Figure 5.3b, c)

(not surprising, given that the numbers ‘available’ to die and sur-

vive increased), but the proportion dying remained the same, which

accounts for the straight lines in region 1 of these figures.

Mortality in this region is said to be density independent.

Individuals died, but the chance of an individual surviving to

become an adult was not changed by the initial density. Judged

by this, there was no intraspecific competition between the bee-

tles at these densities. Such density-independent deaths affect the

population at all densities. They represent a baseline, which any

density-dependent mortality will exceed.

In region 2, the mortality rate

increased with density (Figure 5.3a):

there was density-dependent mortality.

The numbers dying continued to rise

with density, but unlike region 1 they did so more than propor-

tionately (Figure 5.3b). The numbers surviving also continued to

rise, but this time less than proportionately (Figure 5.3c). Thus,

over this range, increases in egg density continued to lead to

increases in the total number of surviving adults. The mortality rate

had increased, but it ‘undercompensated’ for increases in density.

In region 3, intraspecific competition

was even more intense. The increasing

mortality rate ‘overcompensated’ for

any increase in density, i.e. over this

range, the more eggs there were present, the fewer adults sur-

vived: an increase in the initial number of eggs led to an even
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greater proportional increase in the mortality rate. Indeed, if the

range of densities had been extended, there would have been tubes

with no survivors: the developing beetles would have eaten all

the available food before any of them reached the adult stage.

A slightly different situation is

shown in Figure 5.4. This illustrates

the relationship between density and

mortality in young trout. At the lower

densities there was undercompensating density dependence, but

at higher densities mortality never overcompensated. Rather, it

compensated exactly for any increase in density: any rise in the

number of fry was matched by an exactly equivalent rise in the

mortality rate. The number of survivors therefore approached and

maintained a constant level, irrespective of initial density.

The patterns of density-dependent

fecundity that result from intraspecific

competition are, in a sense, a mirror-

image of those for mortality (Figure 5.5).

Here, though, the per capita birth rate

falls as intraspecific competition intensifies. At low enough den-

sities, the birth rate may be density independent (Figure 5.5a, lower

densities). But as density increases, and the effects of intraspecific

competition become apparent, birth rate initially shows under-

compensating density dependence (Figure 5.5a, higher densities),

and may then show exactly compensating density dependence

(Figure 5.5b, throughout; Figure 5.5c, lower densities) or over-

compensating density dependence (Figure 5.5c, higher densities).

Thus, to summarize, irrespective of variations in over- and

undercompensation, the essential point is a simple one: at appro-

priate densities, intraspecific competition can lead to density-

dependent mortality and/or fecundity, which means that the

death rate increases and/or the birth rate decreases as density

increases. Thus, whenever there is intraspecific competition, its

effect, whether on survival, fecundity or a combination of the two,

is density dependent. However, as subsequent chapters will

show, there are processes other than intraspecific competition that

also have density-dependent effects.

5.3 Density or crowding?

Of course, the intensity of intraspecific competition experienced

by an individual is not really determined by the density of the

population as a whole. The effect on an individual is determined,
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rather, by the extent to which it is crowded or inhibited by its

immediate neighbors.

One way of emphasizing this is by noting that there are actu-

ally at least three different meanings of ‘density’ (see Lewontin

& Levins, 1989, where details of calculations and terms can be

found). Consider a population of insects, distributed over a popu-

lation of plants on which they feed. This is a typical example of

a very general phenomenon – a population (the insects in this case)

being distributed amongst different patches of a resource (the

plants). The density would usually be calculated as the number

of insects (let us say 1000) divided by the number of plants (say

100), i.e. 10 insects per plant. This, which we would normally call

simply the ‘density’, is actually the ‘resource-weighted density’.

However, it gives an accurate measure of the intensity of com-

petition suffered by the insects (the extent to which they are

crowded) only if there are exactly 10 insects on every plant and

every plant is the same size.

Suppose, instead, that 10 of the

plants support 91 insects each, and the

remaining 90 support just one insect.

The resource-weighted density would

still be 10 insects per plant. But the average density experienced

by the insects would be 82.9 insects per plant. That is, one adds

up the densities experienced by each of the insects (91 + 91 + 91

. . . + 1 + 1) and divides by the total number of insects. This is the

‘organism-weighted density’, and it clearly gives a much more 

satisfactory measure of the intensity of competition the insects

are likely to suffer.

However, there remains the further question of the average

density of insects experienced by the plants. This, which may be

referred to as the ‘exploitation pressure’, comes out at 1.1 insects

per plant, reflecting the fact that most of the plants support only

one insect.

What, then, is the density of the insect? Clearly, it depends 

on whether you answer from the perspective of the insect or the

plant – but whichever way you look at it, the normal practice 

of calculating the resource-weighted density and calling it the 

‘density’ looks highly suspect. The difference between resource-

and organism-weighted densities is illustrated for the human

population of a number of US states in Table 5.1 (where the

‘resource’ is simply land area). The organism-weighted densities

are so much larger than the usual, but rather unhelpful, resource-

weighted densities essentially because most people live, crowded,

in cities (Lewontin & Levins, 1989).

The difficulties of relying on density to characterize the

potential intensity of intraspecific competition are particularly 
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Figure 5.5 (a) The fecundity (seeds per

plant) of the annual dune plant Vulpia

fasciculata is constant at the lowest densities 

(density independence, left). However, at

higher densities, fecundity declines but in

an undercompensating fashion, such that

the total number of seeds continues to rise

(right). (After Watkinson & Harper, 1978.)

(b) Fecundity (eggs per attack) in the

southern pine beetle, Dendroctonus frontalis, 

in East Texas declines with increasing attack 

density in a way that compensates more or

less exactly for the density increases: the 

total number of eggs produced was roughly 

100 per 100 cm2, irrespective of attack

density over the range observed (�, 1992; 

�, 1993). (After Reeve et al., 1998.) (c) When 

the planktonic crustacean Daphnia magna

was infected with varying numbers of 

spores of the bacterium Pasteuria ramosa, the 

total number of spores produced per host

in the next generation was independent of

density (exactly compensating) at the lower

densities, but declined with increasing

density (overcompensating) at the higher

densities. Standard errors are shown. 

(After Ebert et al., 2000.)
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acute with sessile, modular organisms, because, being sessile, they

compete almost entirely only with their immediate neighbors, and

being modular, competition is directed most at the modules that

are closest to those neighbors. Thus, for instance, when silver birch

trees (Betula pendula) were grown in small groups, the sides of 

individual trees that interfaced with neighbors typically had a lower

‘birth’ and higher death rate of buds (see Section 4.2); whereas

on sides of the same trees with no interference, bud birth rate

was higher, death rate lower, branches were longer and the form

approached that of an open-grown individual (Figure 5.6). Dif-

ferent modules experience different intensities of competition, and

quoting the density at which an individual was growing would

be all but pointless.

Thus, whether mobile or sessile,

different individuals meet or suffer

from different numbers of competitors.

Density, especially resource-weighted

density, is an abstraction that applies to the population as a

whole but need not apply to any of the individuals within it. 

None the less, density may often be the most convenient way of

expressing the degree to which individuals are crowded – and it

is certainly the way it has usually been expressed.

Table 5.1 A comparison of the resource- and organism-weighted

densities of five states, based on the 1960 USA census, where 

the ‘resource patches’ are the counties within each state. (After

Lewontin & Levins, 1989.)

Resource-weighted Organism-weighted 

State density (km−2) density (km−2)

Colorado 44 6,252

Missouri 159 6,525

New York 896 48,714

Utah 28 684

Virginia 207 13,824
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(new buds per existing bud) for silver 

birch trees (Betula pendula), expressed 
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are themselves explained in the inset. 
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5.4 Intraspecific competition and the regulation

of population size

There are, then, typical patterns in the effects of intraspecific 

competition on birth and death (see Figures 5.3–5.5). These gen-

eralized patterns are summarized in Figures 5.7 and 5.8.

5.4.1 Carrying capacities

Figure 5.7a–c reiterates the fact that as density increases, the per

capita birth rate eventually falls and the per capita death rate even-

tually rises. There must, therefore, be a density at which these

curves cross. At densities below this point, the birth rate exceeds
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Figure 5.8 Some general aspects of intraspecific competition. (a) Density-dependent effects on the numbers dying and the number 

of births in a population: net recruitment is ‘births minus deaths’. Hence, as shown in (b), the density-dependent effect of intraspecific

competition on net recruitment is a domed or ‘n’-shaped curve. (c) A population increasing in size under the influence of the relationships

in (a) and (b). Each arrow represents the change in size of the population over one interval of time. Change (i.e. net recruitment) is small

when density is low (i.e. at small population sizes: A to B, B to C) and is small close to the carrying capacity (I to J, J to K), but is large at

intermediate densities (E to F). The result is an ‘S’-shaped or sigmoidal pattern of population increase, approaching the carrying capacity.

Figure 5.7 Density-dependent birth and

mortality rates lead to the regulation of

population size. When both are density

dependent (a), or when either of them is

(b, c), their two curves cross. The density

at which they do so is called the carrying

capacity (K). Below this the population

increases, above it the population

decreases: K is a stable equilibrium.

However, these figures are the grossest of

caricatures. The situation is closer to that

shown in (d), where mortality rate broadly

increases, and birth rate broadly decreases,

with density. It is possible, therefore, for

the two rates to balance not at just one

density, but over a broad range of

densities, and it is towards this broad 

range that other densities tend to move.
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the death rate and the population increases in size. At densities

above the crossover point, the death rate exceeds the birth rate

and the population declines. At the crossover density itself, the

two rates are equal and there is no net change in population 

size. This density therefore represents a stable equilibrium, in 

that all other densities will tend to approach it. In other words,

intraspecific competition, by acting on birth rates and death

rates, can regulate populations at a stable density at which the

birth rate equals the death rate. This density is known as the 

carrying capacity of the population and is usually denoted by K

(Figure 5.7). It is called a carrying capacity because it represents

the population size that the resources of the environment can 

just maintain (‘carry’) without a tendency to either increase or

decrease.

However, whilst hypothetical popu-

lations caricatured by line drawings like

Figures 5.7a–c can be characterized by

a simple carrying capacity, this is not

true of any natural population. There

are unpredictable environmental fluctuations; individuals are

affected by a whole wealth of factors of which intraspecific 

competition is only one; and resources not only affect density but

respond to density as well. Hence, the situation is likely to be closer

to that depicted in Figure 5.7d. Intraspecific competition does not

hold natural populations to a predictable and unchanging level

(the carrying capacity), but it may act upon a very wide range of

starting densities and bring them to a much narrower range of

final densities, and it therefore tends to keep density within cer-

tain limits. It is in this sense that intraspecific competition may

be said typically to be capable of regulating population size. For

instance, Figure 5.9 shows the fluctuations within and between

years in populations of the brown trout (Salmo trutta) and the

grasshopper, Chorthippus brunneus. There are no simple carrying

capacities in these examples, but there are clear tendencies for the

‘final’ density each year (‘late summer numbers’ in the first case,

‘adults’ in the second) to be relatively constant, despite the large

fluctuations in density within each year and the obvious poten-

tial for increase that both populations possess.

In fact, the concept of a population settling at a stable carry-

ing capacity, even in caricatured populations, is relevant only to

situations in which density dependence is not strongly overcom-

pensating. Where there is overcompensation, cycles or even
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Figure 5.9 Population regulation in

practice. (a) Brown trout (Salmo trutta) in 

an English Lake District stream. 5, numbers 

in early summer, including those newly

hatched from eggs; 7, numbers in late

summer. Note the difference in vertical

scales. (After Elliott, 1984.) (b) The

grasshopper, Chorthippus brunneus, in

southern England. �, eggs; 9, nymphs; 

7, adults. Note the logarithmic scale. 

(After Richards & Waloff, 1954.) There are

no definitive carrying capacities, but the

‘final’ densities each year (‘late summer’

and ‘adults’) are relatively constant despite

large fluctuations within years.

real populations lack

simple carrying

capacities
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chaotic changes in population size may be the result. We return

to this point later (see Section 5.8).

5.4.2 Net recruitment curves

An alternative general view of intraspecific competition is shown

in Figure 5.8a, which deals with numbers rather than rates. The

difference there between the two curves (‘births minus deaths’

or ‘net recruitment’) is the net number of additions expected in

the population during the appropriate stage or over one interval

of time. Because of the shapes of the birth and death curves, the

net number of additions is small at the lowest densities, increases

as density rises, declines again as the carrying capacity is appro-

ached and is then negative (deaths exceed births) when the ini-

tial density exceeds K (Figure 5.8b). Thus, total recruitment into

a population is small when there are few individuals available to

give birth, and small when intraspecific competition is intense. It

reaches a peak, i.e. the population increases in size most rapidly,

at some intermediate density.

The precise nature of the relation-

ship between a population’s net rate 

of recruitment and its density varies

with the detailed biology of the species

concerned (e.g. the trout, clover plants,

herring and whales in Figure 5.10a–d).

Moreover, because recruitment is affected by a whole multiplicity

of factors, the data points rarely fall exactly on any single curve. Yet,

in each case in Figure 5.10, a domed curve is apparent. This reflects

the general nature of density-dependent birth and death whenever

there is intraspecific competition. Note also that one of these (Fig-

ure 5.10b) is modular: it describes the relationship between the

leaf area index (LAI) of a plant population (the total leaf area being

borne per unit area of ground) and the population’s growth rate

(modular birth minus modular death). The growth rate is low when

there are few leaves, peaks at an intermediate LAI, and is then

low again at a high LAI, where there is much mutual shading and

competition and many leaves may be consuming more in respi-

ration than they contribute through photosynthesis.

5.4.3 Sigmoidal growth curves

In addition, curves of the type shown in Figure 5.8a and b may

be used to suggest the pattern by which a population might increase

from an initially very small size (e.g. when a species colonizes a

previously unoccupied area). This is illustrated in Figure 5.8c.

Imagine a small population, well below the carrying capacity of

its environment (point A). Because the population is small, it

increases in size only slightly during one time interval, and only

reaches point B. Now, however, being larger, it increases in size

more rapidly during the next time interval (to point C), and even

more during the next (to point D). This process continues until

the population passes beyond the peak of its net recruitment curve

(Figure 5.8b). Thereafter, the population increases in size less 

and less with each time interval until the population reaches its
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Figure 5.10 Some dome-shaped 

net-recruitment curves. (a) Six-month old

brown trout, Salmo trutta, in Black Brows

Beck, UK, between 1967 and 1989. (After

Myers, 2001; following Elliott, 1994.) 

(b) The relationship between crop growth

rate of subterranean clover, Trifolium

subterraneum, and leaf area index at various

intensities of radiation (kJ cm−2 day−1).

(After Black, 1963.) (c) ‘Blackwater’ herring,

Clupea harengus, from the Thames estuary

between 1962 and 1997. (After Fox, 2001.)

(d) Estimates for the stock of Antarctic fin

whales. (After Allen, 1972.)
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carrying capacity (K) and ceases completely to increase in size.

The population might therefore be expected to follow an S-shaped

or ‘sigmoidal’ curve as it rises from a low density to its carrying

capacity. This is a consequence of the hump in its recruitment

rate curve, which is itself a consequence of intraspecific competition.

Of course, Figure 5.8c, like the rest of Figure 5.8, is a gross

simplification. It assumes, apart from anything else, that changes

in population size are affected only by intraspecific competition.

Nevertheless, something akin to sigmoidal population growth 

can be perceived in many natural and experimental situations

(Figure 5.11).

Intraspecific competition will be obvious in certain cases

(such as overgrowth competition between sessile organisms 

on a rocky shore), but this will not be true of every population

examined. Individuals are also affected by predators, parasites and

prey, competitors from other species, and the many facets of their

physical and chemical environment. Any of these may outweigh

or obscure the effects of intraspecific competition; or the effect

of these other factors at one stage may reduce the density to 

well below the carrying capacity for all subsequent stages.

Nevertheless, intraspecific competition probably affects most

populations at least sometimes during at least one stage of their

life cycle.

5.5 Intraspecific competition and density-

dependent growth

Intraspecific competition, then, can have a profound effect on the

number of individuals in a population; but it can have an equally

profound effect on the individuals themselves. In populations of

unitary organisms, rates of growth and rates of development are

commonly influenced by intraspecific competition. This necessarily

leads to density-dependent effects on the composition of a popu-

lation. For instance, Figure 5.12a and b shows two examples 

in which individuals were typically smaller at higher densities. 

This, in turn, often means that although the numerical size of a

population is regulated only approximately by intraspecific com-

petition, the total biomass is regulated much more precisely. This,

too, is illustrated by the limpets in Figure 5.12b.

5.5.1 The law of constant final yield

Such effects are particularly marked in modular organisms. For

example, when carrot seeds (Daucus carrota) were sown at a

range of densities, the yield per pot at the first harvest (29 days)

increased with the density of seeds sown (Figure 5.13). After 

62 days, however, and even more after 76 and 90 days, yield no

longer reflected the numbers sown. Rather it was the same over

a wide range of initial densities, especially at higher densities where

competition was most intense. This pattern has frequently been

noted by plant ecologists and has been called the ‘law of constant

final yield’ (Kira et al., 1953). Individuals suffer density-dependent

reductions in growth rate, and thus in individual plant size,

which tend to compensate exactly for increases in density (hence

the constant final yield). This suggests, of course, that there are

limited resources available for plant growth, especially at high dens-

ities, which is borne out in Figure 5.13 by the higher (constant)

yields at higher nutrient levels.
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Yield is density (d) multiplied by mean weight per plant (P).

Thus, if yield is constant (c):

dP = c, (5.1)

and so:

log d + log P = log c (5.2)

and:

log P = log c − 1 · log d (5.3)

and thus, a plot of log mean weight against log density should

have a slope of −1.

Data on the effects of density on the growth of the grass Vulpia

fasciculata are shown in Figure 5.14, and the slope of the curve

towards the end of the experiment does indeed approach a value

of −1. Here too, as with the carrot plants, individual plant weight

at the first harvest was reduced only at very high densities – but

as the plants became larger, they interfered with each other at

successively lower densities.

The constancy of the final yield is a

result, to a large extent, of the modu-

larity of plants. This was clear when

perennial rye grass (Lolium perenne) was sown at a 30-fold range

of densities (Figure 5.15). After 180 days some genets had died;

but the range of final tiller (module) densities was far narrower

than that of genets (individuals). The regulatory powers of

intraspecific competition were operating largely by affecting the

number of modules per genet rather than the number of genets

themselves.

5.6 Quantifying intraspecific competition

Every population is unique. Nevertheless, we have already seen

that there are general patterns in the action of intraspecific 

competition. In this section we take such generalizations a stage 

further. A method will be described, utilizing k values (see

Chapter 4) to summarize the effects of intraspecific competition

on mortality, fecundity and growth. Mortality will be dealt with

first. The method will then be extended for use with fecundity

and growth.

A k value was defined by the 

formula:

k = log (initial density) − log (final density), (5.4)

or, equivalently:

k = log (initial density/final density). (5.5)

For present purposes, ‘initial density’ may be denoted by B, stand-

ing for ‘numbers before the action of intraspecific competition’,

whilst ‘final density’ may be denoted by A, standing for ‘numbers

after the action of intraspecific competition’. Thus:

k = log (B/A). (5.6)

Note that k increases as mortality rate increases.

Some examples of the effects of

intraspecific competition on mortality

are shown in Figure 5.16, in which k is

plotted against log B. In several cases,

k is constant at the lowest densities. This is an indication of 

density independence: the proportion surviving is not correlated

with initial density. At higher densities, k increases with initial 

density; this indicates density dependence. Most importantly,
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however, the way in which k varies with the logarithm of den-

sity indicates the precise nature of the density dependence. For

example, Figure 5.16a and b describes, respectively, situations in

which there is under- and exact compensation at higher densities.

The exact compensation in Figure 5.16b is indicated by the 

slope of the curve (denoted by b) taking a constant value of 1 (the

mathematically inclined will see that this follows from the fact

that with exact compensation A is constant). The undercom-

pensation that preceded this at lower densities, and which is seen

in Figure 5.16a even at higher densities, is indicated by the fact

that b is less than 1.

Exact compensation (b = 1) is often

referred to as pure contest competition,

because there are a constant number of

winners (survivors) in the competitive process. The term was 

initially proposed by Nicholson (1954), who contrasted it with 

what he called pure scramble competition. Pure scramble is the

most extreme form of overcompensating density dependence, in

which all competing individuals are so adversely affected that none

of them survive, i.e. A = 0. This would be indicated in Figure 5.16

by a b value of infinity (a vertical line), and Figure 5.16c is an 

example in which this is the case. More common, however, are

examples in which competition is scramble-like, i.e. there is con-

siderable but not total overcompensation (b � 1). This is shown,

for instance, in Figure 5.16d.

Plotting k against log B is thus an informative way of 

depicting the effects of intraspecific competition on mortality.

Variations in the slope of the curve (b) give a clear indication 
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of the manner in which density dependence changes with den-

sity. The method can also be extended to fecundity and growth.

For fecundity, it is necessary to think of B as the ‘total num-

ber of offspring that would have been produced had there been

no intraspecific competition’, i.e. if each reproducing individual

had produced as many offspring as it would have done in a 

competition-free environment. A is then the total number of 

offspring actually produced. (In practice, B is usually estimated 

from the population experiencing the least competition – not 

necessarily competition-free.) For growth, B must be thought 

of as the total biomass, or total number of modules, that would

have been produced had all individuals grown as if they were in

a competition-free situation. A is then the total biomass or total

number of modules actually produced.

Figure 5.17 provides examples in which k values are used to

describe the effects of intraspecific competition on fecundity and

growth. The patterns are essentially similar to those in Figure 5.16.

Each falls somewhere on the continuum ranging between den-

sity independence and pure scramble, and their position along that

continuum is immediately apparent. Using k values, all examples

of intraspecific competition can be quantified in the same terms.

With fecundity and growth, however, the terms ‘scramble’ and

especially ‘contest’ are less appropriate. It is better simply to talk

in terms of exact, over- and undercompensation.

5.7 Mathematical models: introduction

The desire to formulate general rules in ecology often finds 

its expression in the construction of mathematical or graphical 

models. It may seem surprising that those interested in the 

natural living world should spend time reconstructing it in an

artificial mathematical form; but there are several good reasons

why this should be done. The first is that models can crystallize,

or at least bring together in terms of a few parameters, the

important, shared properties of a wealth of unique examples. This

simply makes it easier for ecologists to think about the problem

or process under consideration, by forcing us to try to extract 

the essentials from complex systems. Thus, a model can provide 

a ‘common language’ in which each unique example can be

expressed; and if each can be expressed in a common language,

then their properties relative to one another, and relative perhaps

to some ideal standard, will be more apparent.

These ideas are more familiar, perhaps, in other contexts.

Newton never laid hands on a perfectly frictionless body, and Boyle

never saw an ideal gas – other than in their imaginations – but

Newton’s Laws of Motion and Boyle’s Law have been of immeas-

urable value to us for centuries.

Perhaps more importantly, however, models can actually shed

light on the real world that they mimic. Specific examples below

will make this apparent. Models can, as we shall see, exhibit prop-

erties that the system being modeled had not previously been

known to possess. More commonly, models make it clear how

the behavior of a population, for example, depends on the prop-

erties of the individuals that comprise it. That is, models allow

us to see the likely consequences of any assumptions that we choose

to make – ‘If it were the case that only juveniles migrate, what

would this do to the dynamics of their populations?’ – and so on.

Models can do this because mathematical methods are designed

precisely to allow a set of assumptions to be followed through
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Figure 5.17 The use of k values for describing density-dependent reductions in fecundity and growth. (a) Fecundity in the limpet Patella
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to their natural conclusions. As a consequence, models often sug-

gest what would be the most profitable experiments to carry out

or observations to make – ‘Since juvenile migration rates appear

to be so important, these should be measured in each of our study

populations’.

These reasons for constructing models are also criteria by which

any model should be judged. Indeed, a model is only useful (i.e.

worth constructing) if it does perform one or more of these func-

tions. Of course, in order to perform them a model must ade-

quately describe real situations and real sets of data, and this ‘ability

to describe’ or ‘ability to mimic’ is itself a further criterion by which

a model can be judged. However, the crucial word is ‘adequate’.

The only perfect description of the real world is the real world

itself. A model is an adequate description, ultimately, as long as

it performs a useful function.

In the present case, some simple models of intraspecific 

competition will be described. They will be built up from a very

elementary starting point, and their properties (i.e. their ability

to satisfy the criteria described above) will then be examined.

Initially, a model will be constructed for a population with dis-

crete breeding seasons.

5.8 A model with discrete breeding seasons

5.8.1 Basic equations

In Section 4.7 we developed a simple model for species with dis-

crete breeding seasons, in which the population size at time t, Nt,

altered in size under the influence of a fundamental net repro-

ductive rate, R. This model can be summarized in two equations:

Nt+1 = NtR (5.7)

and:

Nt = N0Rt. (5.8)

The model, however, describes a

population in which there is no com-

petition. R is constant, and if R > 1, 

the population will continue to increase in size indefinitely

(‘exponential growth’, shown in Figure 5.18). The first step is there-

fore to modify the equations by making the net reproductive rate

subject to intraspecific competition. This is done in Figure 5.19,

which has three components.

At point A, the population size is very small (Nt is virtually

zero). Competition is therefore negligible, and the actual net repro-

ductive rate is adequately defined by an unmodified R. Thus,

Equation 5.7 is still appropriate, or, rearranging the equation:

Nt/Nt+1 = 1/R. (5.9)

At point B, by contrast, the population size (Nt) is very much

larger and there is a significant amount of intraspecific competi-

tion, such that the net reproductive rate has been so modified by

competition that the population can collectively do no better than

replace itself each generation, because ‘births’ equal ‘deaths’. In

other words, Nt+1 is simply the same as Nt, and Nt/Nt+1 equals 1.

The population size at which this occurs is, by definition, the 

carrying capacity, K (see Figure 5.7).

The third component of Figure 5.19

is the straight line joining point A to

point B and extending beyond it. This

describes the progressive modification of the actual net reproductive

rate as population size increases; but its straightness is simply an

N
t+1 = N

t
 · R

N
t+1 =

N
t
R

1 + aN
t

Time (t )0

K

N
t

no competition:

exponential growth

Figure 5.18 Mathematical models of population increase with

time, in populations with discrete generations: exponential 

increase (left) and sigmoidal increase (right).
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Figure 5.19 The simplest, straight-line way in which the inverse

of generation increase (Nt/Nt+1) might rise with density (Nt). For

further explanation, see text.
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assumption made for the sake of expediency, since all straight lines

are of the simple form: y = (slope) x + (intercept). In Figure 5.19,

Nt/Nt+1 is measured on the y-axis, Nt on the x-axis, the intercept

is 1/R and the slope, based on the segment between points A and

B, is (1 − 1/R)/K. Thus:

(5.10)

or, rearranging:

(5.11)

For further simplicity, (R − 1)/K

may be denoted by a giving:

(5.12)

This is a model of population increase limited by intraspecific 

competition. Its essence lies in the fact that the unrealistically 

constant R in Equation 5.7 has been replaced by an actual net 

reproductive rate, R/(1 + aNt), which decreases as population

size (Nt) increases.

We, like many others, derived

Equation 5.12 as if the behavior of a pop-

ulation is jointly determined by R and

K, the per capita rate of increase and the

population’s carrying capacity – a is then simply a particular

combination of these. An alternative point of view is that a is mean-

ingful in its own right, measuring the per capita susceptibility 

to crowding: the larger the value of a, the greater the effect of

density on the actual rate of increase in the population (Kuno,

1991). Now the behavior of a population is seen as being jointly

determined by two properties of the individuals within it – 

their intrinsic per capita rate of increase and their susceptibility

to crowding, R and a. The carrying capacity of the population 

(K = (R − 1)/a) is then simply an outcome of these properties. 

The great advantage of this viewpoint is that it places indi-

viduals and populations in a more realistic biological perspective.

Individuals come first: individual birth rates, death rates and 

susceptibilities to crowding are subject to natural selection and

evolve. Populations simply follow: a population’s carrying capa-

city is just one of many features that reflect the values these 

individual properties take.

The properties of the model in

Equation 5.12 may be seen in Fig-

ure 5.19 (from which the model was

derived) and Figure 5.18 (which shows
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a hypothetical population increasing in size over time in confor-

mity with the model). The population in Figure 5.18 describes

an S-shaped curve over time. As we saw earlier, this is a desir-

able quality of a model of intraspecific competition. Note, how-

ever, that there are many other models that would also generate

such a curve. The advantage of Equation 5.12 is its simplicity.

The behavior of the model in the vicinity of the carrying capa-

city can best be seen by reference to Figure 5.19. At population

sizes that are less than K the population will increase in size; at

population sizes that are greater than K the population size will

decline; and at K itself the population neither increases nor

decreases. The carrying capacity is therefore a stable equilibrium

for the population, and the model exhibits the regulatory prop-

erties classically characteristic of intraspecific competition.

5.8.2 What type of competition?

It is not yet clear, however, just exactly what type or range of

competition this model is able to describe. This can be explored

by tracing the relationship between k values and log N (as in Sec-

tion 5.6). Each generation, the potential number of individuals 

produced (i.e. the number that would be produced if there were

no competition) is NtR. The actual number produced (i.e. the 

number that survive the effects of competition) is NtR/(1 + aNt).

Section 5.6 established that:

k = log (number produced) − log (number surviving). (5.13)

Thus, in the present case:

k = log NtR − log NtR/(1 + aNt), (5.14)

or, simplifying:

k = log(1 + aNt). (5.15)

Figure 5.20 shows a number of plots of k against log10Nt with

a variety of values of a inserted into the model. In every case,

the slope of the graph approaches and then attains a value of 1.

In other words, the density dependence always begins by under-

compensating and then compensates perfectly at higher values of

Nt. The model is therefore limited in the type of competition that

it can produce, and all we have been able to say so far is that this

type of competition leads to very tightly controlled regulation of

populations.

5.8.3 Time lags

One simple modification that we can make is to relax the

assumption that populations respond instantaneously to changes

a simple model 

of intraspecific

competition

which comes first – 

a or K?

properties of the

simplest model
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in their own density, i.e. that present density determines the amount

of resource available to a population and this in turn determines

the net reproductive rate within the population. Suppose instead

that the amount of resource available is determined by the 

density one time interval previously. To take a specific example,

the amount of grass in a field in spring (the resource available 

to cattle) might be determined by the level of grazing (and

hence, the density of cattle) in the previous year. In such a case,

the reproductive rate itself will be dependent on the density one

time interval ago. Thus, since in Equations 5.7 and 5.12:

Nt+1 = Nt × reproductive rate, (5.16)

Equation 5.12 may be modified to:

(5.17)

There is a time lag in the population’s

response to its own density, caused 

by a time lag in the response of its

resources. The behavior of the modified

model is as follows:

R < 1.33: direct approach to a stable equilibrium

R > 1.33: damped oscillations towards that equilibrium.

In comparison, the original Equation 5.12, without a time lag, gave

rise to a direct approach to its equilibrium for all values of R. The

N
N R

aN
t

t

t

+
−

=
+1

11
  

  
.

time lag has provoked the fluctuations in the model, and it 

can be assumed to have similar, destabilizing effects on real 

populations.

5.8.4 Incorporating a range of competition

A simple modification of Equation 5.12 of far more general

importance was originally suggested by Maynard Smith and

Slatkin (1973) and was discussed in detail by Bellows (1981). It

alters the equation to:

(5.18)

The justification for this modification may be seen by examin-

ing some of the properties of the revised model. For example,

Figure 5.21 shows plots of k against log Nt, analogous to those in

Figure 5.20: k is now log10[1 + (aNt)
b]. The slope of the curve, instead

of approaching 1 as it did previously, now approaches the value

taken by b in Equation 5.18. Thus, by the choice of appropriate

values, the model can portray undercompensation (b < 1), perfect

compensation (b = 1), scramble-like overcompensation (b > 1) or

even density independence (b = 0). This model has the gener-

ality that Equation 5.12 lacks, with the value of b determining the

type of density dependence that is being incorporated.

Another desirable quality that

Equation 5.18 shares with other good

models is an ability to throw fresh

light on the real world. By sensible

analysis of the population dynamics generated by the equation,
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Figure 5.20 The intraspecific competition inherent in 

Equation 5.13. The final slope of k against log10Nt is unity 

(exact compensation), irrespective of the starting density N0

or the constant a (= (R − 1)/K).
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Figure 5.22 (a) The range of population fluctuations (themselves shown in (b)) generated by Equation 5.19 with various combinations of

b and R inserted. (After May, 1975a; Bellows, 1981.)

it is possible to draw guarded conclusions about the dynamics of

natural populations. The mathematical method by which this and

similar equations may be examined is set out and discussed by

May (1975a), but the results of the analysis (Figure 5.22) can be

appreciated without dwelling on the analysis itself. Figure 5.22b

shows the various patterns of population growth and dynamics

that Equation 5.18 can generate. Figure 5.22a sets out the condi-

tions under which each of these patterns occurs. Note first that

the pattern of dynamics depends on two things: (i) b, the precise

type of competition or density dependence; and (ii) R, the effect-

ive net reproductive rate (taking density-independent mortality

into account). By contrast, a determines not the type of pattern,

but only the level about which any fluctuations occur.

As Figure 5.22a shows, low values of b and/or R lead to popu-

lations that approach their equilibrium size without fluctuating

at all (‘monotonic damping’). This has already been hinted at in

Figure 5.18. There, a population behaving in conformity with

Equation 5.12 approached equilibrium directly, irrespective of the

value of R. Equation 5.12 is a special case of Equation 5.18 in which

b = 1 (perfect compensation); Figure 5.22a confirms that for b = 1,

monotonic damping is the rule whatever the effective net repro-

ductive rate.

As the values of b and/or R increase, the behavior of the popu-

lation changes first to damped oscillations gradually approaching

equilibrium, and then to ‘stable limit cycles’ in which the popu-

lation fluctuates around an equilibrium level, revisiting the same

two, four or even more points time and time again. Finally, with

large values of b and R, the population fluctuates in an apparently

irregular and chaotic fashion.

5.8.5 Chaos

Thus, a model built around a density-dependent, supposedly 

regulatory process (intraspecific competition) can lead to a very

wide range of population dynamics. If a model population has even

a moderate fundamental net reproductive rate (and the ability to

leave 100 (= R) offspring in the next generation in a competition-

free environment is not unreasonable), and if it has a density-

dependent reaction which even moderately overcompensates, 

then far from being stable, it may fluctuate widely in numbers

without the action of any extrinsic factor. The biological signific-

ance of this is the strong suggestion that even in an environment

that is wholly constant and predictable, the intrinsic qualities of a

population and the individuals within it may, by themselves, give

rise to population dynamics with large and perhaps even chaotic

fluctuations. The consequences of intraspecific competition are

clearly not limited to ‘tightly controlled regulation’.

This leads us to two important conclusions. First, time lags,

high reproductive rates and overcompensating density dependence

are capable (either alone or in combination) of producing all types

of fluctuations in population density, without invoking any

extrinsic cause. Second, and equally important, this has been

made apparent by the analysis of mathematical models.
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In fact, the recognition that even

simple ecological systems may contain

the seeds of chaos has led to chaos

itself becoming a topic of interest

amongst ecologists (Schaffer & Kot, 1986; Hastings et al., 1993;

Perry et al., 2000). A detailed exposition of the nature of chaos is

not appropriate here, but a few key points should be understood.

1 The term ‘chaos’ may itself be misleading if it is taken to imply

a fluctuation with absolutely no discernable pattern. Chaotic

dynamics do not consist of a sequence of random numbers.

On the contrary, there are tests (although they are not always

easy to put into practice) designed to distinguish chaotic from

random and other types of fluctuations.

2 Fluctuations in chaotic ecological systems occur between

definable upper and lower densities. Thus, in the model of

intraspecific competition that we have discussed, the idea of

‘regulation’ has not been lost altogether, even in the chaotic

region.

3 Unlike the behavior of truly regulated systems, however, two

similar population trajectories in a chaotic system will not tend

to converge on (‘be attracted to’) the same equilibrium dens-

ity or the same limit cycle (both of them ‘simple’ attractors).

Rather, the behavior of a chaotic system is governed by a

‘strange attractor’. Initially, very similar trajectories will

diverge from one another, exponentially, over time: chaotic

systems exhibit ‘extreme sensitivity to initial conditions’.

4 Hence, the long-term future behavior of a chaotic system is

effectively impossible to predict, and prediction becomes

increasingly inaccurate as one moves further into the future.

Even if we appear to have seen the system in a particular state

before – and know precisely what happened subsequently last

time – tiny (perhaps immeasurable) initial differences will be

magnified progressively, and past experience will become of

increasingly little value.

Ecology must aim to become a predictive science. Chaotic sys-

tems set us some of the sternest challenges in prediction. There

has been an understandable interest, therefore, in the question

‘How often, if ever, are ecological systems chaotic?’ Attempts to

answer this question, however, whilst illuminating, have certainly

not been definitive.

Most recent attempts to detect

chaos in ecological systems have been

based on a mathematical advance

known as Takens’ theorem. This says, 

in the context of ecology, that even

when a system comprises a number of interacting elements, its

characteristics (whether it is chaotic, etc.) may be deduced from

a time series of abundances of just one of those elements (e.g.

one species). This is called ‘reconstructing the attractor’. To be

more specific: suppose, for example, that a system’s behavior is

determined by interactions between four elements (for simpli-

city, four species). First, one expresses the abundance of just one

of those species at time t, Nt, as a function of the sequence of 

abundances at four successive previous time points: Nt−1, Nt−2, 

Nt−3, Nt−4 (the same number of ‘lags’ as there are elements in 

the original system). Then, the attractor of this lagged system of

abundances is an accurate reconstruction of the attractor of 

the original system, which determines its characteristics.

In practice, this means taking a series of abundances of, say,

one species and finding the ‘best’ model, in statistical terms, for

predicting Nt as a function of lagged abundances, and then invest-

igating this reconstructed attractor as a means of investigating 

the nature of the dynamics of the underlying system. Unfortun-

ately, ecological time series (compared, say, to those of physics)

are particularly short and particularly noisy. Thus, methods for

identifying a ‘best’ model and applying Takens’ theorem, and for

identifying chaos in ecology generally, have been ‘the focus of

continuous methodological debate and refinement’ (Bjørnstad &

Grenfell, 2001), one consequence of which is that any suggestion

of a suitable method in a textbook such as this is almost certainly

doomed to be outmoded by the time it is first read.

Notwithstanding these technical difficulties, however, and in

spite of occasional demonstrations of apparent chaos in artificial

laboratory environments (Costantino et al., 1997), a consensus view

has grown that chaos is not a dominant pattern of dynamics 

in natural ecological systems. One trend, therefore, has been to

seek to understand why chaos might not occur in nature, despite

its being generated readily by ecological models. For example,

Fussmann and Heber (2002) examined model populations

embedded in food webs and found that as the webs took on more

of the characteristics observed in nature (see Chapter 20) chaos

became less likely.

Thus, the potential importance of

chaos in ecological systems is clear.

From a fundamental point of view, we

need to appreciate that if we have a relatively simple system, 

it may nevertheless generate complex, chaotic dynamics; and 

that if we observe complex dynamics, the underlying explanation

may nevertheless be simple. From an applied point of view, if 

ecology is to become a predictive and manipulative science, 

then we need to know the extent to which long-term prediction

is threatened by one of the hallmarks of chaos – extreme sensit-

ivity to initial conditions. The key practical question, however 

– ‘how common is chaos?’ – remains largely unanswered.

5.9 Continuous breeding: the logistic equation

The model derived and discussed in Section 5.8 was appropriate

for populations that have discrete breeding seasons and can

therefore be described by equations growing in discrete steps, 

i.e. by ‘difference’ equations. Such models are not appropriate,

key characteristics of

chaotic dynamics

Takens’ theorem:

reconstructing the

attractor

how common – or

important – is chaos?
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however, for those populations in which birth and death are 

continuous. These are best described by models of continuous

growth, or ‘differential’ equations, which will be considered next.

The net rate of increase of such a

population will be denoted by dN/dt

(referred to in speech as ‘dN by dt’). This

represents the ‘speed’ at which a popu-

lation increases in size, N, as time, t, progresses. The increase 

in size of the whole population is the sum of the contributions

of the various individuals within it. Thus, the average rate of

increase per individual, or the ‘per capita rate of increase’ is

given by dN/dt(1/N). But we have already seen in Section 4.7 

that in the absence of competition, this is the definition of the

‘intrinsic rate of natural increase’, r. Thus:

(5.19)

and:

(5.20)

A population increasing in size under the influence of Equa-

tion 5.20, with r > 0, is shown in Figure 5.23. Not surprisingly,

there is unlimited, ‘exponential’ increase. In fact, Equation 5.20 is

the continuous form of the exponential difference Equation 5.8,

and as discussed in Section 4.7, r is simply logeR. (Mathematic-

ally adept readers will see that Equation 5.20 can be obtained by

differentiating Equation 5.8.) R and r are clearly measures of the

same commodity: ‘birth plus survival’ or ‘birth minus death’; the

difference between R and r is merely a change of currency.

For the sake of realism, intraspecific

competition must obviously be added

to Equation 5.20. This can be achieved

most simply by a method exactly equivalent to the one used in

Figure 5.19, giving rise to:

(5.21)

This is known as the logistic equation (coined by Verhulst, 1838),

and a population increasing in size under its influence is shown

in Figure 5.23.

The logistic equation is the continuous equivalent of Equa-

tion 5.12, and it therefore has all the essential characteristics 

of Equation 5.12, and all of its shortcomings. It describes a 

sigmoidal growth curve approaching a stable carrying capacity,

but it is only one of many reasonable equations that do this. 

Its major advantage is its simplicity. Moreover, whilst it was 

possible to incorporate a range of competitive intensities into
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Equation 5.12, this is by no means easy with the logistic equa-

tion. The logistic is therefore doomed to be a model of per-

fectly compensating density dependence. Nevertheless, in spite 

of these limitations, the equation will be an integral component

of models in Chapters 8 and 10, and it has played a central role

in the development of ecology.

5.10 Individual differences: asymmetric

competition

5.10.1 Size inequalities

Until now, we have focused on what happens to the whole 

population or the average individual within it. Different indi-

viduals, however, may respond to intraspecific competition in very

different ways. Figure 5.24 shows the results of an experiment 

in which flax (Linum usitatissimum) was sown at three densities,

and harvested at three stages of development, recording the

weight of each plant individually. This made it possible to 

monitor the effects of increasing amounts of competition not only

as a result of variations in sowing density, but also as a result of

plant growth (between the first and the last harvests). When

intraspecific competition was at its least intense (at the lowest 

sowing density after only 2 weeks’ growth) the individual plant

weights were distributed symmetrically about the mean. When

competition was at its most intense, however, the distribution 

was strongly skewed to the left: there were many very small 

individuals and a few large ones. As the intensity of competition

gradually increased, the degree of skewness increased as well.

Decreased size – but increased skewness in size – is also seen to

Time (t )
0

N

K

dN

dt
= rN

dN

dt
= rN

(K–N )

K

Figure 5.23 Exponential ( ) and sigmoidal ( ) 

increase in density (N) with time for models of continuous

breeding. The equation giving sigmoidal increase is the 

logistic equation.

r, the intrinsic rate of

natural increase

the logistic equation
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be associated with increased density (and presumably competi-

tion) in cod (Gadus morhua) living off the coast of Norway

(Figure 5.25).

More generally, we may also say

that increased competition increased

the degree of size inequality within 

the population, i.e. the extent to which

total biomass was unevenly distributed amongst the different 

individuals (Weiner, 1990). Rather similar results have been

obtained from a number of other populations of animals

(Uchmanski, 1985) and plants (Uchmanski, 1985; Weiner &

Thomas, 1986). Typically, populations experiencing the most

intense competition have the greatest size inequality and often

have a size distribution in which there are many small and a few

large individuals. Characterizing a population by an arbitrary

‘average’ individual can obviously be very misleading under such

circumstances, and can divert attention from the fact that intra-

specific competition is a force affecting individuals, even though

its effects may often be detected in whole populations.

5.10.2 Preempting resources

An indication of the way in which competition can exaggerate

underlying inequalities in a population comes from observations

on a natural, crowded population of the woodland annual

Impatiens pallida in southeastern Pennsylvania. Over an 8-week

period, growth was very much faster in large than in small plants

– in fact, small plants did not grow at all (Figure 5.26a). This

increased significantly the size inequality within the population

(Figure 5.26b). Thus, the smaller a plant was initially, the more

it was affected by neighbors. Plants that established early preempted

or ‘captured’ space, and subsequently were little affected by

intraspecific competition. Plants that emerged later entered a

universe in which most of the available space had already been

preempted; they were therefore greatly affected by intraspecific

competition. Competition was asymmetric: there was a hier-

archy. Some individuals were affected far more than others, and

small initial differences were transformed by competition into much

larger differences 8 weeks later.
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Figure 5.24 Competition and a skewed

distribution of plant weights. Frequency

distributions of individual plant weights in

populations of flax (Linum usitatissimum),

sown at three densities and harvested at

three ages. The black bar is the mean

weight. (After Obeid et al., 1967.)
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If competition is asymmetric because superior competitors 

preempt resources, then competition is most likely to be asym-

metric when it occurs for resources that are most liable to be 

preempted. Specifically, competition amongst plants for light, in

which a superior competitor can overtop and shade an inferior,

might be expected to lend itself far more readily to preemptive

resource capture than competition for soil nutrients or water, where

the roots of even a very inferior competitor will have more

immediate access to at least some of the available resources than
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Figure 5.25 (right) Values of skewness (in the frequency

distribution of lengths) and density (a) and of skewness and mean

length (b) are expressed as standard deviations from mean values

for the years 1957–94 for cod (Gadus morhua) from the Skagerrak,

off the coast of Norway. Despite marked fluctuations from year to

year, much of it the result of variations in weather, skewness was

clearly greatest at high densities (r = 0.58, P < 0.01) when lengths

were smallest (r = −0.45, P < 0.05), that is, when competition was

most intense. (After Lekve et al., 2002.)
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Figure 5.26 Asymmetric competition in 

a natural population of Impatiens pallida. 

(a) The increase in mass of survivors of

different sizes over an 8-week period, and
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individuals that died over the same period.

The horizontal axis is the same in each
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a measure of inequality, 0.39) and the end
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(After Thomas & Weiner, 1989.)
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the roots of its superiors. This expectation is borne out by the

results of an experiment in which morning glory vines (Ipomoea

tricolor) were grown as single plants in pots (‘no competition’),

as several plants rooted in their own pots but with their stems

intertwined on a single stake (‘shoots competing’), as several plants

rooted in the same pot, but with their stems growing up their

own stakes (‘roots competing’) and as several plants rooted in the

same pot with their stems intertwined on one stake (‘shoots and

roots competing’) (Figure 5.27). Despite the fact that root com-

petition was more intense than shoot competition, in the sense

that it led to a far greater decrease in the mean weight of indi-

vidual plants, it was shoot competition for light that led to a much

greater increase in size inequality.

Skewed distributions are one pos-

sible manifestation of hierarchical, asym-

metric competition, but there are many

others. For instance, Ziemba and

Collins (1999) studied competition amongst larval salamanders

(Ambystoma tigrinum nebulosum) that were either isolated or grouped

together with competitors. The size of the largest surviving larvae

was unaffected by competition (P = 0.42) but the smallest larvae

were much smaller (P < 0.0001). This emphasizes that intra-

specific competition is not only capable of exaggerating individual

differences, it is also greatly affected by individual differences.

Asymmetric competition was observed on a much longer

timescale in a population of the herbaceous perennial Anemone

hepatica in Sweden (Figure 5.28) (Tamm, 1956). Despite the

crops of seedlings that entered the population between 1943 and

1952, it is quite clear that the most important factor determining

which individuals survived to 1956 was whether or not they

were established in 1943. Of the 30 individuals that had reached

large or intermediate size by 1943, 28 survived until 1956, and

some of these had branched. By contrast, of the 112 plants that

were either small in 1943 or appeared as seedlings subsequently,

only 26 survived to 1956, and not one of these was sufficiently

well established to have flowered. Similar patterns can be

observed in tree populations. The survival rates, the birth rates

and thus the fitnesses of the few established adults are high; those

of the many seedlings and saplings are comparatively low.

These considerations illustrate a final,

important general point: asymmetries

tend to reinforce the regulatory powers

of intraspecific competition. Tamm’s

established plants were successful competitors year after year, but

his small plants and seedlings were repeatedly unsuccessful. This

guaranteed a near constancy in the number of established plants

between 1943 and 1956. Each year there was a near-constant num-

ber of ‘winners’, accompanied by a variable number of ‘losers’

that not only failed to grow, but usually, in due course, died.

5.11 Territoriality

Territoriality is one particularly important and widespread phe-

nomenon that results in asymmetric intraspecific competition. It

occurs when there is active interference between individuals,

such that a more or less exclusive area, the territory, is defended

against intruders by a recognizable pattern of behavior.

Individuals of a territorial species

that fail to obtain a territory often

make no contribution whatsoever to

future generations. Territoriality, then,

Figure 5.27 When morning glory vines

competed, root competition was most

effective in reducing mean plant weight

(treatments significantly different, P < 0.01,

for all comparisons except (c) with (d)), 

but shoot competition was most effective

in increasing the degree of size inequality,

as measured by the coefficient of variation

in weight (significant differences between

treatments (a) and (b), P < 0.05, and (a) 

and (d), P < 0.01). (After Weiner, 1986.)
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is a ‘contest’. There are winners (those that come to hold a 

territory) and losers (those that do not), and at any one time there

can be only a limited number of winners. The exact number 

of territories (winners) is usually somewhat indeterminate in 

any one year, and certainly varies from year to year, depending

on environmental conditions. Nevertheless, the contest nature 

of territoriality ensures, like asymmetric competition generally,

a comparative constancy in the number of surviving, reproduc-

ing individuals. One important consequence of territoriality,

therefore, is population regulation, or more particularly, the reg-

ulation of the number of territory holders. Thus, when territory

owners die, or are experimentally removed, their places are often

rapidly taken by newcomers. For instance, in great tit (Parus major)

populations, vacated woodland territories are reoccupied by

birds coming from hedgerows where reproductive success is

noticeably lower (Krebs, 1971).

Some have felt that the regulatory consequences of territori-

ality must themselves be the root cause underlying the evolution

of territorial behavior – territoriality being favored because the

population as a whole benefitted from the rationing effects,

which guaranteed that the population did not overexploit its

resources (e.g. Wynne-Edwards, 1962). However, there are pow-

erful and fundamental reasons for rejecting this ‘group selectionist’

explanation (essentially, it stretches evolutionary theory beyond

reasonable limits): the ultimate cause of territoriality must be sought

within the realms of natural selection, in some advantage accru-

ing to the individual.

Any benefit that an individual 

does gain from territoriality, of course,

must be set against the costs of defend-

ing the territory. In some animals this

defense involves fierce combat between competitors, whilst in 

others there is a more subtle mutual recognition by competitors

of one another’s keep-out signals (e.g. song or scent). Yet, even

when the chances of physical injury are minimal, territorial 

animals typically expend energy in patrolling and advertizing

their territories, and these energetic costs must be exceeded by

any benefits if territoriality is to be favored by natural selection

(Davies & Houston, 1984; Adams, 2001).

Praw and Grant (1999), for example, investigated the costs 

and benefits to convict cichlid fish (Archocentrus nigrofasciatus) of

defending food patches of different sizes. As patch size increased,

the amount of food eaten by a patch defender increased (the benefit;

Figure 5.29a), but the frequency of chasing intruders (the cost;

Figure 5.29b) also increased. Evolution should favor an inter-

mediate patch (territory) size at which the trade-off between costs

and benefits is optimized, and indeed, the growth rate of defenders

was greatest in intermediate-sized patches (Figure 5.29c).

On the other hand, explaining territoriality only in terms of a

net benefit to the territory owner is rather like history always being

written by the victors. There is another, possibly trickier ques-

tion, which seems not to have been answered – could those indi-

viduals without a territory not do better by challenging the

territory owners more often and with greater determination?

Of course, describing territoriality

in terms of just ‘winners’ and ‘losers’ is

an oversimplification. Generally, there

are first, second and a range of conso-

lation prizes – not all territories are equally valuable. This has been

demonstrated in an unusually striking way in a study of oyster-

catchers (Haematopus ostralegus) on the Dutch coast, where pairs

of birds defend both nesting territories on the salt marsh and feed-

ing territories on the mudflats (Ens et al., 1992). For some birds

(the ‘residents’), the feeding territory is simply an extension of the

Figure 5.28 Space preemption in a

perennial, Anemone hepatica, in a Swedish

forest. Each line represents one individual:

straight for unramified ones, branched

where the plant has ramified, bold where

the plant flowered and broken where the

plant was not seen that year. Group A

were alive and large in 1943, group B alive

and small in 1943, group C appeared first

in 1944, group D in 1945 and group E

thereafter, presumably from seedlings.

(After Tamm, 1956.)
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nesting territory: they form one spatial unit. For other pairs, 

however (the ‘leapfrogs’), the nesting territory is further inland

and hence separated spatially from the feeding territory (Fig-

ure 5.30a). Residents fledge many more offspring than do leapfrogs

(Figure 5.30b), because they deliver far more food to them

(Figure 5.30c). From an early age, resident chicks follow their 

parents onto the mudflats, taking each prey item as soon as it is

captured. Leapfrog chicks, however, are imprisoned on their

nesting territory prior to fledging; all their food has to be flown

in. It is far better to have a resident than a leapfrog territory.

5.12 Self-thinning

We have seen throughout this chapter that intraspecific competi-

tion can influence the number of deaths, the number of births

and the amount of growth within a population. We have illus-

trated this largely by looking at the end results of competition.

But in practice, the effects are often progressive. As a cohort ages,

the individuals grow in size, their requirements increase and

they therefore compete at a greater and greater intensity. This in

turn tends gradually to increase their risk of dying. But if some

individuals die, then the density and the intensity of competition

are decreased – which affects growth, which affects competition,

which affects survival, which affects density, and so on.

5.12.1 Dynamic thinning lines

The patterns that emerge in growing, crowded cohorts of indi-

viduals were originally the focus of particular attention in plant

populations. For example, perennial rye grass (Lolium perenne) was

sown at a range of densities, and samples from each density were

harvested after 14, 35, 76, 104 and 146 days (Figure 5.31a). Fig-

ure 5.31a has the same logarithmic axes – density and mean plant

weight – as Figure 5.14. It is most important to appreciate the

difference between the two. In Figure 5.14, each line represented

a separate yield–density relationship at different ages of a cohort.

Successive points along a line represent different initial sowing

densities. In Figure 5.31, each line itself represents a different 

sowing density, and successive points along a line represent 

populations of this initial sowing density at different ages. The

lines are therefore trajectories that follow a cohort through 

time. This is indicated by arrows, pointing from many small, young

individuals (bottom right) to fewer, larger, older individuals 

(top left).

Mean plant weight (at a given age) was always greatest in the

lowest density populations (Figure 5.31a). It is also clear that 

the highest density populations were the first to suffer substantial

mortality. What is most noticeable, however, is that eventually,

in all cohorts, density declined and mean plant weight increased

in unison: populations progressed along roughly the same straight
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Figure 5.29 Optimal territory size in the convict cichlid fish,

Archocentrus nigrofasciatus. (a) As patch (territory) size increased,

the amount of food eaten by a territory defender (standardized z

score) increased but leveled off at the largest sizes (solid line, linear

regression: r2 = 0.27, P = 0.002; dashed line, quadratic regression: 

r2 = 0.33, P = 0.003). (b) As patch (territory) size increased, the

chase rate of territory defenders increased (linear regression: 

r2 = 0.68, P < 0.0001). (c) As patch (territory) size increased, the

growth rate of territory defenders (standardized z score) was

highest at intermediate-sized territories (quadratic regression: 

r2 = 0.22, P = 0.028). (After Praw & Grant, 1999.)
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line. The populations are said to have experienced self-thinning

(i.e. a progressive decline in density in a population of grow-

ing individuals), and the line that they approached and then 

followed is known as a dynamic thinning line (Weller, 1990).

The lower the sowing density, the later was the onset of self-

thinning. In all cases, though, the populations initially followed

a trajectory that was almost vertical, i.e. there was little mortal-

ity. Then, as they neared the thinning line, the populations suf-

fered increasing amounts of mortality, so that the slopes of all

the self-thinning trajectories gradually approached the dynamic

thinning line and then progressed along it. Note also that Fig-

ure 5.31 has been drawn, following convention, with log density

on the x-axis and log mean weight on the y-axis. This is not 

meant to imply that density is the independent variable on

which mean weight depends. Indeed, it can be argued that mean

weight increases naturally during plant growth, and this deter-

mines the decrease in density. The most satisfactory view is that

density and mean weight are wholly interdependent.

Plant populations (if sown at suffici-

ently high densities) have repeatedly

been found to approach and then follow

a dynamic thinning line. For many years, all such lines were widely

perceived as having a slope of roughly −3/2, and the relationship

was often referred to as the ‘−3/2 power law’ (Yoda et al., 1963;

Hutchings, 1983), since density (N) was seen as related to mean

weight (P) by the equation:

log P = log c − 3/2 log N (5.22)

Figure 5.30 (a) A coastal area in the

Netherlands providing both nesting and

feeding territories for oystercatchers. In

‘resident’ territories (dark shading), nesting

and feeding areas are adjacent and chicks

can be taken from one to the other at an

early age. ‘Leapfrogs’, however, have

separate nesting and feeding territories

(light shading) and food has to be flown 

in until the chicks fledge. (b) Residents (�)

fledge more chicks than leapfrogs (�). 

(c) Residents (�) deliver more food per 

tide (grams of ash-free dry weight (g

AFDW), with standard deviations) than

leapfrogs (�). The latter deliver more, 

the more effort (in flying) they expend, 

but still cannot match the residents. 

(After Ens et al., 1992.)

the –3/2 power law
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or:

P = c N−3/2 (5.23)

where c is constant.

Note, however, that there are statistical problems in using

Equations 5.22 and 5.23 to estimate the slope of the relationship

(Weller, 1987). In particular, since P is usually estimated as B/N,

where B is the total biomass per unit area, P and N are inevitably

correlated, and any relationship between them is, to a degree, 

spurious. It is therefore preferable to use the equivalent relation-

ships, lacking autocorrelation:

log B = log c − 1/2 log N (5.24)

or:

B = c N−1/2. (5.25)

5.12.2 Species and population boundary lines

In fact, in many cases where biomass–density relationships have

been documented, it is not a single cohort that has been followed

over time, but a series of crowded populations at different dens-

ities (and possibly different ages) that have been compared. In such

cases, it is more correct to speak of a species boundary line – a line

beyond which combinations of density and mean weight appear

not to be possible for that species (Weller, 1990). Indeed, since

what is possible for a species will vary with the environment in

which it is living, the species boundary line will itself subsume a

whole series of population boundary lines, each of which defines

the limits of a particular population of that species in a particular

environment (Sackville Hamilton et al., 1995).

Thus, a self-thinning population

should approach and then track its

population boundary line, which, as a

trajectory, we would call its dynamic

thinning line – but this need not also be

its species boundary line. For example,

the light regime, soil fertility, spatial arrangement of seedlings,

and no doubt other factors may all alter the boundary line (and

hence the dynamic thinning line) for a particular population

(Weller, 1990; Sackville Hamilton et al., 1995). Soil fertility, for

example, has been found in different studies to alter the slope of

the thinning line, the intercept, neither, or both (Morris, 2002).

The influence of light is also worth

considering in more detail, since it

highlights a key feature of thinning

and boundary lines. A slope of roughly −3/2 means that mean 

plant weight is increasing faster than density is decreasing, and

hence that total biomass is increasing (a slope of −1/2 on a total

biomass–density graph). But eventually this must stop: total

biomass cannot increase indefinitely. Instead, the thinning line might

be expected to change to a slope of −1: that is, loss through 

mortality is exactly balanced by the growth of survivors, such that

the total biomass remains constant (a horizontal line on a total

biomass–density graph). This can be seen when populations of

Lolium perenne (Figure 5.31b) were grown at low light intensities.

A boundary (and thinning line) with a slope of −1 was apparent
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Figure 5.31 Self-thinning in Lolium perenne

sown at five densities: 1000 (�), 5000 (�),

10,000 (�), 50,000 (�) and 100,000 (�)

‘seeds’ m−2, in: (a) 0% shade and (b) 83%

shade. The lines join populations of the

five sowing densities harvested on 

five successive occasions. They therefore

indicate the trajectories, over time, that

these populations would have followed.

The arrows indicate the directions of 

the trajectories, i.e. the direction of self-

thinning. For further discussion, see text.

(After Lonsdale & Watkinson, 1983.)
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at much lower densities than it would otherwise be. Clearly, the

light regime can alter the population boundary line. This also

emphasizes, however, that boundary lines with negative slopes

steeper than −1 (whether or not they are exactly −3/2) imply 

limits to the allowable combinations of plant densities and mean

weights that set in before the maximum biomass from an area of

land has been reached. Possible reasons are discussed below.

5.12.3 A single boundary line for all species?

Intriguingly, when the thinning and boundary lines of all sorts of

plants are plotted on the same figure, they all appear to have approx-

imately the same slope and also to have intercepts (i.e. values of

c in Equation 5.24) falling within a narrow range (Figure 5.32).

To the lower right of the figure are high-density populations of

small plants (annual herbs and perennials with short-lived

shoots), whilst to the upper left are sparse populations of very

large plants, including coastal redwoods (Sequoia sempervirens), 

the tallest known trees. Fashions change in science as in every-

thing else. At one time, ecologists looked at Figure 5.32 and saw

uniformity – all plants marching in −3/2 time (e.g. White, 1980),

with variations from the norm seen as either ‘noise’ or as only

of minor interest. Subsequently, serious doubt was cast on the

conformity of individual slopes to −3/2, and on the whole idea

of a single, ideal thinning line (Weller, 1987, 1990; Zeide, 1987;

Lonsdale, 1990). There really is no contradiction, though. On the

one hand, the lines in Figure 5.32 occupy a very much smaller

portion of the graph than one would expect by chance alone. There

is apparently some fundamental phenomenon linking this whole

spectrum of plant types: not an invariable ‘rule’ but an under-

lying trend. On the other hand, the variations between the lines

are real and important and in as much need of explanation as the

general trend.

5.12.4 A geometric basis for self-thinning

We proceed, therefore, by examining possible bases for the gen-

eral trend, and then enquiring why different species or popula-

tions might display their own variations on this common theme.

Two broad types of explanation for the trend have been proposed.

The first (and for many years the only one) is geometric; the sec-

ond is based on resource allocation in plants of different sizes.

The geometric argument runs as follows. In a growing cohort

of plants, as the mass of the population increases, the leaf area

index (L, the leaf area per unit area of land) does not keep on increas-

ing. Instead, beyond a certain point, it remains constant irrespective

of plant density (N). It is, in fact, precisely beyond this point 

that the population follows the dynamic thinning line. We can

express this by writing:

L = λN = constant (5.26)

where λ is the mean leaf area per surviving plant. However, 

the leaf area of individual plants increases as they grow, and so

too therefore does their mean, λ. It is reasonable to expect λ,

because it is an area, to be related to linear measurements of a plant,

such as stem diameter, D, by a formula of the following type:

λ = aD2 (5.27)

where a is a constant. Similarly, it is reasonable to expect mean

plant weight, P, to be related to D by:

P = bD3 (5.28)

where b is also a constant. Putting Equations 5.26–5.28 together,

we obtain:
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Figure 5.32 Self-thinning in a wide variety of herbs and trees.

Each line is a different species, and the line itself indicates the

range over which observations were made. The arrows, drawn 

on representative lines only, indicate the direction of self-thinning

over time. The figure is based on Figure 2.9 of White (1980),

which also gives the original sources and the species names 

for the 31 data sets.
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P = b(L/a)3/2 · N−3/2 (5.29)

This is structurally equivalent to the −3/2 power law in Equa-

tion 5.23, with the intercept constant, c, given by b(L/a)3/2.

It is apparent, therefore, why thinning lines might generally

be expected to have slopes of approximately −3/2. Moreover, if

the relationships in Equations 5.27 and 5.28 were roughly the same

for all plant species, and if all plants supported roughly the same

leaf area per unit area of ground (L), then the constant c would

be approximately the same for all species. On the other hand, 

suppose that L is not quite constant for some species (see Equa-

tion 5.26), or that the powers in Equations 5.27 and 5.28 are not

exactly 2 or 3, or that the constants in these equations (a and b)

either vary between species or are not actually constants at all.

Thinning lines will then have slopes that depart from −3/2, and

slopes and intercepts that vary from species to species. It is easy

to see why, according to the geometric argument, there is a broad

similarity in the behavior of different species, but also why, on

closer examination, there are variations between species and no

such thing as a single, ‘ideal’ thinning line.

Furthermore, contrary to the simple

geometric argument, the yield–density

relationship in a growing cohort need

not depend only on the numbers that

die and the way the survivors grow. We have seen (see Section

5.10) that competition is frequently highly asymmetric. If those

that die in a cohort are predominantly the very smallest indi-

viduals, then density (individuals per unit area) will decline 

more rapidly as the cohort grows than it would otherwise do, 

and the slope will be shallower, especially in the early stages of

self-thinning. This idea is supported by a comparison of self-

thinning in normal Arabidopsis thaliana plants with self-thinning

in mutants that overexpress phytochrome A, greatly reducing their

shade tolerance, and making competition amongst them more

asymmetric (Figure 5.33a).

It seems possible, too, to use departures from the assumptions

built into Equations 5.26–5.29 to explain at least some of the varia-

tions from a ‘general’ −3/2 rule. Osawa and Allen (1993) estimated

a number of the parameters in these equations from data on 

the growth of individual plants of mountain beech (Nothofagus 

solandri) and red pine (Pinus densiflora). They estimated, for instance,

that the exponents in Equations 5.27 and 5.28 were not 2 and 3,

but 2.08 and 2.19 for mountain beech, and 1.63 and 2.41 for red

pine. These suggest thinning slopes of −1.05 in the first case and

−1.48 in the second, which compare quite remarkably well with the

observed slopes of −1.06 and −1.48 (Figure 5.33b). The similarities

between the estimates and observations for the intercept constants

were equally impressive. These results show, therefore, that thinning

lines with slopes other than −3/2 can occur, but can be explicable

in terms of the detailed biology of the species concerned – and

that even when slopes of −3/2 do occur, they may do so, as with

red pine, for the ‘wrong’ reason (−2.41/1.63 rather than −3/2).

complications of the

geometric argument
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Figure 5.33 (a) The relationship between total biomass and density in two wild-type strains of Arabidopsis thaliana plants (4 and �) and 

a phytochrome A overexpressing mutant strain (�) 15, 22 and 33 days after sowing (bottom to top). Data points give means (±1 SE, n = 3).

In each case, the strains were sown at two initial densities; solid black regression lines are shown in each case for the higher density. The 

steeper dotted black line has a slope of −1/2 (indicative of −3/2 self-thinning) and the shallow line a slope of −1/3 (indicative of −4/3 self-

thinning). Model trajectories for asymmetric ( ) and symmetric ( ) competition are also shown. The mutant strain exhibited shallower

thinning lines, indicative of more asymmetric competition. (After Stoll et al., 2002.) (b) The species boundary line for populations of red pine,

Pinus densiflora (slope = −1.48) from northern Japan. (After Osawa & Allen, 1993.)
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5.12.5 A resource-allocation basis for thinning 

boundaries

The increasing recognition that a variety of slope values might

be expected, even on the geometric argument, along with the 

statistical difficulties of estimating slopes, has left the way open

for alternative explanations for the underlying trend itself. Enquist

et al. (1998) made use of the much more general model of West

et al. (1997), which considered the most effective architectural

designs of organisms (not just plants) for distributing acquired

resources throughout those organisms. This suggested that the

rate of resource use per individual, u, should be related to mean

plant weight, P, according to the equation:

u = aP3/4 (5.30)

where a is a constant. Indeed, Enquist et al. (1998) were also able

to find empirical support for this relationship.

They then argued that plants 

have evolved to make full use of the

resources available, and so if S is the 

rate of resource supply per unit area and Nmax the maximum 

allowable density of plants, then:

S = Nmaxu (5.31)

or, from Equation 5.30:

S = aNmaxP
3/4. (5.32)

But when the plants have arrived at an equilibrium with the rate

of resource supply, S should itself be constant. Hence:

P = bNmax
−4/3, (5.33)

where b is another constant. In short, the expected slope of a 

population boundary on this argument is −4/3 rather than −3/2.

Enquist and colleagues themselves considered the available data

to be more supportive of their prediction of a slope of −4/3 than

the more conventional −3/2. This has not, however, been the 

conclusion drawn either from previous data surveys or from the

analysis of subsequent experiments (e.g. Figure 5.33a; Stoll et al.,

2002). In part, the discrepancy may have arisen because the geo-

metric argument is focused on light acquisition, and the data col-

lected to test it have likewise been focused on above-ground plant

parts (photosynthetic or support tissue); whereas Enquist et al.’s

is a much more general resource-acquisition argument, and at least

some of their data were based on overall plant weights (leaves,

shoots and roots). Related to this, Enquist et al.’s data sets were

focused on maximum densities of large numbers of species,

whereas other analyses have focused on the self-thinning process,

which occurs largely before the overall resource-determined

limit has been reached. Again, therefore, there may be no con-

tradiction between the two approaches.

5.12.6 Self-thinning in animal populations

Animals, whether they are sessile or mobile, must also ‘self-thin’,

insofar as growing individuals within a cohort increasingly 

compete with one another and reduce their own density. There

is nothing linking all animals quite like the shared need for light

interception that links all plants, so there is even less likelihood

of a general self-thinning ‘law’ for animals. On the other hand,

crowded sessile animals can, like plants, be seen as needing to pack

‘volumes’ beneath an approximately constant area, and mussels,

for example, have been found to follow a thinning line with a

slope of −1.4, and barnacles a line with a slope of −1.6 (Hughes

& Griffiths, 1988). Moreover, self-thinning in the gregarious 

tunicate, Pyura praeputialis, on the coast of Chile was found 

to follow a slope of only −1.2; but when the analysis was

modified to acknowledge that rocky shore invertebrates are

more ‘three-dimensional’ than plants, and may fit more than one

layer into a fully occupied area (as opposed to the constant 

leaf area index of plants), then the estimated slope was −1.5

(Figure 5.34a).

For mobile animals, it has been suggested that the relation-

ship between metabolic rate and body size could generate thin-

ning lines with slopes of −4/3 (Begon et al., 1986). However, the

generality of this is probably even more questionable than the ‘rules’

in plants, given variations in resource supply, variations in the

coefficients in the underlying relationships, and the possibilities

of self-thinning depending on, say, territorial behavior rather

than simply food availability (Steingrimsson & Grant, 1999).

Nonetheless, evidence of self-thinning in animals is increasingly

reported, especially in fish, even if the basis for it remains uncer-

tain (e.g. Figure 5.34b).

Plants are not so consistent in their pattern of self-thinning as

was once thought. It may be that animals are not much less bound

than plants by ‘general’ self-thinning rules.

Summary

Intraspecific competition is defined and explained. Exploitation 

and interference are distinguished, and the commonly one-sided

nature of competition is emphasized.

We describe the effects of intraspecific competition on rates

of mortality and fecundity, distinguishing under-, over- and

exactly compensating density dependence. We explain, how-

ever, that density itself is usually just a convenient expression of

crowding or shortage of resources.

−4/3 or −3/2?
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These effects at the individual level lead in turn to patterns,

and regulatory tendencies, at the population level. The carrying

capacity is defined and its limitations are explained, along with

the domed nature of net recruitment curves and the sigmoidal

nature of population growth curves.

We describe the effects of intraspecific competition on rates

of growth, explaining the ‘law of constant final yield’, especially

in modular organisms.

The use of k values in quantifying intraspecific competition is

described, and scramble and contest competition are distinguished.

We introduce the use of mathematical models in ecology 

generally, then go on to develop a model of a population with

discrete breeding seasons subject to intraspecific competition. The

model illustrates the tendency of time lags to provoke popu-

lation fluctuations and that different types of competition may 

lead to different types of population dynamics, including patterns

of deterministic chaos – the nature and importance of which are

themselves explained. A model with continuous breeding is also

developed, leading to the logistic equation.

The importance of individual differences in generating 

asymmetries in competition is explained, as is the importance 

of competition in generating individual differences. Asymmetries

tend to enhance regulation; territoriality is a particularly import-

ant example of this.

The progressive effects of competition on growth and mor-

tality may often be interlinked in the process of self-thinning, which

has been a particular focus in plant populations. We explain the

nature of dynamic thinning lines and the −3/2 power law when

single cohorts are followed, and also species and population

boundary lines when a series of crowded populations is observed

at different densities. We address the question of whether there

is a single boundary line for all species.

We explain how two broad types of explanation for the con-

sistent trend amongst species have been proposed: those based

on geometry and those based on resource allocation in plants of

different sizes.

Finally we examine self-thinning in animal populations and 

conclude that plants are not so consistent in their pattern of self-

thinning as was once thought, while animals are not much less

bound than plants by ‘general’ self-thinning rules.

(a)

L
o

g
 d

ry
 m

a
s
s
 (

g
)

–0.1
1.5 2.0 2.5 3.0 3.5

–0.5

0.0

0.5

1.0

Log density (individuals m–2)

(b)

W
e
ig

h
t 

o
f 

tr
o
u
t 

(g
)

0.01
5 50

0.5

10 100 5001000

0.05

0.1

1

5

10

50

100

500

Density (fish 60 m–2)

Figure 5.34 (a) Self-thinning in the gregarious tunicate, Pyura

praeputialis, where density has been modified to include an

‘effective area’ which incorporates the number of layers in the

tunicate colonies. The estimated slope is −1.49 (95% CI −1.59 

to −1.39, P < 0.001). (After Guiñez & Castilla, 2001.) (b) Dynamic

thinning lines for 23 year-classes of sea trout, Salmo trutta, from 

an English Lake District stream, with the position of the mean

regression line (slope = −1.35) indicated by the arrows 

(After Elliott, 1993.)


